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Abstract—Deep learning has emerged as a vital 

approach for identifying and addressing vulnerabilities 

in software systems. A key challenge in this process lies 

in effectively representing code and leveraging AI 

techniques to capture and interpret its semantics and 

other intrinsic information. This paper employs 

bidirectional slicing techniques to extract code slices 

containing control and data dependencies from program 

dependency graphs, targeting key points of different 

vulnerabilities. To represent the node features within the 

slices, code tokens are mapped to integers and 

transformed into fixed-length vectors, leveraging 

Word2vec and BERT models to embed the code nodes 

and extract structural graph features. The embedded 

feature matrix is then fed into a Gated Graph Neural 

Network (GGNN), which aggregates information from 

nodes and their neighbors to enhance long-term memory 

of graph-structured data. By iterating through several 

time steps within GRU units, the final node features are 

generated. Additionally, edge relationships are used to 

propagate and aggregate information, further improving 

the accuracy of vulnerability detection. Experimental 

results demonstrate that the proposed model achieves an 

F1-score of 93.25% on the BigVul dataset, showcasing 

strong detection performance. 
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I. INTRODUCTION 

A. Background Introduction 

Software vulnerabilities are an important cause 
of network attacks and data leakage, posing a 
serious threat to software security. Despite efforts 
to pursue secure programming, vulnerabilities are 
still widespread due to the increasing complexity 
of software and the continuous expansion of the 
Internet. According to the vulnerability data 
released by China National Vulnerability Database 

of Information Security (CNNVD) in 2022, there 
were 24801 new vulnerabilities added in 2022, an 
increase of 19.28% compared to 2021. The growth 
rate has markedly increased, reaching record levels 
and sustaining its upward momentum. The 
percentage of extremely high-risk vulnerabilities is 
steadily rising [1]. Vulnerabilities in software, 
once exploited by malicious attackers, may cause 
serious consequences such as system paralysis and 
personal privacy data leakage, posing a 
ransomware risk to the company or posing a threat 
to public security. Therefore, ensuring the 
reliability of software has become a current focus 
of attention to protect internet users from cyber 
attackers. Code vulnerabilities often arise from 
minor errors and can rapidly proliferate due to the 
extensive use of open-source software and code 
reuse. Early detection of vulnerabilities to protect 
software security has become crucial. Detecting 
and fixing software vulnerabilities is a complex 
task because of the wide variety of vulnerabilities 
and their increasing frequency. 

In the last dozen years, machine learning(ML) 
has made significant progress, particularly in areas 
such as deep learning (DL) algorithms [2], natural 
language processing techniques [3], and other 
data-driven approaches, which have proven highly 
effective in detecting software vulnerabilities. 
ML/DL models excel at identifying subtle patterns 
and correlations within large datasets, a critical 
capability for vulnerability detection, as 
vulnerabilities often stem from intricate code 
features and dependencies. These models handle 
diverse data types and formats, including source 
code [4-11], textual information [12], and 
numerical features like submission characteristics 
[13]. By processing and analyzing these diverse 
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data representations, ML/DL models enable 
effective vulnerability detection. This adaptability 
allows researchers to leverage multiple data 
modalities for a more comprehensive approach to 
detecting vulnerabilities. 

II. RELATED WORKS 

DL-based of vulnerability detection methods 
are currently the forefront of vulnerability 
detection, which can effectively narrow down the 
scope of code auditing, avoid expert defined 
features, and achieve the goal of automatic 
vulnerability detection [14]. The existing DL-
based modeling techniques currently fall into two 
categories: sequence-based models and graph-
based models [32].  

A. Sequence Based Model 

In the sequence-based modeling approach, the 
code is considered as a sequence of tokens, which 
are slices of the code, including methods based on 
token sequences of function call, source codes, 
intermediate code, and assembly code, 
respectively.  

Wu et al. [15] employed Convolutional Neural 
Networks (CNN), Long Short Term Memory 
(LSTM), and CNN-LSTM architectures to model 
function call sequences from binary programs, 
generating numerical vector representations of the 
sequence data through Keras and enhancing 
vulnerability detection by analyzing function call 
patterns. Russell et al. [16] reduced token 
vocabulary size using a custom C/C++ lexer and 
applied CNN and Random Forest models to detect 
vulnerabilities at the function level, focusing on 
the sequential characteristics of source code. Yan 
et al. [17] introduced the HAN-BSVD model, 
which captures local sequential features using 
Bidirectional Gated Recurrent Unit (Bi-GRU) and 
Text-CNN, with word attention modules 
highlighting critical sequence regions for binary 
vulnerability detection. Li et al. [18] developed 
VulDeeLocator, which utilizes the Bidirectional 
Recurrent Neural Network (BRNN-vdl) to 
integrate sequence-based intermediate code 
analysis, combining data and control flow 
dependencies to improve vulnerability detection 
accuracy. Tian et al. [9] proposed BVDetector, 
utilizing Binary Gated Recurrent Unit (BGRU) 

and program slicing to analyze sequences of 
control and data flow, specifically detecting 
vulnerabilities related to library/API function call 
sequences in binary programs. 

Based on the aforementioned methods, 
sequence-based vulnerability detection techniques 
are primarily employed for binary code analysis. 
These methods effectively capture the program's 
execution order and logical flow while minimizing 
the complexity of the analysis. Sequence models 
demonstrate strong adaptability in processing 
binary code, particularly in scenarios where source 
code is unavailable, making them a powerful tool 
for vulnerability detection. 

B. Graph Based Model 

The graph-based modeling approach treats the 
code as a graph and merges different syntactic and 
semantic dependencies, which can be used for 
vulnerability prediction using different types of 
syntactic and semantic graphs in two main ways, 
transforming the graph structure into a sequence or 
modeling the graph structure directly.  

The Sequence Graph Hybrid Model utilizes 
both the graph structure and linear sequence in the 
program. The information extracted from the 
graph structure is usually transformed into linear 
sequences, which can be directly input into 
machine learning models or deep learning models 
(such as LSTM, GRU) for analysis and prediction. 
This transformation makes complex graph 
structure information easier to be processed by 
traditional sequence models. VulDeePecker [19] 
extracted code slices from a Data Dependency 
Graph (DDG) by capturing data flow 
dependencies between variables and using these 
slices as input sequences for an RNN and Bi-
LSTM model. μVulDeePecker [20] enhanced the 
detection process by incorporating both data and 
control dependencies through System Dependency 
Graphs (SDG), using forward and backward 
slicing techniques to capture local and global 
semantic information. These code slices were 
processed with a Bi-LSTM model to improve 
vulnerability type identification. SySeVR [21] 
combined both Bi-LSTM and Bi-GRU models to 
analyze slices representing data and control flow 
dependencies, further improving vulnerability 
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detection by capturing the sequential relationships 
in these flows. Compared with modeling by 
converting graph structures into sequences, 
directly using graph neural networks to model 
graph structures can more fully learn the 
dependency relationships between nodes, program 
structure, and semantic information in graph based 
code representation. This method can provide 
more accurate feature vector representations for 
source code vulnerability detection models. In the 
method of directly modeling graph structures, one 
approach is to comprehensively represent the 
syntax and semantic information related to 
vulnerabilities at different levels of abstraction by 
integrating multiple intermediate representations 
of code, without using slicing techniques. Another 
approach is to use program slicing techniques to 
remove information unrelated to vulnerabilities 
from mixed code representations, in order to 
improve the accuracy and efficiency of 
vulnerability detection. 

Zhou et al. [22] proposed Devign, which 
encoded source code into a Combined Program 
Dependency Graph (CPG), integrating the 
Abstract Syntax Tree (AST), Control Flow Graph 
(CFG), and Data Flow Graph (DFG). Natural 
Code Sequence (NCS) edges were added to 
preserve code order, and a Gated Graph Recurrent 
Network (GGRN) with convolutional layers was 
used for graph-level classification. Wang et al. [23] 
proposed FUNDED, which improved vulnerability 
prediction by automatically collecting high-quality 
samples through confidence prediction (CP). They 
combined AST and Program Control and 
Dependency Graphs (PCDG), extracting nine code 
relationships, and used GGNN with GRU-based 
models to capture higher-order neighborhood 
information for detection. Zheng et al. [24] 
proposed VulSPG, which merged control, data, 
and function call dependencies into Sliced 
Program Graphs (SPG) and utilized a Relational 
Graph Convolutional Network (R-GCN) for 
vulnerability detection, further enhanced by a 
triple attention mechanism. Cheng et al. [30] 
proposed DeepWukong, which generated program 
slices from Program Dependency Graphs (PDG) 
and employed GCN and k-dimensional GNN (k-
GNN) models to process these slices. Cao et al. 

[25] introduced MVD, which incorporated 
function call information into PDGs and focused 
on detecting memory-related vulnerabilities. The 
method embedded the program slices using 
Doc2Vec and employed Flow Sensitive Graph 
Neural Networks (FS-GNN) to enhance 
vulnerability detection. Zou et al. [26] utilized 
PDG-based vulnerability slicing to capture 
vulnerabilities around pointers and sensitive APIs, 
employing GGNN models to learn and interpret 
vulnerability features. 

The graph-based modeling approach treats code 
as graphics and combines different syntax and 
semantic dependencies. Graph-based 
representation methods can effectively preserve 
complex semantic information such as the logical 
structure and dependency relationships of the code. 

III. FEATURE EXTRACTION 

A. Code Standardization 

Semantic irrelevant information in source code, 
such as comments, complex variable names, and 
function names, can interfere with the training and 
prediction accuracy of deep learning models. To 
minimize the impact of this irrelevant information, 
this study first normalizes the source code. 
Comments, spaces, tabs, and line breaks are 
removed while ensuring the corresponding line 
numbers remain unchanged. Function names are 
replaced with a standardized identifier (e.g., 
FUNC1) under specific conditions: they are not 
keywords (e.g., boolean, const), preprocessor 
directives (e.g., #define, #include), library 
functions (e.g., snprintf, sleep), or the main 
function, and must be followed by an opening 
parenthesis indicating a function call. For variable 
names, candidates are identified by excluding 
function parameters, function names that are not 
keywords, preprocessor directives, library 
functions, or specific terms like 'argc' 
(representing the number of parameters passed to 
the main function) and 'argv' (representing the 
sequence or pointer of parameters passed to the 
main function). Additionally, the variable name is 
only standardized (e.g., VAR1) if it is not 
immediately followed by an opening parenthesis. 
This normalization process is illustrated in Figure1.
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Figure 1. The Process of Code Standardization 

B. Construction of Code Representation Graph 

The code representation diagram is an effective 
method for visualizing code by clearly conveying 
its semantic, syntactic, and structural information. 
Among these, the PDG is a particularly expressive 
data structure that connects AST nodes through 
DDG and CDG. Using the Joern tool [27], binary 
(bin) files are generated, followed by the 
extraction of the CPG through the graph-for-
funcs.sc script. This process generates both the 
AST and CFG, storing the resulting data in a 
JSON file. 

The JSON format is chosen because the graph 
nodes are based on fine-grained AST elements 
rather than entire code statements. However, when 
analyzing source code, it is necessary to map these 
nodes to specific lines of code (for instance, diff 
files are line-based). By executing the command 
'cpg.runScript("graph-for-funcs.sc").to String() 
|>.json', the graph is output as a JSON file, 
facilitating further analysis. The PDG, also 
generated by Joern, integrates AST and CFG 
structures, providing a more comprehensive 
representation of code features for vulnerability 
detection. The process of generating the PDG is 
illustrated in Figure2.

void FUN1() 

{

 char * VAR1; 

 char VAR2[100]; 

 VAR1 = VAR2; 

 VAR1 = 

FUN2(VAR1); 

 { 

    char VAR3[50] = 

""; 

    strncat(VAR3, 

VAR1, 

strlen(VAR1)); 

    VAR3[50-1] = '\0'; 

    FUN3(VAR1); 

    } 

}
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Figure 2. The Process of Generating the PDG 
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C. Slice of Code Representation Graph 

A significant challenge in function-level 
vulnerability detection is the presence of a large 
number of vulnerability-independent noise 
statements, which can hinder the model's ability to 
effectively learn vulnerability features and 
ultimately degrade detection performance. 
Furthermore, the complexity of real-world 
software often results in program dependency 
graphs with numerous nodes and edges, leading to 
increased time and memory consumption during 
the training process. To address these challenges, 
this paper adopts a slice-level vulnerability 
detection approach, aiming to eliminate irrelevant 
information and enhance both detection accuracy 
and interpretability while minimizing resource 
overhead. By comparing vulnerable code with 
corresponding patched code, the study identifies 
four potential vulnerability-prone areas: pointers, 
arrays, expression operations, and sensitive APIs. 
These areas, referred to as "vulnerability focus 
points," represent key locations where 
vulnerabilities are most likely to occur. 

1) Pointer Operations 

Pointer operations can lead to dynamic memory 
errors, such as memory leaks, double-free errors, 
and null pointer dereferencing. To mitigate 
confusion associated with the use of the asterisk (*) 
in pointer declarations and avoid errors, this paper 
identifies specific node types in the code 
representation.  

The node type 'Identifier' represents program 
entities such as variable names, functions, or 
classes. For instance, in the expression 'int* ptr', 
the term 'ptr' is classified as an identifier, and its 
data type is determined to be a pointer. Similarly, 
'MethodParameterIn' nodes represent input 
parameters passed to methods or functions and are 
also identified as pointers when applicable. For 
example, in the function signature 'void foo(int* 
ptr)', 'ptr' is a method input parameter of pointer 
type. Additionally, 'FieldIdentifier' nodes are 
typically used to denote fields or member 
variables in a class or structure. Consider the 
following example: 

struct MyStruct { 

    int* ptr; // Pointer to an integer 

}; 
In this case, the node representing 'ptr' is 

categorized as a pointer field. After identifying 
such node types, the system inspects the node and 
its type to check for the presence of the asterisk (*).  

2) Array operation 

Array operations often involve out-of-bounds 
reading or writing, with out-of-bounds writes 
potentially leading to memory overflow 
vulnerabilities. Specifically, selecting nodes 
classified as 'indirectIndexAccess' represents 
indirect index access, typically used to describe 
scenarios where arrays or collection elements are 
accessed indirectly through variables or 
expressions. For example, the following code 
illustrates a possible case of out-of-bounds access: 

int arr [5] = {1, 2, 3, 4, 5}; 

int index = 2; int value = arr[index];  
In this example, 'index' denotes an indirect 

access to the array. By analyzing such nodes in the 
code, the presence of array indexing symbols '[]' 
can be detected, allowing further checks for 
potential out-of-bounds access. 

3) Expression Operations 

Expression operations such as addition, 
subtraction, and multiplication can result in integer 
overflow. For instance, when performing 
arithmetic on 'int' types, if the result exceeds the 
representable range of the data type, overflow 
occurs. Division operations, on the other hand, 
may lead to division by zero errors. 

The specific approach involves selecting nodes 
of type 'assignment', which represent assignment 
operations. If the node contains an equal sign ('='), 
the expression on the right side of the equal sign is 
extracted. Regular expressions are then used to 
match expressions that include arithmetic 
operations such as addition, subtraction, 
multiplication, and division (e.g., '((?:_|[A-Za-
z])\w*(?:\s(?:\+|\-|\*|\/)\s(?:_|[A-Za-z])\w*)+)' for 
strings like "a + b" or "x - y * z", where both 
operands start with a letter or underscore, followed 
by any number of letters, digits, or underscores). 
In cases where no equal sign is present, regular 
expressions are used to match division operations 
(e.g., '(?:\s\/\s(?:_|[A-Za-z])\w*\s)'), as division in 
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integer operations may trigger overflow or 
division-by-zero errors. 

4) Sensitive API Function Operations 

Improper use of functions that handle sensitive 
data can lead to various security vulnerabilities 
such as memory leaks, pointer errors, integer 
overflows, and buffer overflows. Examples 
include file handling functions (e.g., 'ifstream. 
open', 'ifstream.read*'), memory and pointer 
operations (e.g., 'xcalloc', 'IsBadReadPtr'), date 
and time functions (e.g., '_wctime_s', '_ctime64_s'), 
cryptographic functions (e.g., 
'CC_SHA224_Update'), system calls and OS 
functions (e.g., 'chown', 'RegGetValue'), network 
communication functions (e.g., 'recvfrom', 'recv') 
and user input/output functions (e.g., 'getc', 'cin'). 

Starting from the four identified vulnerability 
focus points, the process involves traversing 
forward and backward along data dependency and 
control dependency edges, while preserving the 
original line numbers from the source code. These 
line numbers are then compared with those in the 
'func_label.pkl' file. If the line numbers match, the 
slice is identified as containing a vulnerability and 
labeled as '1_'; otherwise, the slice is labeled as 
'0_', indicating no vulnerability in the slice. 

As illustrated in Figure 3, slices 1 through 4 are 
derived using VAR1, VAR2, VAR3, and strncat 
as the slicing base points. Starting from these key 
points, forward and backward traversals along 
control and data dependency edges are conducted, 
recording the involved nodes and edges until no 
new nodes or edges emerge. The resulting 
subgraph of the program dependency graph, 
obtained through these steps, constitutes a 
program slice. Since the slice retains only nodes 
and edges that are dependent on the vulnerability 
focus points, it preserves the structural information 
of the original source code while eliminating 
irrelevant details. 

char * VAR1;

char VAR2[100];

VAR1=FUN2(VAR1);

char VAR3[50]="";

strncat(VAR3,VAR1,strlen(VAR1));
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Figure 3. The Process of Slicing PDG 

D. Extract Slice Features 

Since the extracted code slices in this study are 
in an abstract graph format, they cannot be directly 
input into graph neural network-based 
vulnerability detection models. Therefore, key 
features from the graphs must be extracted to 
generate the corresponding feature vectors. The 
graph slices contain two types of features: code 
features within the nodes (referred to as node 
features) and the structural features of the graph. 

Traditional Word2Vec models, which usually 
rely on local contextual information, are unable to 
capture long-range semantic relationships and 
global context. In contrast, BERT models excel in 
this area. BERT, through its bidirectional encoder 
pretraining, can deeply understand long-range 
dependencies within the context. 

For node features, this study adopts an 
embedding representation approach, mapping 
tokens to integers and converting them into fixed-
length vectors using a distributed representation 
technique. Specifically, the code within each node 
is treated as a sentence, tokenized into tokens, and 
embedded into a fixed-length vector. Node 
embeddings are achieved by combining the 
Word2Vec and BERT models. 

Specifically, this study trains a pre-trained 
Word2Vec model using the token lists from all 
code slices. The pre-trained model is then applied 
to embed all nodes into vectors. The preprocessed 
slices are input into the Word2Vec model, which 
generates an m×n feature matrix Mf, where m 
represents the number of nodes in the slice, and n 
represents the dimension of the embedding vectors, 
which is set to 100 in this study. As shown in 
Figure 3, there are eight nodes in the graph, so the 
node feature matrix Mf has dimensions of 8×100. 
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For the BERT model, the pre-trained BERT 
model is utilized to embed the code within each 
node. The process involves using the 
'BertTokenizer' to encode the tokens, followed by 
the 'BertModel' to generate context-sensitive 
dynamic word embeddings. Each node's code is 
first transformed into the input format accepted by 
BERT, which then captures the long-range 
dependencies and contextual information within 
the code snippets. The output of the BERT model 
for each node is a feature matrix with a shape of 
m×n, where n is 768 dimensions. As a result, the 
node feature matrix Mh in Figure 3 has a 
dimension of 8×768. 

Finally, the word embeddings generated by 
Word2Vec and BERT are concatenated to form a 
combined vector of 8×868 dimensions, denoted as 
Mi. 

For the graph structural features, this paper 
performs embedding representations of the edge 
relationships within the graph. Each edge can be 
represented as a triplet (source node, target node, 
edge type). Both the source and target nodes can 
be directly extracted from the program 
dependency graph, while the edge types are 
categorized into data dependency edges and 
control dependency edges. Taking Slice 1 as an 
example, it contains 9 edges, including 2 data 
dependency edges and 7 control dependency edges. 
Red edges represent data dependency, blue edges 
represent control dependency, and purple edges 
indicate both data and control dependencies. The 
output matrix AS represents the graph structure 
feature matrix, and its generation process is 
illustrated in Figure 4. 

Vs1
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Vs8

...

...

...

...

...

Edges(AS)

Nodes(Mi)

Slice 3

1 2 3

45

6 7 8

 
Figure 4. The Process of Extracting Features from the Slice Graph 

E. Vulnerability Detection Model Based on 

GGNN 

1) Figure Neural Network Module 

This study transforms the source code into a 
graph structure that incorporates data 
dependencies and control dependencies. GNN help 
to further aggregate and propagate information 
updates, capturing both the structural and semantic 
information of the graph more effectively. Among 
GNN models, the GGNN is chosen for this work 
due to its enhanced ability to handle complex 
semantic and graph structure data by improving 
the network's long-term memory capacity. The 
principle behind GGNN involves aggregating 
information from a node and its neighboring nodes, 
then feeding the aggregated information and the 
current node into a GRU unit to obtain the updated 
state of the node. This process is repeated over 
several time steps, resulting in the final node 
representation for all nodes in the graph. As shown 
in the graph neural network module in Figure 5, 
after inputting the graph features gi(Mi,AS), 
GGNN embeds each node and its neighborhood 
into a new representation, transforming it into a 
slice feature matrix Mi' with dimensions m×n', 
where n' represents the final size of the slice 
feature. In this study, n' is set to 200, making the 
feature matrix Mi' of size 8×200. 

For each node uv
 in the graph, its initial feature 

vector
(1) T T[ ,0]u uh m

is constructed by 

concatenating the feature vector uv
 with a zero 

padding. Setting T as the total number of time 
steps for neighborhood aggregation, each node 
communicates with its neighbors along the edges 

it depends on at each time step t T . The update 
formula is given by: 


( ) T ( )T ( )T

1( [ ,..., ] )t t t

u u u ma A W h h b   

where uW
 represents trainable parameters, b  is 

a bias term, and 
T

uA
 denotes the adjacency matrix 

for the neighborhood of node uv
 corresponding to 

edge type sA
. 

( )t

ua
 encapsulates the aggregated 
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information from node uv
's neighbors through 

their interactions along the edges. This information 
is then combined with the node's current state 
through the aggregation function AGG, leading to 
the updated node state: 


( 1) ( ) ( )( , ({ }))t t t

u u uh GRU h AGG a   

This process continues iteratively, allowing the 
node's feature vector to evolve over time by 
incorporating information from neighboring nodes, 
until the final representation is obtained. 

Vulnerability classification module  

To perform graph-level vulnerability 
classification tasks, a feature set relevant to 
vulnerability characteristics is selected. Previous 
work [28] proposed using a classification pooling 
layer (SortPooling) after the graph convolutional 
layer to sort the output features, enabling the use 
of traditional neural networks for training and 
extracting useful features from the embedded slice 
vectors. In this paper, node features are first 
learned through GGNN layers, followed by one-
dimensional convolutional and fully connected 
layers to capture features relevant to the graph 
classification task, enabling more effective 
classification. Specifically, skip connections are 
employed in the graph convolution and feature 
extraction phases, which help retain the details and 
semantic information from the original input data. 
This approach facilitates easier information 
propagation to deeper layers and prevents 
information loss. The process is expressed as 
follows.

)))))(1(luRe

)))(1(lu(Re2(lu(Re3(Relu3

XConv

XConvConvConvH






The input graph structure data X is processed 
through the GNN layer to obtain node features Mi'. 
The first convolutional layer, Conv1, is used to 
extract initial node features, followed by Conv2, 
the second convolutional layer, which further 
captures higher-level node features. Conv3 
represents the third convolutional layer and is 
responsible for extracting the final node features.  

H3 denotes the node features after passing 
through all three convolutional layers. Finally, the 

obtained node features H3 are concatenated with 
the original input node features Mi, resulting in the 
feature matrix Mi'. This process is described as 
follows: 

)(),(( 3 ii MDeBatchifyHDeBatchifyContatC  

The function of DeBatchify is to restore node 
feature vectors into independent graph feature 
vectors when processing batch data, ensuring that 
each graph's data can be individually handled and 
analyzed.  

In this paper, the classification pooling layer 
τ(M) is defined as follows: 

 ))))(((( MConvBNReluMaxPoolM ）（ 

Here, Conv denotes the convolutional layer, 
BN represents the BatchNorm layer, ReLU 
indicates the activation function, MaxPool refers 
to the max-pooling layer, and M denotes a feature 
matrix. In this work, the node feature matrix Mi is 
concatenated with the corresponding slice feature 
matrix Mi1' to form a new matrix Mi1''. τ-
classification pooling operations are then applied 
separately to Mi1' and Mi1'', resulting in outputs 
Y1 and Y2. These outputs are subsequently passed 
through fully connected layers with an output 
dimension of 2. The formulation for the weighted 
average and final output is presented as follows: 

)))2(()1((( YMLPYYMLPYAvgSigmoidP   

The fully connected layer performs a linear 
transformation on the feature matrix, followed by 
element-wise multiplication and averaging. The 
Sigmoid function is then applied to produce the 
binary classification probability output. P 
represents the binary classification result, 
consisting of two dimensions: the first dimension 
indicates the probability of no vulnerability, while 
the second dimension represents the probability of 
a vulnerability. The model outputs the final 
classification result by selecting the higher 
probability between the two. The model is trained 
using the CrossEntropyLoss function to correct 
misclassifications, along with the Adam 
optimization algorithm [29] with a learning rate of 
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0.0001 and a weight decay of 0.001 to update the 
parameters and b in the graph neural network 
module, as specified in Equation (1). After training, 
the model is used to determine whether new code 

slices contain vulnerabilities. The architecture of 
the vulnerability detection model is illustrated in 
Figure 5.
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Figure 5. Vulnerability detection model architecture 

 

IV. EXPERIMENT 

A. Simulation parameter settings 

This experiment is based on Python 3.8 to 
simulate and analyze the proposed algorithm, 
using the Pytorch 1.13 deep neural network 
framework and CUDA 11.6. The extraction of 
graphs in Joern is done using JDK17.0.11. Table I 
details the specific parameters used in the model 
during training. 

TABLE I.  TABLE TYPE STYLES 

Parameter Value 

Loss Function CrossEntropyLoss 

Optimization Algorithm Adam 

Learning Rate 0.0001 

Weight Decay 0.001 

Batch Size 16 

Training Epochs 500 

Max Steps 10000 

B. Training Results of the Proposed Network 

This study utilizes the publicly available 
BigVul dataset, which includes 348 CVE 
(Common Vulnerabilities and Exposures) entries, 
consisting of 11,834 vulnerable functions and 
253,096 non-vulnerable functions. From this 
dataset, 9,653 vulnerable functions and their 
corresponding 9,653 patched functions were 
selected for analysis. A total of 19,621 vulnerable 
code slices and 324,690 non-vulnerable slices 

were extracted. The difflib library was employed 
to generate the differential content between each 
vulnerable file and its respective patch file. 
Additionally, the specific lines of code containing 
vulnerabilities in each vulnerable file were 
recorded in the test_label.pkl file. 

The Proposed Network achieved the highest 
test accuracy of 93.06%, precision of 92.22%, 
recall of 94.3%, and F1 score of 93.25%, all while 
maintaining stable training and test losses of 20% 
and 12.5%, respectively. These results indicate 
that the model is highly effective at accurately 
identifying vulnerabilities while maintaining a 
good balance between precision and recall. This 
suggests robust generalization and reliability in 
detecting both vulnerable and non-vulnerable code 
slices. Figure 6 shows the results of the model 
training in this article. 

 

Figure 6. Results of the Model Training in the Proposed Network 
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C. Performance Comparison with Various 

Networks 

Figure 7 presents a comparison of detection 
results using the proposed network under two 
approaches: one utilizing only Word2Vec and the 
other combining Word2Vec and BERT. The 
results for the model using only Word2Vec are as 
follows: Test Accuracy: 88.26, Precision: 87.28, 
Recall: 88.95, and F1 Score: 88.11. In contrast, 
the model combining Word2Vec and BERT 
achieved the following results: Test Accuracy: 
93.06, Precision: 92.22, Recall: 94.30, and F1 
Score: 93.25. These results demonstrate that 
integrating BERT significantly improves all 
evaluation metrics, highlighting its superior ability 
to capture contextual information and effectively 
extract deep semantic features. 

 
Figure 7. Ablation experiment 

Through ablation experiments, we found that 
V1 (removing residual connections) achieved 
91.13% accuracy, 88.65% precision, 94.65% 
recall, and 91.55% F1 score, but showed high 
training loss (100%). V2 (removing batch 
normalization) achieved 90.95% accuracy, 
88.06% precision, 95.07% recall, and 91.43% F1 
score, with training and test losses of 100% and 
40%. V3 (replacing GGNN) performed the worst, 
with 71.99% accuracy, 72.7% precision, 71.83% 
recall, and 72.26% F1 score, alongside training 
and test losses of 20% and 50%. V_GIN, based on 
GIN layers, performed better than V1, V2, and V3, 
achieving 92.09% accuracy, 89.41% precision, 
95.77% recall, and 92.49% F1 score, and had 
training and test losses of 15% and 40%. The 

performance comparison is illustrated in Figure 8, 
while the loss comparison is presented in Figure 9. 

 

Figure 8. Ablation experiment 

 
Figure 9. loss comparison 

This study compares the proposed model with 
four deep learning-based vulnerability detection 
methods, as shown in Figure 10. TokenCNN [16], 
a token-based approach, treats source code as 
plain text and ignores semantic and structural 
information, leading to significant information 
loss and poor detection performance. 
StatementLSTM [31] improves on this by treating 
each line of code as a natural language sentence 
and embedding it into fixed-length vectors, 
reducing semantic loss. However, it also processes 
code as plain text, failing to preserve crucial 
syntactic and semantic details. Devign [22], a 
function-level method, uses code property graphs 
(CPGs) to capture comprehensive semantic and 
syntactic information. However, its inclusion of 
irrelevant nodes and edges, along with the absence 
of slicing techniques, hampers its ability to detect 
vulnerabilities effectively. Vuldetexp [28] 
simplifies code representation using slicing but 
relies solely on Word2Vec for embeddings, which 
limits its ability to extract rich code information. 
In contrast, the proposed model fully leverages 
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code semantics and structure while incorporating 
slicing techniques, achieving superior detection 
performance, robustness, and generalization 
compared to these methods. 

 
Figure 10. Performance comparison of different models under evaluation 

V. CONCLUSIONS 

This article provides a comprehensive 
overview of recent advancements in deep 
learning-based code vulnerability detection, 
categorizing the methods into sequence-based and 
graph-based approaches. It details the 
preprocessing steps involved, including code 
standardization, PDG (Program Dependency 
Graph) generation, PDG slicing, and the use of 
Word2Vec and BERT to extract comprehensive 
information from sliced graphs. Additionally, the 
study introduces a novel vulnerability detection 
method based on Graph Neural Networks (GNN), 
which extends traditional GGNNs by integrating 
skip connections, batch normalization, and 
advanced feature fusion mechanisms. Through 
ablation studies and comparisons with other deep 
learning-based methods, the proposed model 
demonstrates better performance in terms of 
accuracy, precision, recall, F1 score, and loss 
minimization. These findings highlight the 
effectiveness of skip connections in preserving 
features, batch normalization in enhancing 
training stability, self-attention mechanisms in 
capturing global dependencies, and BERT's ability 
to better extract features by leveraging contextual 
relationships in graph data, collectively enabling 
superior performance in vulnerability detection 
tasks. 

Although the proposed model demonstrates 
significant improvements across several metrics, 
there are still areas that require further refinement. 
First, the model primarily analyzes code slices 
within single functions, making it challenging to 
handle the complex dependencies present in real-
world vulnerabilities that span multiple functions. 
Future work should incorporate interprocedural 
analysis to enhance the detection of vulnerabilities 
involving multiple functions. Second, there is a 
severe imbalance between the number of 
vulnerable and non-vulnerable slices in the dataset, 
which can affect the model's generalization 
capability. Addressing this imbalance through 
techniques such as oversampling, undersampling, 
or the use of Generative Adversarial Networks 
(GANs) could help mitigate this issue. 
Additionally, the current model lacks 
interpretability, as it does not provide a clear 
indication of the specific code lines where 
vulnerabilities are detected. Future efforts should 
focus on integrating and improving tools like 
GNNExplainer to offer fine-grained explanations 
of the detection results, thereby enhancing the 
model's interpretability and practical utility. 
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