
International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

DOI: 10.2478/ijanmc-2025-0017 62

Code Vulnerability Detection Based on Graph Neural

Network

Yege Yang

School of Computer Science and Engineering

Xi'an Technological University

Xi'an, 710021, China

E-mail: 664730726@qq.com

Guiping Li

School of Computer Science and Engineering

Xi'an Technological University

Xi'an, 710021, China

E-mail: 15693685@qq.com

Abstract—Deep learning has emerged as a vital

approach for identifying and addressing vulnerabilities

in software systems. A key challenge in this process lies

in effectively representing code and leveraging AI

techniques to capture and interpret its semantics and

other intrinsic information. This paper employs

bidirectional slicing techniques to extract code slices

containing control and data dependencies from program

dependency graphs, targeting key points of different

vulnerabilities. To represent the node features within the

slices, code tokens are mapped to integers and

transformed into fixed-length vectors, leveraging

Word2vec and BERT models to embed the code nodes

and extract structural graph features. The embedded

feature matrix is then fed into a Gated Graph Neural

Network (GGNN), which aggregates information from

nodes and their neighbors to enhance long-term memory

of graph-structured data. By iterating through several

time steps within GRU units, the final node features are

generated. Additionally, edge relationships are used to

propagate and aggregate information, further improving

the accuracy of vulnerability detection. Experimental

results demonstrate that the proposed model achieves an

F1-score of 93.25% on the BigVul dataset, showcasing

strong detection performance.

Keywords-Software Security; Deep Learning; Program

Analysis; Code Vulnerability Detection; Graph Neural

Network

I. INTRODUCTION

A. Background Introduction

Software vulnerabilities are an important cause
of network attacks and data leakage, posing a
serious threat to software security. Despite efforts
to pursue secure programming, vulnerabilities are
still widespread due to the increasing complexity
of software and the continuous expansion of the
Internet. According to the vulnerability data
released by China National Vulnerability Database

of Information Security (CNNVD) in 2022, there
were 24801 new vulnerabilities added in 2022, an
increase of 19.28% compared to 2021. The growth
rate has markedly increased, reaching record levels
and sustaining its upward momentum. The
percentage of extremely high-risk vulnerabilities is
steadily rising [1]. Vulnerabilities in software,
once exploited by malicious attackers, may cause
serious consequences such as system paralysis and
personal privacy data leakage, posing a
ransomware risk to the company or posing a threat
to public security. Therefore, ensuring the
reliability of software has become a current focus
of attention to protect internet users from cyber
attackers. Code vulnerabilities often arise from
minor errors and can rapidly proliferate due to the
extensive use of open-source software and code
reuse. Early detection of vulnerabilities to protect
software security has become crucial. Detecting
and fixing software vulnerabilities is a complex
task because of the wide variety of vulnerabilities
and their increasing frequency.

In the last dozen years, machine learning(ML)
has made significant progress, particularly in areas
such as deep learning (DL) algorithms [2], natural
language processing techniques [3], and other
data-driven approaches, which have proven highly
effective in detecting software vulnerabilities.
ML/DL models excel at identifying subtle patterns
and correlations within large datasets, a critical
capability for vulnerability detection, as
vulnerabilities often stem from intricate code
features and dependencies. These models handle
diverse data types and formats, including source
code [4-11], textual information [12], and
numerical features like submission characteristics
[13]. By processing and analyzing these diverse

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

63

data representations, ML/DL models enable
effective vulnerability detection. This adaptability
allows researchers to leverage multiple data
modalities for a more comprehensive approach to
detecting vulnerabilities.

II. RELATED WORKS

DL-based of vulnerability detection methods
are currently the forefront of vulnerability
detection, which can effectively narrow down the
scope of code auditing, avoid expert defined
features, and achieve the goal of automatic
vulnerability detection [14]. The existing DL-
based modeling techniques currently fall into two
categories: sequence-based models and graph-
based models [32].

A. Sequence Based Model

In the sequence-based modeling approach, the
code is considered as a sequence of tokens, which
are slices of the code, including methods based on
token sequences of function call, source codes,
intermediate code, and assembly code,
respectively.

Wu et al. [15] employed Convolutional Neural
Networks (CNN), Long Short Term Memory
(LSTM), and CNN-LSTM architectures to model
function call sequences from binary programs,
generating numerical vector representations of the
sequence data through Keras and enhancing
vulnerability detection by analyzing function call
patterns. Russell et al. [16] reduced token
vocabulary size using a custom C/C++ lexer and
applied CNN and Random Forest models to detect
vulnerabilities at the function level, focusing on
the sequential characteristics of source code. Yan
et al. [17] introduced the HAN-BSVD model,
which captures local sequential features using
Bidirectional Gated Recurrent Unit (Bi-GRU) and
Text-CNN, with word attention modules
highlighting critical sequence regions for binary
vulnerability detection. Li et al. [18] developed
VulDeeLocator, which utilizes the Bidirectional
Recurrent Neural Network (BRNN-vdl) to
integrate sequence-based intermediate code
analysis, combining data and control flow
dependencies to improve vulnerability detection
accuracy. Tian et al. [9] proposed BVDetector,
utilizing Binary Gated Recurrent Unit (BGRU)

and program slicing to analyze sequences of
control and data flow, specifically detecting
vulnerabilities related to library/API function call
sequences in binary programs.

Based on the aforementioned methods,
sequence-based vulnerability detection techniques
are primarily employed for binary code analysis.
These methods effectively capture the program's
execution order and logical flow while minimizing
the complexity of the analysis. Sequence models
demonstrate strong adaptability in processing
binary code, particularly in scenarios where source
code is unavailable, making them a powerful tool
for vulnerability detection.

B. Graph Based Model

The graph-based modeling approach treats the
code as a graph and merges different syntactic and
semantic dependencies, which can be used for
vulnerability prediction using different types of
syntactic and semantic graphs in two main ways,
transforming the graph structure into a sequence or
modeling the graph structure directly.

The Sequence Graph Hybrid Model utilizes
both the graph structure and linear sequence in the
program. The information extracted from the
graph structure is usually transformed into linear
sequences, which can be directly input into
machine learning models or deep learning models
(such as LSTM, GRU) for analysis and prediction.
This transformation makes complex graph
structure information easier to be processed by
traditional sequence models. VulDeePecker [19]
extracted code slices from a Data Dependency
Graph (DDG) by capturing data flow
dependencies between variables and using these
slices as input sequences for an RNN and Bi-
LSTM model. μVulDeePecker [20] enhanced the
detection process by incorporating both data and
control dependencies through System Dependency
Graphs (SDG), using forward and backward
slicing techniques to capture local and global
semantic information. These code slices were
processed with a Bi-LSTM model to improve
vulnerability type identification. SySeVR [21]
combined both Bi-LSTM and Bi-GRU models to
analyze slices representing data and control flow
dependencies, further improving vulnerability

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

64

detection by capturing the sequential relationships
in these flows. Compared with modeling by
converting graph structures into sequences,
directly using graph neural networks to model
graph structures can more fully learn the
dependency relationships between nodes, program
structure, and semantic information in graph based
code representation. This method can provide
more accurate feature vector representations for
source code vulnerability detection models. In the
method of directly modeling graph structures, one
approach is to comprehensively represent the
syntax and semantic information related to
vulnerabilities at different levels of abstraction by
integrating multiple intermediate representations
of code, without using slicing techniques. Another
approach is to use program slicing techniques to
remove information unrelated to vulnerabilities
from mixed code representations, in order to
improve the accuracy and efficiency of
vulnerability detection.

Zhou et al. [22] proposed Devign, which
encoded source code into a Combined Program
Dependency Graph (CPG), integrating the
Abstract Syntax Tree (AST), Control Flow Graph
(CFG), and Data Flow Graph (DFG). Natural
Code Sequence (NCS) edges were added to
preserve code order, and a Gated Graph Recurrent
Network (GGRN) with convolutional layers was
used for graph-level classification. Wang et al. [23]
proposed FUNDED, which improved vulnerability
prediction by automatically collecting high-quality
samples through confidence prediction (CP). They
combined AST and Program Control and
Dependency Graphs (PCDG), extracting nine code
relationships, and used GGNN with GRU-based
models to capture higher-order neighborhood
information for detection. Zheng et al. [24]
proposed VulSPG, which merged control, data,
and function call dependencies into Sliced
Program Graphs (SPG) and utilized a Relational
Graph Convolutional Network (R-GCN) for
vulnerability detection, further enhanced by a
triple attention mechanism. Cheng et al. [30]
proposed DeepWukong, which generated program
slices from Program Dependency Graphs (PDG)
and employed GCN and k-dimensional GNN (k-
GNN) models to process these slices. Cao et al.

[25] introduced MVD, which incorporated
function call information into PDGs and focused
on detecting memory-related vulnerabilities. The
method embedded the program slices using
Doc2Vec and employed Flow Sensitive Graph
Neural Networks (FS-GNN) to enhance
vulnerability detection. Zou et al. [26] utilized
PDG-based vulnerability slicing to capture
vulnerabilities around pointers and sensitive APIs,
employing GGNN models to learn and interpret
vulnerability features.

The graph-based modeling approach treats code
as graphics and combines different syntax and
semantic dependencies. Graph-based
representation methods can effectively preserve
complex semantic information such as the logical
structure and dependency relationships of the code.

III. FEATURE EXTRACTION

A. Code Standardization

Semantic irrelevant information in source code,
such as comments, complex variable names, and
function names, can interfere with the training and
prediction accuracy of deep learning models. To
minimize the impact of this irrelevant information,
this study first normalizes the source code.
Comments, spaces, tabs, and line breaks are
removed while ensuring the corresponding line
numbers remain unchanged. Function names are
replaced with a standardized identifier (e.g.,
FUNC1) under specific conditions: they are not
keywords (e.g., boolean, const), preprocessor
directives (e.g., #define, #include), library
functions (e.g., snprintf, sleep), or the main
function, and must be followed by an opening
parenthesis indicating a function call. For variable
names, candidates are identified by excluding
function parameters, function names that are not
keywords, preprocessor directives, library
functions, or specific terms like 'argc'
(representing the number of parameters passed to
the main function) and 'argv' (representing the
sequence or pointer of parameters passed to the
main function). Additionally, the variable name is
only standardized (e.g., VAR1) if it is not
immediately followed by an opening parenthesis.
This normalization process is illustrated in Figure1.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

65

Figure 1. The Process of Code Standardization

B. Construction of Code Representation Graph

The code representation diagram is an effective
method for visualizing code by clearly conveying
its semantic, syntactic, and structural information.
Among these, the PDG is a particularly expressive
data structure that connects AST nodes through
DDG and CDG. Using the Joern tool [27], binary
(bin) files are generated, followed by the
extraction of the CPG through the graph-for-
funcs.sc script. This process generates both the
AST and CFG, storing the resulting data in a
JSON file.

The JSON format is chosen because the graph
nodes are based on fine-grained AST elements
rather than entire code statements. However, when
analyzing source code, it is necessary to map these
nodes to specific lines of code (for instance, diff
files are line-based). By executing the command
'cpg.runScript("graph-for-funcs.sc").to String()
|>.json', the graph is output as a JSON file,
facilitating further analysis. The PDG, also
generated by Joern, integrates AST and CFG
structures, providing a more comprehensive
representation of code features for vulnerability
detection. The process of generating the PDG is
illustrated in Figure2.

void FUN1()

{

 char * VAR1;

 char VAR2[100];

 VAR1 = VAR2;

 VAR1 =

FUN2(VAR1);

 {

 char VAR3[50] =

"";

 strncat(VAR3,

VAR1,

strlen(VAR1));

 VAR3[50-1] = '\0';

 FUN3(VAR1);

 }

}

char * VAR1;

char VAR2[100];

VAR1=FUN2(VAR1);

char VAR3[50]="";

strncat(VAR3,VAR1,strlen(VAR1));

VAR1

VAR1

VAR1=VAR2

VAR2

VAR1

VAR3

VAR3

Code

Standardization
PDG Extraction

VAR2():char

[100]

BLOCK

VAR1()

:char *
BLOCK

VAR1

=

VAR2 VAR1

=

FUN2 VAR3:char[50] = strncat

VAR3[50-1]= \0 ;

FUN3(VAR1);

FUN1()

METHOD_RETURN,void

VAR3

=

""VAR1 VAR3 strlenVAR1

VAR1 VAR3 -

50 1

[] '\0'

FUN3

VAR1

AST Extraction

control
dependency

data
dependency

1

2

3

4

5

6

7

8

Figure 2. The Process of Generating the PDG

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

66

C. Slice of Code Representation Graph

A significant challenge in function-level
vulnerability detection is the presence of a large
number of vulnerability-independent noise
statements, which can hinder the model's ability to
effectively learn vulnerability features and
ultimately degrade detection performance.
Furthermore, the complexity of real-world
software often results in program dependency
graphs with numerous nodes and edges, leading to
increased time and memory consumption during
the training process. To address these challenges,
this paper adopts a slice-level vulnerability
detection approach, aiming to eliminate irrelevant
information and enhance both detection accuracy
and interpretability while minimizing resource
overhead. By comparing vulnerable code with
corresponding patched code, the study identifies
four potential vulnerability-prone areas: pointers,
arrays, expression operations, and sensitive APIs.
These areas, referred to as "vulnerability focus
points," represent key locations where
vulnerabilities are most likely to occur.

1) Pointer Operations

Pointer operations can lead to dynamic memory
errors, such as memory leaks, double-free errors,
and null pointer dereferencing. To mitigate
confusion associated with the use of the asterisk (*)
in pointer declarations and avoid errors, this paper
identifies specific node types in the code
representation.

The node type 'Identifier' represents program
entities such as variable names, functions, or
classes. For instance, in the expression 'int* ptr',
the term 'ptr' is classified as an identifier, and its
data type is determined to be a pointer. Similarly,
'MethodParameterIn' nodes represent input
parameters passed to methods or functions and are
also identified as pointers when applicable. For
example, in the function signature 'void foo(int*
ptr)', 'ptr' is a method input parameter of pointer
type. Additionally, 'FieldIdentifier' nodes are
typically used to denote fields or member
variables in a class or structure. Consider the
following example:

struct MyStruct {

 int* ptr; // Pointer to an integer

};
In this case, the node representing 'ptr' is

categorized as a pointer field. After identifying
such node types, the system inspects the node and
its type to check for the presence of the asterisk (*).

2) Array operation

Array operations often involve out-of-bounds
reading or writing, with out-of-bounds writes
potentially leading to memory overflow
vulnerabilities. Specifically, selecting nodes
classified as 'indirectIndexAccess' represents
indirect index access, typically used to describe
scenarios where arrays or collection elements are
accessed indirectly through variables or
expressions. For example, the following code
illustrates a possible case of out-of-bounds access:

int arr [5] = {1, 2, 3, 4, 5};

int index = 2; int value = arr[index];
In this example, 'index' denotes an indirect

access to the array. By analyzing such nodes in the
code, the presence of array indexing symbols '[]'
can be detected, allowing further checks for
potential out-of-bounds access.

3) Expression Operations

Expression operations such as addition,
subtraction, and multiplication can result in integer
overflow. For instance, when performing
arithmetic on 'int' types, if the result exceeds the
representable range of the data type, overflow
occurs. Division operations, on the other hand,
may lead to division by zero errors.

The specific approach involves selecting nodes
of type 'assignment', which represent assignment
operations. If the node contains an equal sign ('='),
the expression on the right side of the equal sign is
extracted. Regular expressions are then used to
match expressions that include arithmetic
operations such as addition, subtraction,
multiplication, and division (e.g., '((?:_|[A-Za-
z])\w*(?:\s(?:\+|\-|*|\/)\s(?:_|[A-Za-z])\w*)+)' for
strings like "a + b" or "x - y * z", where both
operands start with a letter or underscore, followed
by any number of letters, digits, or underscores).
In cases where no equal sign is present, regular
expressions are used to match division operations
(e.g., '(?:\s\/\s(?:_|[A-Za-z])\w*\s)'), as division in

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

67

integer operations may trigger overflow or
division-by-zero errors.

4) Sensitive API Function Operations

Improper use of functions that handle sensitive
data can lead to various security vulnerabilities
such as memory leaks, pointer errors, integer
overflows, and buffer overflows. Examples
include file handling functions (e.g., 'ifstream.
open', 'ifstream.read*'), memory and pointer
operations (e.g., 'xcalloc', 'IsBadReadPtr'), date
and time functions (e.g., '_wctime_s', '_ctime64_s'),
cryptographic functions (e.g.,
'CC_SHA224_Update'), system calls and OS
functions (e.g., 'chown', 'RegGetValue'), network
communication functions (e.g., 'recvfrom', 'recv')
and user input/output functions (e.g., 'getc', 'cin').

Starting from the four identified vulnerability
focus points, the process involves traversing
forward and backward along data dependency and
control dependency edges, while preserving the
original line numbers from the source code. These
line numbers are then compared with those in the
'func_label.pkl' file. If the line numbers match, the
slice is identified as containing a vulnerability and
labeled as '1_'; otherwise, the slice is labeled as
'0_', indicating no vulnerability in the slice.

As illustrated in Figure 3, slices 1 through 4 are
derived using VAR1, VAR2, VAR3, and strncat
as the slicing base points. Starting from these key
points, forward and backward traversals along
control and data dependency edges are conducted,
recording the involved nodes and edges until no
new nodes or edges emerge. The resulting
subgraph of the program dependency graph,
obtained through these steps, constitutes a
program slice. Since the slice retains only nodes
and edges that are dependent on the vulnerability
focus points, it preserves the structural information
of the original source code while eliminating
irrelevant details.

char * VAR1;

char VAR2[100];

VAR1=FUN2(VAR1);

char VAR3[50]="";

strncat(VAR3,VAR1,strlen(VAR1));

VAR1

VAR1

VAR1=VAR2

VAR2

VAR1

VAR3

VAR3

VAR3[50-1]= \0 ;

FUN3(VAR1);

control
dependency

data
dependency

1

2

3

4

5

6

7

8

1 32

45

6

7

8

1 2 3

45

6 7 8

1 2 3

45

6 7 8

1 2 3

45

6 7 8

Slice 1 Slice 2

Slice 3 Slice 4

Figure 3. The Process of Slicing PDG

D. Extract Slice Features

Since the extracted code slices in this study are
in an abstract graph format, they cannot be directly
input into graph neural network-based
vulnerability detection models. Therefore, key
features from the graphs must be extracted to
generate the corresponding feature vectors. The
graph slices contain two types of features: code
features within the nodes (referred to as node
features) and the structural features of the graph.

Traditional Word2Vec models, which usually
rely on local contextual information, are unable to
capture long-range semantic relationships and
global context. In contrast, BERT models excel in
this area. BERT, through its bidirectional encoder
pretraining, can deeply understand long-range
dependencies within the context.

For node features, this study adopts an
embedding representation approach, mapping
tokens to integers and converting them into fixed-
length vectors using a distributed representation
technique. Specifically, the code within each node
is treated as a sentence, tokenized into tokens, and
embedded into a fixed-length vector. Node
embeddings are achieved by combining the
Word2Vec and BERT models.

Specifically, this study trains a pre-trained
Word2Vec model using the token lists from all
code slices. The pre-trained model is then applied
to embed all nodes into vectors. The preprocessed
slices are input into the Word2Vec model, which
generates an m×n feature matrix Mf, where m
represents the number of nodes in the slice, and n
represents the dimension of the embedding vectors,
which is set to 100 in this study. As shown in
Figure 3, there are eight nodes in the graph, so the
node feature matrix Mf has dimensions of 8×100.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

68

For the BERT model, the pre-trained BERT
model is utilized to embed the code within each
node. The process involves using the
'BertTokenizer' to encode the tokens, followed by
the 'BertModel' to generate context-sensitive
dynamic word embeddings. Each node's code is
first transformed into the input format accepted by
BERT, which then captures the long-range
dependencies and contextual information within
the code snippets. The output of the BERT model
for each node is a feature matrix with a shape of
m×n, where n is 768 dimensions. As a result, the
node feature matrix Mh in Figure 3 has a
dimension of 8×768.

Finally, the word embeddings generated by
Word2Vec and BERT are concatenated to form a
combined vector of 8×868 dimensions, denoted as
Mi.

For the graph structural features, this paper
performs embedding representations of the edge
relationships within the graph. Each edge can be
represented as a triplet (source node, target node,
edge type). Both the source and target nodes can
be directly extracted from the program
dependency graph, while the edge types are
categorized into data dependency edges and
control dependency edges. Taking Slice 1 as an
example, it contains 9 edges, including 2 data
dependency edges and 7 control dependency edges.
Red edges represent data dependency, blue edges
represent control dependency, and purple edges
indicate both data and control dependencies. The
output matrix AS represents the graph structure
feature matrix, and its generation process is
illustrated in Figure 4.

Vs1

Vs2

Vs8

...

...

...

...

...

Edges(AS)

Nodes(Mi)

Slice 3

1 2 3

45

6 7 8

Figure 4. The Process of Extracting Features from the Slice Graph

E. Vulnerability Detection Model Based on

GGNN

1) Figure Neural Network Module

This study transforms the source code into a
graph structure that incorporates data
dependencies and control dependencies. GNN help
to further aggregate and propagate information
updates, capturing both the structural and semantic
information of the graph more effectively. Among
GNN models, the GGNN is chosen for this work
due to its enhanced ability to handle complex
semantic and graph structure data by improving
the network's long-term memory capacity. The
principle behind GGNN involves aggregating
information from a node and its neighboring nodes,
then feeding the aggregated information and the
current node into a GRU unit to obtain the updated
state of the node. This process is repeated over
several time steps, resulting in the final node
representation for all nodes in the graph. As shown
in the graph neural network module in Figure 5,
after inputting the graph features gi(Mi,AS),
GGNN embeds each node and its neighborhood
into a new representation, transforming it into a
slice feature matrix Mi' with dimensions m×n',
where n' represents the final size of the slice
feature. In this study, n' is set to 200, making the
feature matrix Mi' of size 8×200.

For each node uv
 in the graph, its initial feature

vector
(1) T T[,0]u uh m

is constructed by

concatenating the feature vector uv
 with a zero

padding. Setting T as the total number of time
steps for neighborhood aggregation, each node
communicates with its neighbors along the edges

it depends on at each time step t T . The update
formula is given by:

() T ()T ()T

1([,...,])t t t

u u u ma A W h h b

where uW
 represents trainable parameters, b is

a bias term, and
T

uA
 denotes the adjacency matrix

for the neighborhood of node uv
 corresponding to

edge type sA
.

()t

ua
 encapsulates the aggregated

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

69

information from node uv
's neighbors through

their interactions along the edges. This information
is then combined with the node's current state
through the aggregation function AGG, leading to
the updated node state:

(1) () ()(, ({ }))t t t

u u uh GRU h AGG a

This process continues iteratively, allowing the
node's feature vector to evolve over time by
incorporating information from neighboring nodes,
until the final representation is obtained.

Vulnerability classification module

To perform graph-level vulnerability
classification tasks, a feature set relevant to
vulnerability characteristics is selected. Previous
work [28] proposed using a classification pooling
layer (SortPooling) after the graph convolutional
layer to sort the output features, enabling the use
of traditional neural networks for training and
extracting useful features from the embedded slice
vectors. In this paper, node features are first
learned through GGNN layers, followed by one-
dimensional convolutional and fully connected
layers to capture features relevant to the graph
classification task, enabling more effective
classification. Specifically, skip connections are
employed in the graph convolution and feature
extraction phases, which help retain the details and
semantic information from the original input data.
This approach facilitates easier information
propagation to deeper layers and prevents
information loss. The process is expressed as
follows.

)))))(1(luRe

)))(1(lu(Re2(lu(Re3(Relu3

XConv

XConvConvConvH

The input graph structure data X is processed
through the GNN layer to obtain node features Mi'.
The first convolutional layer, Conv1, is used to
extract initial node features, followed by Conv2,
the second convolutional layer, which further
captures higher-level node features. Conv3
represents the third convolutional layer and is
responsible for extracting the final node features.

H3 denotes the node features after passing
through all three convolutional layers. Finally, the

obtained node features H3 are concatenated with
the original input node features Mi, resulting in the
feature matrix Mi'. This process is described as
follows:

)(),((3 ii MDeBatchifyHDeBatchifyContatC

The function of DeBatchify is to restore node
feature vectors into independent graph feature
vectors when processing batch data, ensuring that
each graph's data can be individually handled and
analyzed.

In this paper, the classification pooling layer
τ(M) is defined as follows:

))))((((MConvBNReluMaxPoolM ）（

Here, Conv denotes the convolutional layer,
BN represents the BatchNorm layer, ReLU
indicates the activation function, MaxPool refers
to the max-pooling layer, and M denotes a feature
matrix. In this work, the node feature matrix Mi is
concatenated with the corresponding slice feature
matrix Mi1' to form a new matrix Mi1''. τ-
classification pooling operations are then applied
separately to Mi1' and Mi1'', resulting in outputs
Y1 and Y2. These outputs are subsequently passed
through fully connected layers with an output
dimension of 2. The formulation for the weighted
average and final output is presented as follows:

)))2(()1(((YMLPYYMLPYAvgSigmoidP

The fully connected layer performs a linear
transformation on the feature matrix, followed by
element-wise multiplication and averaging. The
Sigmoid function is then applied to produce the
binary classification probability output. P
represents the binary classification result,
consisting of two dimensions: the first dimension
indicates the probability of no vulnerability, while
the second dimension represents the probability of
a vulnerability. The model outputs the final
classification result by selecting the higher
probability between the two. The model is trained
using the CrossEntropyLoss function to correct
misclassifications, along with the Adam
optimization algorithm [29] with a learning rate of

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

70

0.0001 and a weight decay of 0.001 to update the
parameters and b in the graph neural network
module, as specified in Equation (1). After training,
the model is used to determine whether new code

slices contain vulnerabilities. The architecture of
the vulnerability detection model is illustrated in
Figure 5.

GGNN

Mi

AS

Mi

Mi

Dense Layer
Classification
pooling layer

Classification
prediction

layer

Forecast
results

Neural Network Module
Vulnerability classification module

Mi1

Mi1

P(0)

P(1)

Mi

Conv Relu Conv Relu Conv Relu
Mi

AS

Mi1

Figure 5. Vulnerability detection model architecture

IV. EXPERIMENT

A. Simulation parameter settings

This experiment is based on Python 3.8 to
simulate and analyze the proposed algorithm,
using the Pytorch 1.13 deep neural network
framework and CUDA 11.6. The extraction of
graphs in Joern is done using JDK17.0.11. Table I
details the specific parameters used in the model
during training.

TABLE I. TABLE TYPE STYLES

Parameter Value

Loss Function CrossEntropyLoss

Optimization Algorithm Adam

Learning Rate 0.0001

Weight Decay 0.001

Batch Size 16

Training Epochs 500

Max Steps 10000

B. Training Results of the Proposed Network

This study utilizes the publicly available
BigVul dataset, which includes 348 CVE
(Common Vulnerabilities and Exposures) entries,
consisting of 11,834 vulnerable functions and
253,096 non-vulnerable functions. From this
dataset, 9,653 vulnerable functions and their
corresponding 9,653 patched functions were
selected for analysis. A total of 19,621 vulnerable
code slices and 324,690 non-vulnerable slices

were extracted. The difflib library was employed
to generate the differential content between each
vulnerable file and its respective patch file.
Additionally, the specific lines of code containing
vulnerabilities in each vulnerable file were
recorded in the test_label.pkl file.

The Proposed Network achieved the highest
test accuracy of 93.06%, precision of 92.22%,
recall of 94.3%, and F1 score of 93.25%, all while
maintaining stable training and test losses of 20%
and 12.5%, respectively. These results indicate
that the model is highly effective at accurately
identifying vulnerabilities while maintaining a
good balance between precision and recall. This
suggests robust generalization and reliability in
detecting both vulnerable and non-vulnerable code
slices. Figure 6 shows the results of the model
training in this article.

Figure 6. Results of the Model Training in the Proposed Network

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

71

C. Performance Comparison with Various

Networks

Figure 7 presents a comparison of detection
results using the proposed network under two
approaches: one utilizing only Word2Vec and the
other combining Word2Vec and BERT. The
results for the model using only Word2Vec are as
follows: Test Accuracy: 88.26, Precision: 87.28,
Recall: 88.95, and F1 Score: 88.11. In contrast,
the model combining Word2Vec and BERT
achieved the following results: Test Accuracy:
93.06, Precision: 92.22, Recall: 94.30, and F1
Score: 93.25. These results demonstrate that
integrating BERT significantly improves all
evaluation metrics, highlighting its superior ability
to capture contextual information and effectively
extract deep semantic features.

Figure 7. Ablation experiment

Through ablation experiments, we found that
V1 (removing residual connections) achieved
91.13% accuracy, 88.65% precision, 94.65%
recall, and 91.55% F1 score, but showed high
training loss (100%). V2 (removing batch
normalization) achieved 90.95% accuracy,
88.06% precision, 95.07% recall, and 91.43% F1
score, with training and test losses of 100% and
40%. V3 (replacing GGNN) performed the worst,
with 71.99% accuracy, 72.7% precision, 71.83%
recall, and 72.26% F1 score, alongside training
and test losses of 20% and 50%. V_GIN, based on
GIN layers, performed better than V1, V2, and V3,
achieving 92.09% accuracy, 89.41% precision,
95.77% recall, and 92.49% F1 score, and had
training and test losses of 15% and 40%. The

performance comparison is illustrated in Figure 8,
while the loss comparison is presented in Figure 9.

Figure 8. Ablation experiment

Figure 9. loss comparison

This study compares the proposed model with
four deep learning-based vulnerability detection
methods, as shown in Figure 10. TokenCNN [16],
a token-based approach, treats source code as
plain text and ignores semantic and structural
information, leading to significant information
loss and poor detection performance.
StatementLSTM [31] improves on this by treating
each line of code as a natural language sentence
and embedding it into fixed-length vectors,
reducing semantic loss. However, it also processes
code as plain text, failing to preserve crucial
syntactic and semantic details. Devign [22], a
function-level method, uses code property graphs
(CPGs) to capture comprehensive semantic and
syntactic information. However, its inclusion of
irrelevant nodes and edges, along with the absence
of slicing techniques, hampers its ability to detect
vulnerabilities effectively. Vuldetexp [28]
simplifies code representation using slicing but
relies solely on Word2Vec for embeddings, which
limits its ability to extract rich code information.
In contrast, the proposed model fully leverages

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

72

code semantics and structure while incorporating
slicing techniques, achieving superior detection
performance, robustness, and generalization
compared to these methods.

Figure 10. Performance comparison of different models under evaluation

V. CONCLUSIONS

This article provides a comprehensive
overview of recent advancements in deep
learning-based code vulnerability detection,
categorizing the methods into sequence-based and
graph-based approaches. It details the
preprocessing steps involved, including code
standardization, PDG (Program Dependency
Graph) generation, PDG slicing, and the use of
Word2Vec and BERT to extract comprehensive
information from sliced graphs. Additionally, the
study introduces a novel vulnerability detection
method based on Graph Neural Networks (GNN),
which extends traditional GGNNs by integrating
skip connections, batch normalization, and
advanced feature fusion mechanisms. Through
ablation studies and comparisons with other deep
learning-based methods, the proposed model
demonstrates better performance in terms of
accuracy, precision, recall, F1 score, and loss
minimization. These findings highlight the
effectiveness of skip connections in preserving
features, batch normalization in enhancing
training stability, self-attention mechanisms in
capturing global dependencies, and BERT's ability
to better extract features by leveraging contextual
relationships in graph data, collectively enabling
superior performance in vulnerability detection
tasks.

Although the proposed model demonstrates
significant improvements across several metrics,
there are still areas that require further refinement.
First, the model primarily analyzes code slices
within single functions, making it challenging to
handle the complex dependencies present in real-
world vulnerabilities that span multiple functions.
Future work should incorporate interprocedural
analysis to enhance the detection of vulnerabilities
involving multiple functions. Second, there is a
severe imbalance between the number of
vulnerable and non-vulnerable slices in the dataset,
which can affect the model's generalization
capability. Addressing this imbalance through
techniques such as oversampling, undersampling,
or the use of Generative Adversarial Networks
(GANs) could help mitigate this issue.
Additionally, the current model lacks
interpretability, as it does not provide a clear
indication of the specific code lines where
vulnerabilities are detected. Future efforts should
focus on integrating and improving tools like
GNNExplainer to offer fine-grained explanations
of the detection results, thereby enhancing the
model's interpretability and practical utility.

ACKNOWLEDGMENT

The authors would like to thank the editor and
reviewers for their constructive comments. This
paper is supported in part by the Science and
Technology Plan Project of Xi'an Beilin
District(GX2214) under Grant, and in part by the
Plan Project of the Xi'an Science and
Technology(22GXFW0047) under Grant.

REFERENCES

[1] Cnnvd. [EB/OL]. https: //www.cnnvd.org.cn.2023-7-19

[2] Hinton G E, Osindero S, Teh Y W. A Fast Learning
Algorithm for Deep Belief Nets[J]. Neural
Computation, 2006, 18(7): 1527-1554.

[3] Jacob D, Ming-Wei C, Kenton L, Kristina T, et al.
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. [C], North
American Chapter of the Association for
Computational Linguistics, 2019, abs/1810.04805()

[4] Hoa K D, Truyen T, Trang P, Shien W N, John G,
Aditya G, et al. Automatic feature learning for
vulnerability prediction. [J], arXiv: Software
Engineering, 2017, abs/1708.02368()

[5] Hoa K D, Truyen T, Trang P, Shien W N, John G,
Aditya G, et al. Automatic Feature Learning for
Predicting Vulnerable Software Components[J], IEEE
Transactions on Software Engineering, 2021, 47(1):
67-85.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.02, 2025

73

[6] Sanghoon Jeon, Huy Kang Kim. Autovas: An
Automated Vulnerability Analysis System with A Deep
Learning Approach[J], Computers & security, 2021,
106: 102308.

[7] Shigang L, Guanjun L, Lizhen Q, Jun Z, Olivier Y D V,
Paul M, Yang X, et al. CD-VulD: Cross-Domain
Vulnerability Discovery Based on Deep Domain
Adaptation[J], IEEE Transactions on Dependable and
Secure Computing, 2022, 19(1): 438-451.

[8] Thomas Shippey, David Bowes, Tracy Hall.
Automatically identifying code features for software
defect prediction: Using AST N-grams. [J],
Information & Software Technology, 2019, 106(): 142-
160.

[9] Junfeng Tian, Wenjing Xing, Zhen Li. BVDetector: A
Program Slice-based Binary Code Vulnerability
Intelligent Detection System[J], Information &
Software Technology, 2020, 123(): 106289.

[10] Song Wang, Taiyue Liu, Lin Tan. Automatically
learning semantic features for defect prediction. [J],
Proceedings - International Conference on Software
Engineering. International Conference on Software
Engineering, 2016: 297-308.

[11] Fabian Y, Christian W, Hugo G, Konrad R, et al.
Chucky: exposing missing checks in source code for
vulnerability discovery[J], Computer Science, 2013:
499-510.

[12] Thong H, Hoa K D, Yasutaka K, David L, Naoyasu U,
et al. DeepJIT: an end-to-end deep learning framework
for just-in-time defect prediction[C], IEEE Working
Conference on Mining Software Repositories, 2019:
34-45.

[13] Luca Pascarella, Fabio Palomba, Alberto Bacchelli.
Fine-grained just-in-time defect prediction. [J], Journal
of Systems and Software, 2019, 150(): 22-36.

[14] Yan, X. D. Research on Software Vulnerability
Detection Technology Based on Static Taint Analysis
and Deep Learning [Master's thesis, Harbin Institute of
Technology]. DOI:
10.27061/d.cnki.ghgdu.2021.003610.

[15] Wu F, Wang J, Liu J, Wang W. Vulnerability detection
 with deep learning//Proceedings of the International C
onference on Computer and Communications. Chengd
u, China, 2017: 1298-1302.

[16] Rebecca L R, Louis K, Lei H H, Tomo L, Jacob A H,
Onur O, Paul M E, Marc W M, et al. Automated Vulne
rability Detection in Source Code Using Deep Represe
ntation Learning[J], 2018 17th IEEE International Conf
erence on Machine Learning and Applications (ICML
A), 2018, abs/1807.04320: 757-762.

[17] Han Y, Senlin L, Limin P, Yifei Z, et al. Han-Bsvd: A
Hierarchical Attention Network for Binary Software V
ulnerability Detection[J], Computers & security, 2021,
108: 102286.

[18] Li Z, Zou D, Xu S, et al. VulDeeLocator: A Deep
Learning-based Fine-grained Vulnerability Detector[J].
IEEE Transactions on Dependable and Secure
Computing, 2022, 19(4): 2821-2837.

[19] Li Z, Zou D, Xu S, et al. VulDeePecker: A Deep
Learning-Based System for Vulnerability

Detection[C]//Proceedings 2018 Network and
Distributed System Security Symposium. 2018.

[20] Zou D, Wang S, Xu S, et al. μDeePecker: A Deep
Learning-Based System for Multiclass Vulnerability
Detection[J]. IEEE Transactions on Dependable and
Secure Computing, 2021, 18(5): 2224-2236.

[21] Li Z, Zou D, Xu S, et al. SySeVR: A Framework for
Using Deep Learning to Detect Software
Vulnerabilities[J]. IEEE Transactions on Dependable
and Secure Computing, 2022, 19(4): 2244-2258.

[22] Zhou, Y, Liu, S, Siow, J, Du, X, Liu, Y, et al. Devign:
Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural
Networks[J], Advances in neural information
processing systems, 2019, 32(): 10197-10207.

[23] Wang H, Ye G, Tang Z, et al. Combining Graph-Based
Learning with Automated Data Collection for Code
Vulnerability Detection[J]. IEEE Transactions on
Information Forensics and Security, 2021, 16: 1943-
1958.

[24] Zheng W, Jiang Y, Su X. Vu1SPG: Vulnerability
Detection Based on Slice Property Graph
Representation Learning[J], IEEE International
Symposium on Software Reliability Engineering, 2021.

[25] Cao S, Sun X, Bo L, et al. MVD: Memory-Related
Vulnerability Detection Based on Flow-Sensitive
Graph Neural Networks[C]//Proceedings of the 44th
International Conference on Software Engineering.
2022: 1456-1468.

[26] Zou D, Hu Y, Li W, Wu Y, Zhao H, Jin H. mVulPreter:
A Multi-Granularity Vulnerability Detection System
with Interpretations[J], IEEE Transactions on
Dependable and Secure Computing, 2022, PP (99): 1-
12.

[27] Fabian Y, Nico G, Daniel A, Konrad R, et al. Modeling
and Discovering Vulnerabilities with Code Property
Graphs[C], IEEE Symposium on Security and Privacy,
2014: 590-604.

[28] Hu Yutao, Wang Suyuan, Wu Yueming, et al. A Graph
 Neural Network-Based Method for Slice-Level Vulner
a-bility Detection and Explanation[J]. Journal of Softw
are,2023,34(06): 2543-2561. DOI:10.13328/j.cnki.jos.0
06849.

[29] Kingma, Diederik P., and Jimmy Lei Ba. Adam: A
Method for Stochastic Optimization[J]. International
Conference on Learning Representations (ICLR), 2014,
abs/1412.6980.

[30] Cheng X, Wang H, Hua J, et al. DeepWukong:
Statically Detecting Software Vulnerabilities Using
Deep Graph Neural Network[J]. ACM Transactions on
Software Engineering and Methodology, 2021, 30(3):
1-33.

[31] Lin G, Xiao W, Zhang J, et al. Deep learning-based
vulnerable function detection: A benchmark. In: Proc.
of the 21st Int ’ l Conf. on Information and
Communications Security (ICICS 2019). 2019. 219-
232.

[32] Yang Y, Li G. On the Code Vulnerability Detection
Based on Deep Learning: A Comparative Study[J].
IEEE Access, 2024.

