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Abstract—Fiber optic gyro belongs to highly reliable and 

long-life components, which cannot be realized by 

traditional reliability assessment methods due to the 

difficulty of obtaining failure data; the Wiener process 

model can better model the degradation process of the 

device, thus realizing the reliability assessment based on 

the performance degradation. However, the performance 

degradation of fiber optic gyro exhibits nonlinear 

characteristics, and there is significant variability in 

degradation patterns among individual units within the 

same batch. Traditional Wiener process modeling fails to 

account for these two critical features. In this paper, a 

reliability assessment method based on the nonlinear 

random effect Wiener process is proposed. The nonlinear 

relationships are first transformed into linear forms 

through time-scale transformation, while the drift 

coefficients of the Wiener process are randomized to 

construct a more comprehensive stochastic degradation 

model. Subsequently, the Gibbs sampling method is 

introduced to achieve precise parameter estimation and 

model resolution. The proposed methodology is then 

applied to zero-bias performance degradation data from 

fiber optic gyros for reliability evaluation, generating 

corresponding reliability curves. The experiments show 

that the Akaike Information Criterion (AIC) value of the 

model in this paper is significantly reduced by 28.7% 

compared with the traditional method, indicating that the 

model achieves a better balance between complexity and 

goodness-of-fit. Therefore, the developed methodology 

provides a more accurate representation of the nonlinear 

degradation characteristics in fiber optic gyro, thereby 
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significantly enhancing the credibility of the assessment 

outcomes. 

Keywords-Fiber Optic Gyro; Reliability Assessment; 

Performance Degradation; Wiener Process 

 

I. INTRODUCTION 

As a high-performance inertial navigation 
sensor, fiber optic gyro (FOG) has gained wide 
applications in aviation [1][2], aerospace, marine, 
and transportation fields due to its advantages of 
all-solid-state design, high sensitivity, small 
size ,and long lifetime, progressively taking the 
place of the conventional mechanical gyro and 
becoming the mainstream gyro in the field of 
inertial navigation [3]. 

As the core component of the inertial navigation 
system, the reliability assessment of the fiber optic 
gyro is of significant importance [4]. Traditional 
reliability assessment methods, which rely solely 
on failure life data, focus exclusively on binary 
product states (normal and failure) [5]. These 
methods are inadequate for highly reliable, long-
life electromechanical products like FOGs, which 
rarely fail completely but exhibit gradual 
performance degradation over time. Consequently, 
failure life data alone cannot accurately assess their 
reliability. 

The performance degradation process of FOGs 
contains substantial reliability information, 
reflecting their operational characteristics [6][7]. 
By collecting degradation data and applying 
degradation analysis theory, this approach 
effectively addresses reliability assessment 
challenges. It captures gradual degradation patterns 
and provides a more accurate evaluation, 
overcoming the limitations of traditional methods. 

Reliability assessment methods based on 
performance degradation analysis can be 
categorized into three types [8][9]: degradation 
trajectory modeling  [10], degradation volume 
distribution modeling  [11], and modeling methods 
based on stochastic processes [12]. Degradation 
trajectory models are computationally simple and 
can fit degradation trajectories with limited data. 
Degradation volume distribution models offer high 
assessment accuracy and broad applicability, 

especially when trajectory variations are significant. 
While both approaches can model the inherent 
degradation processes of products, they struggle to 
account for the random environmental impacts on 
degradation. 

In recent years, stochastic process models have 
been widely adopted to describe the stochastic 
degradation process of a product under 
environmental stresses. Among them, the Gamma 
process and Inverse Gaussian process are suitable 
for describing systems with strictly increasing 
degradation [13][14], while the Wiener process is 
more suitable for modeling non-monotonic 
degradation processes. 

Liu et al. [15] proposed a reliability assessment 
method combining an artificial neural network and 
Wiener process, in which both individual 
differences and measurement error factors were 
considered to improve the accuracy of reliability 
assessment. Wang et al. [16] used the Wiener 
process with dual time scale function as the crack 
extension model in the reliability assessment of the 
turbine disk tongue and groove, and estimated the 
average life span of the turbine disk tongue and 
groove. Zhu et al. [17] constructed eight reliability 
evaluation models based on the Wiener process 
degradation model in describing the performance 
degradation of lithium-ion batteries, and finally, 
after validation, proved that the binary stochastic 
parameter model can evaluate the battery 
degradation process more accurately. 

Although the preceding studies have produced 
successful results in performance degradation 
modeling, there are still some shortcomings. For 
example, the existing methods often require 
complex model tuning and parameter estimation 
when dealing with nonlinear degradation trends and 
individual variability, leading to computational 
inefficiency. Especially for high-precision devices 
such as fiber-optic gyroscopes, their performance 
degradation process is not only affected by 
individual variability, but also shows obvious 
nonlinear trends, and it is difficult to accurately 
describe their actual degradation behaviors by 
existing methods. 

To address the above problems, this paper 
proposes a Wiener process model based on 
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nonlinear random effects for modeling the 
degradation process and reliability assessment of 
fiber optic gyroscopes. Firstly, the zero-bias 
performance degradation data is selected as the key 
index for reliability assessment; secondly, based on 
the traditional Wiener process model, nonlinear 
random effect is introduced to better describe the 
actual degradation behavior; subsequently, the 
Gibbs sampling method is adopted to accurately 
estimate the parameters of the model; and finally, 
the validity of the method is proved through 
experiments. 

II. COMPOSITION AND PRINCIPLE OF FIBER 

OPTIC GYRO 

The composition block diagram of the fiber 
optic gyroscope is displayed in Figure 1. It is 
primarily made up of two parts: the circuit part and 
the optical path part. The optical path part mainly 
includes the light source, detector assembly, 
coupler, phase modulator (Y waveguide) and fiber 
coil, etc. While the circuit part mainly consists of 
two parts: the light source driving circuit and the 
signal detection circuit [18]. 

 
Figure 1.  Fiber optic gyroscope composition block diagram 

Light in the role of the coupler is divided into 
two, a beam to the empty end, the other beam is 
transmitted to the Y waveguide, in which is divided 
into clockwise and counterclockwise two beams of 
light, and then into the fiber coil in the direction of 
the transmission; in the fiber coil in the direction of 
the transmission of the two beams of light in the Y 
waveguide at the common end of the meeting, the 
interference occurs, i.e., the Sagnac effect, 
interfering with the light through the coupler and 
then transmitted to the detector assembly, the 
optical signal is converted into an electrical signal; 
The electrical signal is amplified, filtered and then 

converted into a digital signal by A/D, and then 
processed by the FPGA unit to obtain the angular 
velocity to which the fiber optic gyro is sensitive, 
thus realizing the real-time measurement of the 
carrier's rotational motion. 

Among the performance indexes of fiber optic 
gyro, zero bias is the most important index to 
measure its reliability. Zero bias refers to the 
phenomenon that the measurement output of the 
fiber optic gyro is not zero in the absence of angular 
input. The key factors affecting zero bias include 
white noise, scattering noise, relative intensity 
noise of light source, quantization noise, electrical 
noise, thermal phase noise, polarization error, 
nonlinear Kerr effect error, error caused by back 
reflection, and circuit demodulation drift. With the 
growth of storage time, the differentiation of light 
source and optical transmission channel, and the 
degradation of electronic component performance, 
the zero bias will gradually show obvious 
degradation trend. In addition, the zero bias has 
good observability and is easy to be measured by 
experiments. In this paper, the zero deviation is 
selected as a key parameter to study the 
performance degradation trend of the fiber optic 
gyro in order to complete the reliability assessment. 

III. PERFORMANCE DEGRADATION AND 

RELIABILITY MODELING BASED ON THE WIENER 

PROCESS 

A. Standard Wiener Process Model 

The degradation process of fiber-optic 
gyroscopes is affected by a variety of factors, 
including external environmental impacts and wear 
and corrosion of internal components, resulting in a 
significant randomness in the degradation process. 
The performance degradation model based on 
stochastic process can effectively describe this 
stochastic uncertainty, in the existing research, the 
Wiener process and the Gamma process are 
consistent with the infinitely divisible 
characteristics of the device performance 
degradation, and can characterize the device 
degradation by the accumulation of small random 
events. The Gamma process has monotonicity, 
which is suitable for monotonous degradation 
process, while the Wiener process is suitable for 
describing the degradation process with The 
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Gamma process is monotonic and suitable for 
monotonic degradation processes, while the Wiener 
process is suitable for describing degradation 
processes with continuous fluctuations. Therefore, 
the Wiener process can be used to model the 
degradation of each performance of the fiber optic 
gyro, and its performance degradation amount 
model X(t) is expressed as shown in Equation (1). 

 ( ) ( )X t t B t    

Where: X(t) represents the performance 
degradation of the fiber optic gyro at the moment t, 
and μ denotes the drift coefficient of the 
degradation of the performance parameter, which 
describes the degradation rate of the performance 
degradation of the fiber optic gyro.  σ denotes the 
diffusion coefficient of the amount of degradation 
of the performance parameter, characterizing the 
effect of random factors on the performance of the 

fiber optic gyro; ( )B is a standard Brownian motion 

process characterizing the random fluctuation 
properties of the degradation process. 

According to the definition of Wiener process, 
the degenerate process X(t) shown in (1) has the 
following basic properties. 

1) X (0) = 0, and X(t) is continuous at t =0. 

2)  ( ), 0X t t  has smooth independent 

increments, i.e., the increments are independent of 
the time starting point. 

3) The degenerate increment ( )X t follows a 

normal distribution, i.e.
2

( ) ~ ( , )X t N t t    .The 

probability density function for the increment ( )X t

in performance degradation can be expressed as (2). 

2

2

1 ( ( ) )
( ( ) , ) exp
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Assuming that the performance degradation 
process of the fiber optic gyroscope obeys the 

Wiener process {X(t),t≥0},The failure threshold is 
 .The lifetime T of the gyro is the time at which 
the gyro degradation volume first reaches the 
failure threshold (first reach time), expressed as 
shown in (3): 

 inf{ ( ) , 0}T t X t t  ∣  

Let μ and σ be fixed unknown parameters, and 
the product lifetime T follows an Inverse Gaussian 
distribution. Its probability density function is 
given by (): 
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The corresponding lifetime distribution function 
is given by (5): 
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Where ( )  is the standard normal distribution 
function.  

The reliability of the fiber optic gyroscope can 
then be expressed as (6): 



2 2
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B. Fiber optic gyro reliability model based on 

nonlinear random effect Wiener process 

Individual fiber optic gyroscopes within the 
same batch exhibit unit-to-unit variability due to 
factors such as machining errors during 
manufacturing, assembly tolerances, and material 
differences. These variations lead to differing 
degradation rates among units, even under identical 
experimental conditions. Therefore, when 
modeling the degradation of test samples, it is 
essential to account for individual differences to 
better align with real-world scenarios. 

Additionally, the degradation data of fiber optic 
gyroscope performance metrics often exhibit 
nonlinear characteristics rather than purely time-
linear relationships. Using a standard Wiener 
process for modeling may result in deviations from 
actual behavior. In such cases, a nonlinear 
stochastic Wiener process with random effects is 
more appropriate for capturing these complex 
degradation trends. 
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The nonlinear degradation data is characterized 
by a nonlinear relationship between the 
performance degradation measure X(t) and time t. 
To address this, the time scale can be transformed 
to convert their nonlinear relationship into a linear 
one. The time-scale model is expressed as (7): 

 ( )t    

( )t reflects the nonlinear relationship between 
them. Since most degradation processes follow the 

power-law rule, it can be taken that: ( ) ( , ) at t a t    . 

Individual variability can be reflected through 
differences in performance degradation rates.  The 
parameter μ describing the degradation rate is 
transformed from a constant to a random variable. 
Assuming μ follows a normal distribution 

2~ ( , )N     ,while the diffusion coefficient σ 

remains a constant. Therefore, the nonlinear Wiener 
process considering individual variability can be 
expressed as (8): 

  2

( ) ( ) ( ( ))

~ ,

X t t B t

N  

 

  

   



 

where: X(t) is the performance degradation; μ is 
the drift parameter; σ is the diffusion coefficient; 

( )B  is the standard Brownian motion. 

Given that μ is a random variable following 
2~ ( , )N     , the corresponding density function is 

given by (9): 
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As previously derived, the probability density 
function 2( | , )f t   without considering individual 
differences is given by (4).Based on the law of total 
probability and conditional probability methods, 
the probability density function of the nonlinear 
Wiener process considering individual variability 
can be expressed as (10). 
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The corresponding lifetime distribution function 
can be expressed as (11): 
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It can be deduced that the reliability function 
describing the degradation of the system is 
expressed as (12): 
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IV. MODEL PARAMETER ESTIMATION AND 

GOODNESS-OF-FIT TEST 

A. MCMC-Based Model Parameter Estimation 

Method 

In the standard Wiener process, there are two 
unknown parameters to be estimated: μ and σ. 
Based on the probability density function given by 
(2), the likelihood function for the standard linear 
Wiener process can be derived as (13): 

 
2
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In the nonlinear Wiener process with random 
effects, there are four unknown parameters to be 
estimated, denoted as the parameter vector: 

 , , , a     .and the likelihood function can be 

expressed as (14): 

    

,
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In the equation, , , , 1i j i j i jx t x t x t   （）（）（ ）represents 
the performance degradation increment, and 

     , , , 1i j i j i jt t t      denotes the time increment. 

As the number of parameters increases, the 
complexity of the model also rises. Traditional 
parameter estimation methods, such as maximum 
likelihood estimation and least squares, often 
require computationally intensive integral 
calculations when handling multiple parameters. 
This becomes particularly challenging or even 
infeasible when redundant parameters (i.e., 
parameters with negligible effects on results or high 
correlation with other parameters) exist in the 
model. To address this issue, this study adopts the 
Bayesian theory-based Markov Chain Monte Carlo 
(MCMC) method. The MCMC method avoids 
complex integral calculations by simulating 
samples directly from the posterior distribution, 
making it suitable for estimating multi-parameter 
models. Compared to traditional methods, the 
MCMC approach offers the following advantages:   

1) No complex integrals required: Samples are 
generated directly through sampling, eliminating 
the need for integral computations;   

2) High adaptability: Capable of handling 
intricate models and diverse prior distributions;   

3) Reliable results: Ensures estimation 
accuracy through multi-chain diagnostics. 

The Bayes' theorem embodies the core concepts 
of Bayesian theory and the fundamental principles 
of Bayesian estimation. Its mathematical 
formulation is presented in (15): 


( , ) ( ) ( )

( )
( ) ( ) ( )

h x f x
x

m x f x d

   
 

   
 



∣
∣

∣ 

In the equations, 

π(θ|x) represents the posterior distribution of the 
parameter θ, reflecting the updated understanding 
of θ after observing the data x; 

π(θ) denotes the prior distribution of θ, 
representing the initial belief about θ before 
incorporating the observed data; 

f(x|θ) is the likelihood function of the random 
variable x, quantifying the probability of observing 
the data x given the parameter θ; 

m(x) is the marginal distribution, which 
normalizes the posterior distribution to ensure it 
integrates to unity. 

From the equation above, it is evident that 
Bayesian theory treats each experimental result as 
new information about the parameters, integrates 
this new information with prior knowledge 
available before the experiment, and updates the 
parameter estimates, thereby bringing the results 
closer to the true values. The entire process can be 
viewed as a continuous refinement of the parameter 
θ being estimated. The procedure for parameter 
estimation based on Bayesian theory is illustrated 
in Figure 2.  

 

Figure 2.  Parameter estimation process based on Bayesian theory 

1) Specify the prior distribution: Determine the 
prior distribution π(θ) of the parameter θ based on 
its prior information; 
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2) Construct the likelihood function: Derive the 
likelihood function f(x|θ) for the 

sample  1, , nx x x , as shown in (16): 

  
1

( )
n

i

i

f x f x 


∣ ∣  

3) Obtain the posterior distribution: Calculate 
the posterior probability density function of the 
parameter θ by combining the prior distribution π(θ) 
and the likelihood function f(x|θ) using Bayes' 
theorem. 

4) Sampling and inference: Generate samples 
from the posterior distribution through MCMC or 
other sampling methods to perform parameter 
estimation and statistical inference. 

The MCMC algorithm generates simulated 
samples of parameter vectors directly from the 
posterior distribution through numerical simulation. 
Common MCMC algorithms fall into two 
categories: The Metropolis-Hastings algorithm and 
the Gibbs sampling algorithm. The efficiency of the 
Metropolis-Hastings algorithm depends on the 
similarity between the chosen proposal density 
function and the true posterior density function. In 
contrast, the Gibbs sampling algorithm avoids this 
issue, as it imposes less stringent requirements on 
the proposal density function while achieving 
higher computational efficiency. In practical 
applications, the MCMC-Gibbs sampling process 
can be implemented using software packages such 
as OpenBUGS and WinBUGS. 

The Gibbs sampling algorithm is implemented 

as follows; given the parameter vector  1 2, , , q     

and observed data  1 2, , , ndata data data data , 

with the posterior distribution  1 2
, , ,

q
p data  ∣ : 

1) Assign initial values: Set an initial parameter 

vector  
( 0 ) ( 0 ) ( 0 )

1

(0)

2
, , ,

q
    that conforms to the 

Markov chain properties. 

2) Sample from conditional distributions: 

Sample 
(1)

1  from the conditional probability 

density  
( 0 ) ( 0 ) ( 0 )

1 2 3
, , , ,

q
p data  ∣ ; 

3) Complete one iteration: Repeat 2) until 
(1)

q  is 

extracted from  
( 0 ) ( 0 ) ( 0 )

1 2 1
, , , ,

q q
p data  


∣ ;  

4) Iterate: Repeat steps 2)-3) for m iterations to 

obtain  
( ) ( ) ( )

1

( )

2
, , ,

m m m
m

q
    . 

When m is sufficiently large,
( )m

 can be 
considered as samples drawn from the posterior   
p(θ|data), enabling the estimation of unknown 
parameters. 

B. Model superiority test method 

For the degradation test data, when there are 
multiple degradation models to choose from, it is 
necessary to select the model that fits the 
degradation data the best, and Akaike information 
criterion (AIC) is usually used for the model 
optimization, and the likelihood ratio test is used to 
judge whether a simple model can be used in place 
of a complex model. 

The AIC criterion is proposed by Akaike, a 
Japanese statistician, which evaluates the model fit 
in terms of the value of the likelihood function to 
measure the degree of fit and the number of 
unknown parameters in the model, which is the 
weighted value of the value of the likelihood 
function and the number of parameters. The smaller 
the value of the AIC, the better the model fit, and 
the formula is shown in (17): 

 2( ln( ( | )))AIC L Y    

where   is the number of unknown parameters 
in the model and L(θ|Y) is the value of the 
likelihood function. 

In order to visually compare and verify the 
reasonableness of the model, Quantile-Quantile(Q-
Q) Plot is introduced as a visualization tool to assess 
the degree of fit between the sample data 
distribution and the theoretical distribution (e.g., 
normal distribution), as shown in Figure 3. which is 
a sample Q-Q Plot generated based on the sample 
of normal distribution, which can be used to 
illustrate how to assess the degree of fit between the 
sample data distribution and theoretical The degree 
of fit to the normal distribution. Data points close to 
the diagonal line indicate a good fit to the 
distribution, and in the Q-Q plot, the horizontal axis 
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corresponds to the quantiles of the theoretical 
distribution, while the vertical axis shows the 
quantiles of the sample data. 

 

Figure 3.  Example of a Q-Q plot 

Ideally, the data points should be close to the 
diagonal distribution, indicating that the sample 
distribution matches the theoretical distribution; if 
they deviate, they reflect distributional differences, 
e.g., tail deviations may point to long-tailed 
distributions or extremes, whereas center deviations 
may indicate distributional skewness. The 
combination of Q-Q plots and AIC criterion can 
comprehensively assess the distributional 
hypotheses and provide strong support for the 
model fit goodness-of-fit tests. 

V. EXPERIMENTS AND ANALYSIS OF RESULTS 

A. Fiber Optic Gyroscope Performance 

Degradation Data 

The following section integrates the fiber optic 
gyroscope's zero-bias degradation data with the 
simulation verification of the proposed method. 
The following figure shows the zero-bias 
performance degradation data of a fiber-optic 
gyroscope collected in the constant temperature 
stress accelerated degradation test, in which the 
constant temperature stress of the fiber-optic 

gyroscope is controlled to be 55℃, and three fiber-

optic gyroscopes of the same model equipped in an 
inertial platform are selected. During the test, the 
performance degradation data of zero bias of each 
sample of fiber-optic gyroscope were tested and 
recorded over the course of 25 times, with a 
recording interval of 168h, and a total test time of 

4032h, and no failure occurred. The curves of each 
performance parameter of the fiber optic gyroscope 
over time are obtained after the test, as shown in 
Figure 4.  

 

Figure 4.  Zero-bias degradation data 

Based on specific application requirements, the 
failure threshold was determined as 0.1°/h. Over 
time, the zero-bias performance metrics of the three 
fiber optic gyroscopes (FOGs) exhibited a gradual 
increase, demonstrating an irreversible overall 
trend. This upward trend in values indicates a 
decline in FOG accuracy, reflecting cumulative 
damage under long-term thermal stress and 
characterizing the performance degradation of 
FOGs. Furthermore, the performance degradation 
data of the three FOG samples showed increased 
variability with prolonged time, highlighting 
growing inter-sample performance differences due 
to individual variations and stochastic factors. 

The Wiener process model established in this 
paper describes a performance degradation process 
with nonlinearity and individual variability, which 
aligns with the observed characteristics of the 
degradation data. This consistency confirms the 
rationality of employing the Wiener process to 
model FOG performance degradation. For 
comparative validation of model feasibility and 
accuracy in reliability assessment, the standard 
Wiener process model is designated as M1, while 
the degenerate model with a nonlinear random 
effect Wiener process is denoted M2 in subsequent 
discussions. 
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B. Estimation of model parameters 

1) Parameter estimation of the standard Wiener 

process model 

First, under the standard Wiener process model 
M1, the prior distributions of the parameters are set 
as follows: 

~ (0, 0.0001)N ， 2 ~ (0.001, 0.001)Gamma 
 

In the OpenBUGS software, the MCMC-Gibbs 
sampling method was employed to generate three 
Markov chains. Each chain draws 40,000 samples 
from the posterior distribution to ensure 
convergence and robustness. TABLE I.  lists the 
statistical measures of the parameter estimates for 
Model M1, including the mean and standard 
deviation. The use of multiple chains aims to assess 
model convergence and validate the stability of 
parameter estimates by comparing results across 
different chains. 

TABLE I.  MCMC SAMPLING RESULTS FOR MODEL M1 PARAMETERS 

Para-

meter 
Mean 

Standard 

Deviation 
MC 

Error 
95% credible 

interval 

  2.574E-6 4.022E-7 1.142E-9 (1.782E-6,3.376E-6) 

  5.725E-4 4.868E-5 1.516E-7 (4.87E-4,6.776E-4) 

The convergence diagnostics for the parameters 
of Model M1 are illustrated in Figure 5. The figure 
displays the results of the Gelman-Rubin diagnostic 
(BGR diagnostic), which was used to evaluate the 
convergence of parameters (μ and σ) across three 
independent MCMC chains. In the figure, all BGR 
values of the chains are close to 1, indicating 
minimal differences between chains and consistent 
within-chain and between-chain variances. This 
demonstrates that the MCMC sampling for 
parameters μ and σ has converged, and the 
simulation results are reliable. 

 
a) The convergence diagnostic process for μ 

 
b) The convergence diagnostic process for σ 

Figure 5.  Diagnostic results of convergence of model M1 parameters 

2) Parameter Estimation of the Nonlinear 

Random Effects Wiener Process Model 

Next, under the nonlinear random-effects 
Wiener process Model M2, the prior distributions 
of the parameters are specified as follows: 

1 ~ (0, 0.0001)N ，
2

1 ~ (0.001, 0.001)Gamma


 
2

1 ~ (0.001, 0.001)Gamma  ， 1 ~ (0, 1)a Uniform  

In the OpenBUGS software, the MCMC-Gibbs 
sampling method was employed with random 
initial values assigned to parameters to generate 
two Markov chains. Each chain drew 40,000 
samples from the posterior distribution to obtain 
parameter estimates. TABLE II.  lists the mean, 
standard deviation, and other statistical measures of 
the parameter estimates for Model M2. 

TABLE II.  MCMC SAMPLING RESULTS FOR MODEL M2 PARAMETERS 

Para-

meter 
Mean 

Standard 

Deviation 
MC  

Error 
95% credible  

interval 

1  6.79E-4 5.059E-5 2.316E-7 (5.815E-4,7.817E-4) 

1  4.455E-5  6.103E-6 3.656E-8 (2.793E-5,4.987E-5) 

1   8.551E-4  3.427E-5 1.356E-7 (7.732E-4,8.983E-4) 

1a   0.7467 0.003256 1.766E-5  (0.738,0.7499) 

 

The convergence diagnostics for the parameters 
of Model M2 are illustrated in Figure 6.  The figure 
displays the results of the Gelman-Rubin diagnostic 
(BGR diagnostic), which was used to evaluate the 

convergence of parameters 1 , 1 , 1 , 1a across two 
independent MCMC chains.In the figure, all BGR 
values for the parameters rapidly approach and 
stabilize near the ideal value of 1.0, indicating 
consistent distributions across sampling chains and 
robust convergence. This demonstrates that the 

MCMC sampling for parameters 1 , 1 , 1 , 1a has 
successfully converged, with no significant 
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discrepancies in the sampling process. 
Consequently, the model results are reliable, and 
the posterior distributions of the parameters are 
credible.  

 

 

Figure 6.  Diagnostic results of convergence of model M2 parameters 

C. Goodness-of-Fit Test for Degradation Models 

As shown in Figure 5. and Figure 6. , the 
parameters of both models M1 and M2 exhibit good 
convergence. By substituting the parameter 
estimates from TABLE I. and TABLE II. into (13) 
and (14), respectively, the log-likelihood values 
ln(L(θ)) and AIC values can be derived, as 
summarized in TABLE III. These metrics are used 
to compare the goodness-of-fit and complexity of 
the two models. 

TABLE III.  LOG-LIKELIHOOD AND AIC VALUES FOR DIFFERENT 

MODELS 

Model ln(L(θ)) AIC 
M1 -286.1956 576.3911 
M2 -201.5358 411.0715 

From the comparison of M1 and M2 in TABLE 
III. , it is evident that model M2 exhibits a larger 
log-likelihood value and a smaller AIC value. This 
suggests that model M1 performs relatively poorly, 
as its ability to describe the data is either 
insufficient or overly complex. In contrast, model 
M2 provides a better fit for the data while 
simultaneously maintaining lower model 
complexity. Thus, model M2 is clearly superior to 
M1. 

The Q-Q plots of models M1 and M2 are given 
in Figure 7. According to the definition of Q-Q 
plots, it can be seen that the stronger the linear 
relationship of Q-Q plots, the better the fit of the 
model. 

 

 
Figure 7.  Comparison results of Q-Q plots for M1 and M2 

 

a) The convergence diagnostic process for 1  

 

b) The convergence diagnostic process for 1  

 
c) The convergence diagnostic process for 1  

 

d) The convergence diagnostic process for  a 

 

 

 

a) Model M1 

 
b) Model M2 
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From an analysis of the Q-Q plots of the two 
models presented in Figure 7. , it can be seen that 
the data points in the Q-Q plot of Model M1 are 
generally distributed along the red dashed line (the 
theoretical quantile of the normal distribution), but 
the deviation is more pronounced, especially in the 
tail data on the left and the right. The deviation from 
the theoretical quantile in the tail data suggests that 
there may be some non-normality in the data for 
model M1. The data points fit better in the middle 
region, but the overall fit is poor. The Q-Q plot of 
model M2 has data points closer to the red dashed 
line, especially in the middle and tail regions, and 
the fit is significantly better than that of model M1. 
the smaller deviation of the tail data from the 
theoretical quantile suggests that the data 
distribution of model M2 is closer to the normal 
distribution. Overall, both models M1 and M2 can 
describe the degradation process of the fiber-optic 
gyroscope, which verifies the reasonableness of the 
modeling. Among them, the Q-Q plot of model M2 
shows a stronger linear trend and the data points are 
closer to the theoretical normal distribution, so M2 
is more suitable for describing the zero-bias 
degradation process of the fiber optic gyro. 

D. Analysis of Reliability Assessment Results 

Combined with the specific application 
conditions of the fiber optic gyro in the test, the 
failure threshold of the performance parameters is 
determined to be zero bias (≥0.1°/h). By 
substituting the estimated values of the parameters 
and the failure thresholds of the performance 
parameters of the models M1 and M2 into the (6) 
and (12), the zero-bias reliability curves of the fiber 
optic gyro's performance parameters based on the 
standard linear Wiener process and the zero-bias 
reliability curves of the fiber optic gyro's 
performance parameters based on the non-linear 
random effects of the Wiener process are obtained, 
which are shown in Figure 8.   

 
Figure 8.  Model M1 vs. M2 Reliability Curve 

As can be seen from Figure 8. , if the zero-bias 
performance degradation trajectory of the fiber-
optic gyroscopes in this batch is described by model 
M1, the reliability is lower than 1 from 1,704 h. In 
fact, none of the three gyroscopes tested failed by 
the 4032h test cutoff. In contrast, model M2 is more 
consistent with the reliability characteristics of 
fiber-optic gyroscopes with reliability below 1 from 
2105 h. The model M1 is more consistent with the 
reliability characteristics of fiber-optic gyroscopes. 
Meanwhile, model M1 is more optimistic because 
the reliability curve declines more slowly without 
considering individual differences, whereas model 
M2 is more conservative but closer to the reality 
because the reliability declines more rapidly 
compared to M1 after the introduction of the 
consideration of individual differences and 
nonlinearities. Combined with the zero-bias failure 
threshold (≥0.1°/h), M2 is more suitable for long-
term use scenarios, providing a more rigorous basis 
for equipment maintenance and avoiding potential 
risks caused by performance degradation. 

In conclusion, the M2 model stands out as the 
most effective model, as it effectively accounts for 
both individual differences and nonlinear behaviors 
in the degradation process of fiber-optic gyroscopes. 

 

：Model M1 Reliability Curve 

：Model M2 Reliability Curve 
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VI. CONCLUSIONS  

In order to handle the individual variability and 
nonlinearity of performance degradation of fiber-
optic gyros in reliability assessment, a method 
based on the nonlinear random effect Wiener 
process is proposed in this paper. The results show 
that the model can more accurately characterize the 
actual degradation behavior of the fiber optic gyro 
when considering the individual variability of the 
fiber optic gyro and the nonlinear characteristics of 
the performance degradation. In the validation of 
fiber-optic gyro zero-bias performance degradation 
data, the log-likelihood value of the proposed 
method is higher and the Akaike Information 
Criterion (AIC) value is lower than that of the 
model that only considers randomness, and the Q-
Q plot exhibits characteristics that are closer to 
normal distribution, which proves the superior 
fitting ability of the model in interpreting the data. 
In conclusion, the model proposed in this paper can 
provide a more reasonable and accurate basis for 
the reliability assessment of fiber optic gyro and 
provides new theoretical support for the reliability 
analysis and performance optimization of inertial 
navigation equipment 
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