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Abstract—Aoday, the Internet of Things (IoT) is 
changing fields by allowing interconnected devices to 
collect, share, and process data. As for traditional IoT 
networks that depend on centralized cloud computing, 
they come with high latency, redundant bandwidth 
consumption and energy inefficiency. This paper 
examines edge computing and identifies it as an enabling 
solution to these challenges. This facilitates real-time 
analytics of larger groups of data from smaller inputs 
and is the key characteristic of the edge computing 
model, by processing data closer to the source; edge 
computing minimizes latency, optimizes bandwidth 
usage, and enhances scalability. It examines 
architectural designs, optimization techniques, and 
practical applications of edge computing. The empirical 
evidence also shows that edge computing achieves up to 
80% latency reduction, compared to the cloud, a 
bandwidth saving due to the fact that edge computing 
could process data at the source (thereby reducing data 
transfer to the cloud), and that edge computing could 
reduce overhead energy consumption by approximately 
90% compared to cloud computing. The solutions 
proposed include hierarchical architectures, dynamic 
resource allocation, and integration with the blockchain, 
tackling challenges such as scalability, security, and 
energy efficiency. This work concludes that edge 
computing is a major breakthrough in iot networks and 
an enabling technology for real-time, efficient and 
sustainable applications. 
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I.  INTRODUCTION 

Traditional IoT networks that relies on 
centralized cloud computing is facing significant 
challenges, including high latency, excessive 

bandwidth usage, increased energy consumption 
and security risks [1] & [2]. Such limitations have 
a negative impact on the performance and 
scalability of the network as the data produced by 
IoT devices increases. As a result, edge computing 
has become a solution to many of such challenges 
that had emerged, by processing data at the source, 
thus enhancing overall bandwidth efficiency, 
decreasing latency, and boosting security of the 
information, allowing for faster decision-making 
and enhanced operational  culated by [5] & [6] 
highlight the growing importance of edge 
computing, which positions computational 
resources and data storage in closer proximity to 
IoT devices, thereby significantly reducing latency 
and improving response times, ultimately 
achieving reductions in end-to-end latency in the 
range of 60% to 70%. [7] & [8] stated that edge 
computing is the best for real-time applications 
where expeditious decision-making is paramount 
that including autonomous vehicles and industrial 
automation. Edge computing refines bandwidth 
utilization by decreasing the volume of data 
transmitted to the cloud, so avoiding network 
congestion and diminishing operational costs. 
Moreover, local data processing bolsters energy 
efficiency, rendering it particularly suitable for 
battery-operated IoT devices [9]. The dependence 
on centralized systems renders the network 
susceptible to security vulnerabilities and 
operational failures [10]. A research by [11] 
indicates that centralized cloud computing within 
smart grid systems augments scalability and 
resource management by leveraging established, 
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cloud-based infrastructures. Nonetheless, this 
approach is accompanied by challenges such as 
elevated latency and augmented bandwidth 
demands. [12] Stated that Centralized cloud 
computing offers easy service provisioning and 
infrastructure management, but it has limitations in 
latency and energy efficiency, making it less 
suitable for distributed IoT systems. Fog 
computing is augmenting the functionalities of 
cloud computing by extending its capabilities to 
the periphery of the network, thereby mitigating 
latency and optimizing bandwidth utilization 
through the proximal processing of data at its point 
of origin [13]. Micro data centers it compact data 
centres strategically positioned near internet of 
things devices to furnish localized computational 
resources, thereby diminishing dependence on 
remote cloud infrastructures [14]. Mobile edge 
Computing (MEC) it incorporates computational 
capabilities within mobile networks to facilitate 
low-latency applications, such as augmented 
reality by situating computational resources nearer 
to the end user [15]. 

Despite advancements in edge computing, 
several research gaps remain such as resource 
allocation as contemporary algorithms encounter 
significant challenges in the efficient distribution 
of resources within dynamic IoT environments 
[16], [17], [18], and [19]. Security mechanisms; 
there is a pressing need for advanced security 
solutions to safeguard distributed edge devices 
[20], [21], [22], and [23]. Scalability; as IoT 
networks expand, the management of a substantial 
number of devices becomes increasingly complex 
[24], [25], [26], and [27]. Energy efficiency; 
power optimization for battery-operated IoT 
devices remains a pivotal research domain [28], 
[29], [30], and [31]. Integration with AI enhances 
real time data processing at the edge, enhance IoT 
performance through intelligent computation [32], 
and with 5G connectivity it provides ultra-low 
latency and high-speed communication, enabling 
edge computing for critical applications [33]. And 
with blockchain ensures secure transactions, 
decentralized data management in IoT networks 
[34].  

The objective of this paper is to investigate the 
implementation and optimization of edge 

computing techniques in IoT networks. The study 
will explore how edge computing can enhance IoT 
efficiency, reduce latency, and improve scalability. 
In addition, it will examine real world use cases 
and explore emerging technologies that can further 
enhance the capabilities of edge computing in IoT 
networks. 

II.  METHODOLOGY: IMPLEMENTATION OF EDGE 

COMPUTING IN IOT 

This methodology is using architectural design 
through implementing hierarchical models. The 
prevalence of the IoT devices prompts data traffic 
between the edge, fog, and cloud layers leading to 
delays and long felt requirements, in a hierarchical 
model the computation of such complex data that 
requires latency is distributed in multilevel, for 
instance; edge layer relies on real time response to 
perform processing of data generated by sensors, 
filtering, and stream analytics at close proximity to 
the sensors. Fog layer comprises of mid-range 
processing requirements for latency moments that 
cannot be carried out with the use of edge devices. 
Cloud layer refers to large scale data storage, 
longitudinal analysis, where the final layer 
involves training a machine learning model. In 
order to obtain such model three steps for 
implementation must be followed. Design a 
layered system with communication protocols 
between the devices at each level. Realize the 
interfaces for the data to travel across the IoT 
devices as well the edge device. Use APIs 
(Application Programming Interfaces) to send 
processed data to be forwarded through ‘n’ layers 
up to the cloud. APIs aim to bridge the gap 
between various network layers and make them 
inter-operable improving and deepening 
performance in data management and processing.  
Processing and storage is done in a distributed 
fashion on edge devices here without the need for 
centralized cloud infrastructure. This model 
improves the scalability through the use of peer-to-
peer communication and local processing. 
Implementation is going through some steps; 
develop a complete architecture where IoT devices 
locally process data and communicate with the 
nearby edge devices. Implement Peer-2-Peer 
communication protocols like Message Queuing 
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Telemetry Transport (MQTT) to enable sharing of 
data. In this paper, considering the efficient, 
scalable, and reliable communication between the 
IoT devices, edge nodes, and the cloud, in addition 
to the real-time requirements of edge computing, 
MQTT is the more appropriate protocol. Design 
and deployed edge computing frameworks 
enabling local decision making that circumvents 
the cloud for lower latency. Optimization 
techniques is obtained by design a load balancing 
algorithms that distributed tasks dynamically to 
the available edge devices ensuring no device is 
overloaded. Weighted Round Robin (WRR) 
algorithm used, if edge devices have different 
features (i.e., certain devices have more CPU or 
memory than others), WRR can allocate more 
tasks to higher capacity devices. If tasks have 
comparable processing times, it works well when 
task assignment has to be scaled along with the 
processing power of the devices. Each device is 
assigned a weight based on its processing capacity. 
Devices with higher weights will receive more 
tasks in a cyclic manner. In load balancing method 
computational tasks are distributed evenly across 
many edge devices which prevent overloading and 
optimize resource utilization. It given the dynamic 
nature of IoT networks where workload 
distribution can shift rapidly a WRR algorithm 
allocates tasks based on the computational 
capacity of each edge device. It extends the 
standard Round Robin approach by assigning 
different weights to edge devices based on their 
computational power whether it is a CPU, memory 
or bandwidth, etc. Four steps of the algorithm 
implementation, first is initialization by retrieve 
the list of available edge devices, assign each 
device a weight based on its capacity and initialize 
a task queue. Second is task allocation through 
sorting devices based on weight and assign tasks 
to each device in a cyclic manner, where higher-
weight devices receive more tasks. Then dynamic 
adjustment by continuously monitor device 
workloads, if a device becomes overloaded, 
redistribute tasks to available devices and if a new 
device joins the network, recalculate weights and 
reassign tasks accordingly. Finally, fault tolerance, 
if a device fails then its assigned tasks are 
immediately reallocated to other active devices. 

Following are Pseudo code with its outputs and 
flowchart for the load balancing algorithm. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pseudo-code for Load Balancing Algorithm and its output 

 

Figure 2. Flowchart for the Load Balancing Algorithm 
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Algorithm Adaptability in Dynamic 
Environments. 

Handling overload situations; the algorithm 
monitors device load and reassigns tasks if an 
edge device exceeds its processing capacity. 
Scalability; new edge devices can join the 
network dynamically, and the algorithm updates 
weight assignments to distribute tasks effectively. 
Fault tolerance; if an edge device fails, its tasks 
are automatically reassigned to available devices. 
Energy efficiency; by optimizing task distribution, 
the algorithm reduces unnecessary data transfer, 
minimizes latency, and improves energy savings. 

Use algorithms to precisely choose tasks as to 
which processing level (edge, fog, or cloud) is 
most efficient given to the task's complexity, real-
time needs, and available resources. Each task has 
different requirements. Latency sensitive tasks are 
assigned to edge layer (e.g., autonomous vehicles, 
industrial automation). Moderate complexity tasks 
are processed at fog layer (e.g., smart grid 
monitoring, video analytics). High complexity 
tasks are sent to cloud layer (e.g., deep learning, 
long-term analytics). The algorithm considers 
three points; task complexity (simple, medium, 
high), real time constraints (low latency vs. high 
processing needs) and available resources (CPU, 
memory, bandwidth at each layer). The 
implementation is obtained by three steps, first is 
task classification by Group tasks based on 
computational complexity and latency 
requirements and assign priority levels to tasks. 
Second is decision making algorithm by analyse 
the current load on edge, fog, and cloud and 
dynamically offload tasks to the most suitable 
processing layer. Then is feedback mechanism by 
continuously monitor latency and resource 
consumption and adjust task distribution 
dynamically based on real-time network 
conditions. Following is Pseudo-code for task 
offloading algorithm and its outputs. 

 

 

 

 

 

Figure 3. Pseudo-code for task offloading algorithm and its output. 

Implemented systems that adjust the allocation 
of computational resources (CPU, memory, 
storage) based on real time network conditions 
and workload demands is through view network 
traffic and device usage in real time, develop 
algorithms that reallocate resources dynamically 
to maintain performance during peak loads and 
simulate varying conditions of network 
performance (low latency, high traffic) to improve 
resource distribution policies. Dynamic resource 
allocation ensures that CPU, memory, and storage 
are adjusted in real-time based on network traffic 
and workload demands. The system continuously 
monitors edge devices and redistributes resources 
dynamically to maintain performance, especially 
during peak loads. The algorithm is monitoring 
network traffic through continuously gather CPU 
usage, memory, and bandwidth from edge devices 
as well as detecting high traffic conditions or 
resource bottlenecks. Second is analyze workload 
by check if any edge device is overloaded or 
underutilized and Predict future workload trends 
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based on historical data. Then reallocate resources; 
if a device is overloaded, offload some tasks to a 
less busy device or if a device is idle, reallocate its 
CPU/memory/storage to active devices. Finally, 
optimize performance by simulate different traffic 
conditions (low latency, high traffic) and adjust 
allocation policies dynamically for better 
efficiency. Following is the output of Pseudo-
Code for dynamic resource allocation. 

 

Figure 4. Outputs of Pseudo-Code for Dynamic Resource Allocation. 

In modern smart grids, power demand 
fluctuates dynamically due to weather, industrial 
activity, and unexpected faults. Traditional 
centralized power monitoring systems introduce 
latency, making real-time decision-making 
difficult. By deploying edge computing, power 
grid stability can be enhanced by processing data 
locally, predicting failures, and optimizing power 
distribution in real-time. Sensors for data 
collection to monitor voltage fluctuations, current 
flow, temperature of transformers and power 
demand & generation levels. Edge based real time 
analysis; edge computing nodes process incoming 
sensor data locally instead of sending it to the 
cloud, they detect potential overloads, voltage 
spikes, or frequency imbalances and if an 
anomaly is found, edge nodes immediately trigger 
corrective actions. Predictive power management 
and outage prevention; AI-based predictive 
analytics can be run on edge nodes to detect 
power failures before they happen. Example: if an 
edge node detects increasing transformer heat 
beyond safe limits, it predicts failure and redirects 
power flow to prevent outages and machine 
learning models can use historical data to predict 
failures and optimize power usage. Automatic 
control to prevent grid failure; edge devices 
autonomously activate circuit breakers to prevent 
cascading failures, power rerouting decisions are 
made locally for instant response and load 
balancing ensures power is distributed efficiently 

in milliseconds. Following is the code for edge-
based power grid monitoring. 

 

Figure 5. Code for Edge-Based Power Grid Monitoring 

The based power grid monitoring code has four 
possible outputs as following. 

 

Figure 6. Output. Scenario 1: Normal Conditions (No Alert): All values 
are within safe limits, so no actions are taken. 

 

Figure 7. Output. Scenario 2: Voltage Spike Detected (Trigger Circuit 
Breaker): Edge Node 1 detects high voltage (250V): Triggers circuit 

breaker to prevent damage. 
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Figure 8.  Output. Scenario 3: Transformer Overheating Detected 
(Predictive Maintenance Alert): Edge Node 1 detects transformer 

overheating (80°C) → Triggers predictive maintenance. 

 

Figure 9. Output. Scenario 4: Multiple Alerts Triggered:  Both high 
voltage & overheating detected at Edge Node 1 and 2:  Multiple actions 

taken. 

The output changes every 5 seconds, a new set 
of randomized voltage & temperature values is 
generated. If values exceed safety limits, 
corresponding alerts and actions (circuit breaker, 
predictive maintenance) are triggered. The 
program continues running until manually stopped 
(Ctrl+C to interrupt). 

Autonomous vehicles rely on real-time 
decision-making using edge computing to process 
sensor data locally. The goal is to ensure low-
latency processing, reduce cloud dependency, and 
enhance safety through Vehicle-to-Vehicle (V2V) 
and Vehicle-to-Infrastructure (V2I) 
communication. The algorithm has sensor data 
acquisition to collect real-time data from cameras, 
LiDAR, and other sensors and process LiDAR 
data locally at edge nodes to reduce latency. It 
performs local edge processing for decision 
making through perform object detection 
(pedestrians, obstacles, traffic signs) and calculate 
optimal speed & braking decisions in real-time. It 
performs Vehicle-to-Vehicle (V2V) & Vehicle-to-
Infrastructure (V2I) communication; share traffic 
updates, road hazards, and navigation data with 
nearby vehicles and interact with traffic lights, 
road sensors, and smart infrastructure to optimize 

routes. Real-time safety actions; if an obstacle is 
detected trigger emergency braking or reroute 
navigation or if another vehicle sends a collision 
alert, adjust speed accordingly. Next is the output 
of pseudo-code for autonomous vehicle edge 
processing. 

 

Figure 10. Output of pseudo-code for autonomous Vehicle Edge 
Processing 

To enable real-time health monitoring using 
wearable sensors and edge devices while 
maintaining low latency, privacy, and efficient 
data transmission to healthcare providers. 
Wearable sensors collect data: Monitor heart rate, 
oxygen levels, blood pressure, temperature in 
real-time and send readings to edge nodes in 
hospitals or patient homes. Local processing on 
edge nodes: Analyse heart rate variability, 
irregular ECG patterns, and temperature spikes 
and detect abnormal conditions (e.g., high heart 
rate, arrhythmia). Closed-loop communication 
with healthcare providers: Minor health deviations 
only store locally, avoiding unnecessary cloud 
transmission and critical alerts (e.g., stroke 
warning) immediately sent to doctors/hospitals for 
action. Privacy & security measures: Data 
encryption & anonymization at the edge and only 
essential data is sent to cloud to minimize privacy 
risks. 

 

Figure 11. Output of Pseudo-Code for Remote Health Monitoring. 
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To enhance predictive maintenance and 
production line automation using edge computing, 
reducing downtime and optimizing machine 
performance. IoT Device Integration: Attach 
sensors to machines to collect real-time data 
(vibration, temperature, energy usage) and send 
data to local edge devices for immediate analysis. 
Predictive maintenance: Apply machine learning 
models at the edge to detect anomalies in machine 
performance and if a fault is detected, alert the 
maintenance team before a failure occurs. 
Decentralized production line control: Machines 
communicate with each other using edge 
computing to optimize the workflow and if a 
machine slows down, others adjust automatically 
to maintain productivity. Next is the output of 
pseudo-code for industrial automation. 

 

Figure 12. Output of pseudocode for industrial automation. 

This systematic methodology will facilitate an 
appropriate description of the implementation 
process, including design choices, optimization 
strategies, and illustrative use cases that uncover 
the relevance of edge computing to IoT 
applications. The platform used is Microsoft 
Azure IoT edge; it is a good fit because it 
seamlessly integrates with Azure cloud services, 
providing a strong connection between edge and 
cloud for data management and further processing, 
which suits hierarchical models. It offers an 
adaptive, modular platform, which easily adapts 
to dynamic resource allocation, load balancing, 
and task offloading. This aligns well with the 
optimization techniques you're highlighting in the 
methodology.  Azure IoT Edge supports a wide 
range of IoT applications, including smart grid 
management, remote health monitoring, and 
industrial automation, which are central to your 

use cases. Therefore, it would be most appropriate 
using Microsoft Azure IoT Edge as the edge 
computing platform as it fits well with the 
methodology's focus on optimization, real time 
processing, and scalability across various IoT 
applications. MATLAB Simulink implemented to 
model edge computing paradigms with regard to 
resource assignment and task offloading. Metrics 
that evaluated in this work are Latency by 
characterize the speed at which insights are 
derived at the edge vs. the cloud. Throughput by 
estimate the scale of the number of tasks (and/or 
data) processed in a defined timeframe. Energy 
efficiency through analyse power consumption, 
particularly for battery operated devices. 
Scalability through assess the performance of the 
system as the number of IoT devices increases. 
The implementation of this approach will assure 
latency reduction, bandwidth optimization, 
scalability, solutions to security concerns and 
energy efficiency. 

III.  RESULTS AND DISCUSSION 

Latency results in edge computing shows that 
by processing data closer to the source, edge 
computing significantly reduces latency. The 
proximity of processing allows for faster response 
times, as data does not need to travel to a 
centralized cloud server for computation. In 
contrast, cloud computing introduces higher 
latency as data must be transmitted to a remote 
server, processed there, and returned, leading to 
delays in applications requiring real-time 
responsiveness. The reduction in latency through 
edge computing is particularly impactful for real-
time applications such as autonomous vehicles, 
smart grid management, and industrial automation, 
where immediate decision-making is critical for 
performance and safety. This makes edge 
computing an essential component in improving 
the reliability of time-sensitive IoT applications. 

Bandwidth usage results in edge computing 
revealed that one of the primary advantages of 
edge computing is the reduction in bandwidth 
usage. By processing data locally and only 
sending necessary or aggregated data to the cloud, 
it significantly decreases the volume of data 
transmitted across the network. However, 
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traditional cloud computing requires all data to be 
sent to the cloud for processing, which increases 
bandwidth usage and can lead to network 
congestion, particularly in large-scale IoT 
deployments. Reducing bandwidth usage through 
edge computing lowers operational costs and 
minimizes network congestion. This is 
particularly valuable in environments with limited 
bandwidth or high data volumes, such as smart 
cities or industrial IoT networks. Optimizing 
bandwidth usage is crucial for scaling IoT 
networks efficiently without overwhelming 
network infrastructure. Edge computing helps 
lower energy consumption by processing data 
locally, reducing the need for frequent and long-
distance data transmission to the cloud. This 
results in energy savings at device and network 
levels. Energy consumption in cloud computing is 
generally higher due to the constant need to 
transmit large volumes of data to a centralized 
server and the energy required to operate large-
scale cloud infrastructures. Edge computing's 
localized processing leads to significant energy 
efficiency gains, particularly for battery-powered 
IoT devices. This reduction in energy 
consumption is not only cost-effective but also 
promotes sustainable operations, contributing to 
the development of green IoT networks that 
minimize environmental impact. The experiment 
evaluates edge computing comparing with 
traditional cloud computing using three key 
performance metrics; latency (Response Time), 
Bandwidth usage (Network Efficiency) and 
energy consumption (Power Efficiency). All data 
is transmitted to a centralized cloud server for 
processing, high latency due to data transmission 
time, increased bandwidth usage because all raw 
data is uploaded and higher energy consumption 
due to continuous data transfer. Data is processed 
locally on edge devices before sending selective 
insights to the cloud, lower latency since data 
does not need to travel far, reduced bandwidth 
usage due to local data filtering and lower energy 
consumption since data transmission is minimized. 
The study was conducted using real-time sensor 
data from various IoT applications (smart grid, 
autonomous vehicles, industrial automation, and 
remote health monitoring). Data collection 
process went through some steps; first IoT sensors 

collect real-time data (e.g., voltage, heart rate, 
machine vibrations). Second, data is processed at 
edge devices and compared with a cloud-based 
alternative. Third, latency, bandwidth usage, and 
energy consumption are recorded for both setups. 
Fourth, each test was repeated five times, then 
record the average. In terms of hardware setup, 
the edge device is the Raspberry PI 4 (4GB RAM, 
quad-core Cortex-A72), and the cloud server: 
Amazon AWS EC2 (t2). Medium size, 2 Vcpus, 
4GB RAM) and IoT Sensors: Temperature, 
voltage, and heart rate monitors. Whereas, in 
software setup; Microsoft Azure IoT Edge, 
Machine Learning Model for Anomaly Detection: 
Python (TensorFlow & Scikit-Learn) and Data 
Transmission Protocol: MQTT for edge, HTTP 
for cloud. 

TABLE I.  PARAMETERS COMPARISON 

 

TABLE II.  DIRECT COMPARISON AND IMPROVEMENT 

 

In relation to repeatability and reproducibility 
the experiment was conducted five times per test 
case, and the average values were recorded, 
researchers can reproduce this study by using the 
same hardware and software setup, following the 
same data collection methodology and applying 
the same parameter settings. Following figures are 
illustrating latency, bandwidth and energy. 
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Figure 13. Latency and Bandwidth Comparison 

Total latency for cloud computing is 5.00 
seconds. Total latency for edge computing is 1.00 
second. Lower latency in edge computing is 
facilitated by local data processing, thereby 
minimizing the time required to transfer data to a 
central cloud server and back. This finding 
confirms the paper's assertion that edge 
computing can minimize latency, especially in 
real-time IoT applications, improving response 
and performance for critical applications like 
autonomous vehicles and industrial automation. 
Bandwidth for cloud computing is 102.35 KBps 
and bandwidth for edge computing is 512.82 
KBps. 

Bandwidth (KBps)  data size (KB) Transmission 
Time (s) (1) 

Total time for data transmission in cloud is 
9.77 seconds. Total time for data transmission in 
edge is 1.95 seconds. The data shows that edge 
computing takes less time for data transmission 
(1.95 seconds vs. 9.77 seconds in the cloud). This 
suggests that edge computing reduces the amount 
of data sent to the cloud by processing it locally, 
resulting in lower network congestion and more 
efficient use of bandwidth. Edge computing 
optimizes bandwidth usage by reducing the need 
to send large amounts of raw data to the cloud. 
This bandwidth optimization is especially 
important for scaling IoT networks efficiently. 
Edge computing processes and transmits data 
faster (1.95 seconds compared to 9.77 seconds for 
cloud computing), meaning it uses more 

bandwidth to send the same amount of data in a 
shorter period. Cloud computing requires longer 
time to exchange the same volume of data (9.77 s); 
hence it provides lower bandwidth for remote 
exchange over time. Because edge computing is 
faster and therefore has higher bandwidth 
consumption, mean time since failure is reduced 
even while it reduces the total volume of data 
transmissions due to the provision of only the 
necessary data information to the cloud. Edge 
Computing has larger bandwidth rates since it 
carries the same amount of data (1000 KB) by a 
limited time (1.95 s). Cloud Computing presents 
lower bandwidth consumption as it is longer (9.77 
s) to send the same data volume. 

 

Figure 14. Energy consumption Comparison 

Lower data transmission time in edge 
computing (1.95 s vs. 9.77 s) does suggest less 
power consumption. Edge computing's local 
processing reduces the number of long-distance, 
repeated data transmissions, thereby saving on 
energy use. Edge computing may decrease energy 
use, especially in battery powered IoT devices. 
The reduced energy consumption improves the 
sustainability and operational efficiency of IoT 
networks. 

The energy consumption for data transmission 
and processing modelled as next formula: 

 Energy (J)  Power (W)  Time (s) (2) 

Power (W) is the rate at which energy is used 
during data transmission or processing. 
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Time (s) is the total time spent in data 
transmission or processing. 

In cloud computing power consumption, 
transmission and processing on cloud servers 
typically consume more energy due to long 
distances and centralized processing infrastructure. 
2 watts are for transmission and 5 watts are for 
cloud processing. While in edge computing power 
consumption the edge devices have lower power 
consumption due to local processing and shorter 
data transmission distances. 1 watt is for 
transmission and 3 watts are for edge device 
processing.  

Transmission time in cloud computing is 9.77 
seconds. Processing time is 5.00 seconds. 

Transmission time in edge computing is 1.95 
seconds. Processing time is 1.00 second. 

Transmission energy in cloud computing: 

E cloud transmission2 W9.77 s19.54 JE 

Processing Energy in cloud computing.  

E cloud processing 5W5.00s25.00J 

Total energy for cloud computing is: 

E cloud total19.54J+25.00J=44.54J 

Transmission energy in edge computing is: 

E edge transmission =1W1.95s=1.95J 

E edge processing =3W1.00s=3.00J 

Total Energy for Edge Computing is 

=1.95J+3.00J4.95J. 

 

Figure 15. Total Energy consumption Comparison 

Cloud computing total energy consumption is 
44.54 J. 

Edge computing total energy consumption is 
4.95 J. 

In Conclusion, cloud computing consumes.  

44.54 J of energy, which is significantly higher 
due to longer data transmission times and 
centralized processing. Edge computing consumes 
only 4.95 J of energy, making it much more 
energy-efficient. The results and analysis indicate 
that edge computing shows significantly higher 
energy efficiency compared to cloud computing, 
achieving a reduction in energy consumption of 
approximately 90% attributable to localized data 
processing and reduced distances of data 
transmission. It validates the conclusions 
presented in the manuscript, which declare that 
edge computing substantially improves energy 
efficiency, especially in the environment of 
battery-operated IoT devices. The experimental 
framework and associated parameters are resilient 
to modification and expansion within the 
simulations to align with specific research 
objectives. The outcomes of these simulations, 
beside the results generated through MATLAB 
clarify the advantages of edge computing in 
optimizing IoT network performance. Edge 
computing demonstrates clear advantages over 
traditional cloud computing in IoT networks by 
Reduce latency because it performs computation 
locally and, thus, increases real-time 
responsiveness in IoT systems. Enhance 
bandwidth efficiency through the reduction of 
cloud data movement this one alleviates 
congestion of networks and reduces direct 
operating costs. Advance energy efficiency 
processed locally information is more energy 
efficient, especially in applications that use 
rechargeable batteries and is conducive to 
sustainability. Scalability considerations, because 
handling of large-scale edge device networks is 
predicated on sophisticated hierarchical structures 
and dynamic resource allocation. Security 
challenges, robust security features, such as 
encryption, secure boot, and blockchain, are 
essential for data integrity in the edge.  
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The results overcome limitations of IoT by 
easing latency and bandwidth constraints and 
integrating novel technologies for scalable and 
secure systems. In latency reduction; processes 
data at the source closer together so as to reduce 
the delay which is critical to real-time applications 
such as autonomous driving. Bandwidth 
optimization; filters data locally, making cloud 
transmissions unnecessary, improving congestion, 
and reducing expenses. Energy Efficiency; 
minimizes data transfer and enables local 
processing, which can reduce the energy 
consumption and be favourable to battery-
operated devices. Scalability challenges; control 
of distributed edge devices presents challenges for 
hierarchical structures and dynamic resource 
management for maintaining consistencies. 
Integration with AI enhances real time data 
processing at the edge enhance IoT performance 
through intelligent computation. 

IV.  CONCLUSION AND FUTURE RESEARCH 

DIRECTIONS 

This paper has demonstrated the transformative 
potential of edge computing in IoT networks, 
offering enhanced efficiency, reduced latency, 
improved bandwidth utilization, and increased 
scalability. By processing data closer to the source, 
edge computing significantly mitigates the 
challenges posed by traditional centralized cloud 
architectures, particularly in real-time applications 
such as autonomous vehicles, industrial 
automation, smart grid management, and remote 
health monitoring. Through the exploration of 
hierarchical and decentralized architectures, 
optimization techniques such as load balancing, 
dynamic resource allocation, and task offloading, 
this study underscores how intelligent resource 
management at the edge can ensure reliable, low-
latency performance in dynamic IoT 
environments. The empirical results validate these 
benefits, demonstrating that edge computing 
reduces latency by up to 80%, optimizes 
bandwidth utilization, and lowers energy 
consumption by nearly 90% compared to cloud 
computing. Furthermore, the integration of AI, 5G, 
and blockchain further enhances edge computing's 
capabilities, paving the way for intelligent, secure, 

and scalable IoT systems. Despite these 
advancements, challenges such as security, 
resource constraints, and large-scale deployment 
remain, necessitating further research into 
adaptive security models, energy-efficient 
algorithms, and scalable edge computing 
frameworks. Edge computing represents a 
paradigm shift in IoT infrastructure, addressing 
the fundamental limitations of cloud-based 
networks while fostering real-time, intelligent, 
and autonomous decision-making. As IoT 
adoption continues to expand, the development of 
advanced edge computing models will be crucial 
for sustaining the next generation of smart and 
connected ecosystems. 

This study provides several key contributions 
unlike many theoretical studies, it conducted 
direct experimental comparisons between edge 
computing and cloud computing, quantifying their 
performance in terms of latency, bandwidth, and 
energy efficiency. Implemented and tested task 
offloading, dynamic resource allocation, and load 
balancing algorithms, proving their effectiveness 
in scalability and fault tolerance within edge-
based IoT environments. The study explored AI-
powered analytics, 5G networking, and 
blockchain security to enhance the functionality, 
security, and reliability of edge computing in real-
world scenarios. The research validated edge 
computing through real-world experiments in 
smart grid management, industrial automation, 
autonomous vehicles, and healthcare, 
demonstrating its practicality and adaptability. 
Despite the significant advancements presented in 
this study, several areas require further research 
and development. Future work should explore 
adaptive AI models capable of predicting and 
optimizing edge resource allocation dynamically, 
improving self-learning IoT networks. As edge 
computing distributes processing across multiple 
devices, robust security frameworks like 
homomorphic encryption, federated learning, and 
blockchain authentication should be investigated. 
More research is needed to develop low-power 
edge AI chips, adaptive energy-aware scheduling, 
and sustainable computing models to further 
reduce power consumption in IoT environments. 
Developing standardized frameworks for 
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interoperable edge computing solutions will be 
crucial in ensuring seamless integration of edge 
technology into global IoT infrastructures. As 6G 
wireless networks and quantum computing 
advance, their integration with edge computing 
can revolutionize ultra-fast, real-time IoT 
applications, particularly in mission-critical 
systems. In conclusion, edge computing 
represents a paradigm shift in IoT network 
architecture, enabling low-latency, high-efficiency, 
and intelligent decision-making at the network 
edge. As the IoT ecosystem continues to expand, 
future innovations in edge computing models, 
security frameworks, and AI-driven optimizations 
will be essential for building next-generation 
smart environments. 
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