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Abstract—In high-concurrency scenarios, network and 

disk I/O-intensive operations often compete for shared 

resources, resulting in a decline in the server's load 

capacity. To address this challenge, this paper proposes 

a sophisticated high-concurrency server optimization 

solution. It utilizes various Reactor models in the Linux 

system, combined with the powerful Epoll mechanism 

and thread pool, to conduct research and optimization 

on the server's load capacity.Firstly, the event-driven 

and other modules required by the Web server are 

implemented and integrated. Secondly, the number of 

Reactors, the number of threads, and the business 

processing time under the Linux system are designed 

and controlled, and the design and implementation 

scheme of the high-concurrency server based on the 

Reactor model with the Epoll mechanism and thread 

pool are determined. Finally, the performance 

differences and the best usage scenarios of Web servers 

with different Reactor models in high-concurrency 

environments are analyzed through stress tests. The 

comparison results show that the QPS (Queries Per 

Second) indicator of the Web server based on the multi-

Reactor multi-thread model is three times higher than 

that of the single-Reactor single-thread Web server, 

verifying its overall advantages in high-concurrency and 

long-term business processing. The research results 

demonstrate the applicable scenarios of different 

Reactor models, providing theoretical basis, 

implementation examples, and data support for choosing 

the appropriate Reactor model in actual server 

development, helping developers select the most suitable 

Reactor model according to specific server requirements 

to ensure higher efficiency in high-concurrency 

scenarios. 

Keywords-component; High Concurrency ； Load 

Capacity；Thread Pool；Reactor model；Web server 

I. INTRODUCTION 

In the context of the Internet era, which is 
characterized by an exponential growth in the 
number of websites and server applications, there 
has been a significant increase in the volume of 
data accessed via these platforms. This 
considerable rise in demand for server resources 
has consequently resulted in a notable escalation 
of the load pressure experienced by these servers. 
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In instances where multiple users access the server 
simultaneously, the resulting burden on the 
server's resources is likely to lead to a decline in 
performance, as well as potential server downtime. 
An efficacious solution to this problem is the 
construction of web servers that are capable of 
effectively managing high concurrency scenarios. 
The fundamental technology underlying web 
servers, specifically network programming, has a 
direct impact on the overall performance of the 
system. 

The most commonly utilized web programming 
models are the Reactor and Proactor models [2], 
with the Reactor model being further subdivided 
into three types based on the number of processes 
or threads employed. It is important to note that 
different network programming models are 
suitable for web servers under varying operational 
scenarios. Therefore, the aim of this thesis is to 
investigate the load capacity of servers utilizing 
different Reactor models in high concurrency 
scenarios, while also analyzing and summarizing 
the performance differences between these models. 
Additionally, the thesis seeks to provide 
theoretical foundations, implementation examples, 
and data support for selecting appropriate Reactor 
models for actual server development. The main 
work of this article includes: 

The objective is to implement the web server 
modules within the Linux system, which 
encompasses the following components: event 
driver, network connection, network processing, 
thread pool, socket, event, and asynchronous 
driver. 

Each module will be integrated, with the Epoll 
mechanism and thread pool identified as the 
foundation for the design and implementation of a 
high concurrency server based on the Reactor 
model. Subsequently, the web server will be 
constructed according to the Reactor model 
through various combinations and parameter 
adjustments. 

The Web bench stress test tool [3] will be 
employed to conduct stress tests on web servers 
utilizing different Reactor models within a highly 
concurrent environment. The performance of the 
three Reactor models will then be analyzed using 

MATLAB, thereby providing a reference for the 
selection of an appropriate web server 
programming model based on the performance 
outcomes of these Reactor models in high 
concurrency situations. 

The remaining sections of this paper are 
organized as follows:  

Section II introduces the relevant technical 
foundations. Section III introduces the specific 
design and implementation ideas of the scheme. 
Section IV introduces the experimental design and 
result analysis. The conclusions and future work 
are discussed in Section V. 

II. GUIDELINES FOR MANUSCRIPT 

PREPARATION 

A. Technical Architecture for High Concurrency 

Scenarios 

The concurrent access of a large number of 
users places significant pressure on the server's 
data exchange and processing capabilities. In order 
to ensure the successful completion of business 
operations, a variety of highly concurrent 
processing techniques have emerged, which are 
tailored to different application scenarios and 
present a range of technical architectures. In the 
context of the civil aviation passenger service 
information system, Li Yongjin et al. proposed a 
phased event-driven architecture with the 
objective of enhancing the system's capacity to 
process highly concurrent requests [4]. In a further 
development of WeChat, Li et al. employed Redis 
caching technology to enhance the system's 
concurrency [5]. Yuntao Xu et al. employed the 
use of a Nginx reverse proxy, along with 
techniques such as multi-processing, multi-
threading, and multi-core, with the objective of 
accelerating the parallel search process in a highly 
concurrent iris recognition system [6]. Li Junfeng 
et al. conducted a comprehensive and effective 
analysis of the high concurrency issue in the 
airline ticket reservation system, identifying 
potential solutions through load balancing, page 
optimization, cache design optimization and 
database optimization [7]. Wang Jiye et al. 
achieved high concurrency in the processing of 
large-scale heterogeneous sensory data, including 
reception, parsing and distribution, through the 
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utilization of bespoke data structures and 
asynchronous I/O multiplexing [8]. In addition to 
such application-specific high concurrency 
solutions, numerous scholars have also conducted 
research and advocated for mainstream high 
concurrency processing techniques. For example, 
Yannan Wang et al. delineated high concurrency 
optimization solutions from five perspectives: the 
web application front-end, back-end program code, 
database, web application middleware 
configuration and server load [9]. Kewei Li 
provided an overview of high concurrency 
processing techniques for network links, reverse 
proxies, application services, data caching, and 
databases, respectively, in Internet distributed 
architectures [10].  

B. multi-threading technology 

In addition to enhancing the concurrency of the 
system through the utilization of hardware 
technology, prominent web servers such as IIS, 
Apache, and Tomcat respond to a considerable 
number of concurrent requests through the 
implementation of a multi-threading mechanism 
[11, 12]. 

In the literature, Bojin Sun et al. put forth a 
solution to the resource occupancy and contention 
problems through the implementation of 
algorithms, data structures, optimized interrupts, 
and optimized process and routine scheduling. The 
literature [14] describes the factors that play an 
important role in the performance of web servers 
and proposes a new thread-based server 
architecture. Asynchronous programming enables 
the development of services capable of handling 
millions of requests without saturating memory 
and CPU utilization, thereby enhancing the I/O 
capabilities of server systems. Karsten M. et al. 
present the design and implementation of a 
flexible user-level M: N threading runtime, 
constructed from scratch, which has been 
developed to achieve these objectives in [16]. The 
system's principal components are efficient load 
balancing and user-level I/O blocking. To address 
the issue of threads being affected by blocking 
anomalies, namely the loss of parallelism when 
executing blocking system calls, which leads to 
low kernel utilization and unnecessarily high 
response times, Florian Schmaus et al. introduced 

pseudo-blocking system calls based on modern 
asynchronous queuing system call techniques (e.g., 
Linux's io_uring) in the literature [17] in order to 
circumvent these anomalies. Techniques such as 
Nginx and Keepalived are frequently employed to 
address the load challenges encountered by highly 
concurrent applications. Literature [18] assesses 
the performance of a server cluster environment 
based on Nginx and Keepalived, evaluates the 
efficacy of Nginx-based algorithms such as WRR, 
IP_HASH and LEAST_CONN, and designs and 
optimizes the IP_HASH algorithm. 

C. Reactor model 

The Reactor model represents an event-driven 
design pattern that is widely employed in web 
server development with the objective of creating 
highly concurrent and high performance web 
applications. The fundamental concept is to 
monitor and disseminate input/output (I/O) events 
via an event distributor (Reactor) and relay the 
events to the designated event processor for 
processing. The Reactor model attains efficient 
concurrent processing through non-blocking I/O 
and event notification mechanisms, rendering it 
suitable for highly concurrent, low-latency 
application scenarios. 

The Reactor model may encounter performance 
bottlenecks and scalability challenges when 
processing a large number of concurrent 
connections. The performance and scalability of 
the Reactor model may be enhanced through the 
optimization of event processing, scheduling 
algorithms and I/O multiplexing techniques. The 
advancement of asynchronous programming and 
co processing technology has led to the 
introduction of asynchronous I/O, co-processing 
scheduler, and other related technologies [21], 
which have further enhanced the concurrent 
processing capability and resource utilization of 
the Reactor model. The Reactor model is currently 
employed not only in the development of 
standalone web applications, but also in the 
context of distributed systems. By designing a 
distributed event-driven architecture and 
optimizing the message passing mechanism, the 
Reactor model is employed in the construction of a 
highly reliable and high-performance distributed 
system [22]. 
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The literature [19] examines the advantages, 
limitations, and applicable scenarios of the Reactor 
model through an analysis of the event-driven 
programming model, the design of the event loop, 
and the registration and distribution of event 
processors. With regard to the Reactor 
programming model, domestic and foreign 
research institutions and enterprises have 
developed numerous frame-works and libraries 
with the objective of simplifying the development 
and maintenance of event drivers. For example, 
Node.js and Netty [20] represent such frameworks. 

The Reactor model typically comprises an 
event distributor, which monitors input/output (I/O) 
events and distributes them to the relevant event 
handlers upon occurrence, and an event handler, 
which handles the components of a specific I/O 
event. Event handlers are registered with the event 
distributor and are invoked upon the occurrence of 
an event.Three principal models for Reactor 
modelling in web servers have been identified: the 
single Reactor single-threading model, the single 
Reactor multi-threading model, and the multi-
Reactor multi-threading model. The suit-ability of 
different Reactor models for use in various web 
server environments is a key consideration. 

The single Reactor single-threading model 
represents the most fundamental iteration of the 
Reactor model, characterized by a straightforward 
structure, making it well-suited to scenarios 
involving a limited number of I/O events. The 
single Reactor multi-threading model builds upon 

the single Reactor single-threading model by 
incorporating a thread pool to facilitate event 
handling and enhance concurrent processing 
capabilities. The multi-Reactor multi-threading 
model represents a further optimization of the 
Reactor model, whereby the concurrent processing 
capability is enhanced by the distribution of the 
task of event listening and distribution among 
multiple Reactor instances. The system is typically 
constituted of a master Reactor, which listens for 
connection requests and distributes new 
connections to slave Reactors. Each slave Reactor 
runs in a separate thread and listens for I/O events 
on its respective connection. The slave Reactor 
then disseminates the events to the worker threads 
within its management thread pool for processing. 

The implementation of multi-Reactor multi-
threading represents a departure from the single 
Reactor multi-threading approach. In this new 
approach, the Reactor component has been 
decoupled from a single Reactor module, and 
instead, it is comprised of a master Reactor 
module and multiple slave Reactor modules. 
Concurrently, the original discrete Reactor module 
is tasked with event listening and distribution, but 
has also been divided into a master Reactor and a 
slave Reactor module [24]. The master Reactor 
module listens for events and disseminates them to 
a slave Reactor, which oversees the events 
assigned to it and handles them with an event 
handler. Multi-Reactor multi-threading is 
illustrated in Figure 1. 

 

Figure 1.  Reactor model based web server 
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III. DESIGN IDEAS AND SYSTEM CONSTRUCTION 

In the Linux system, a web server is designed 
to control the number of Reactor threads and 
business processing time, among other variables, 
in order to simulate different Reactor models. The 
single Reactor single-threading server serves as 
the foundation for the subsequent stages of 
development, beginning with its construction and 
subsequent evaluation in a highly concurrent 
environment. This process entails the 
identification of shortcomings and the 
implementation of improvements and 
optimizations to enhance the server model to a 
single Reactor multi-threaded. The subsequent 
phase involves rigorous testing and the eventual 
realization of the multi-Reactor multi-threading 
model. Finally, the data obtained from the testing 
phase is subjected to comprehensive analysis and 
synthesis. Subsequently, the data obtained from 
the testing of all models will be analyzed and 
summarized, after which the load capacity of the 
server in high concurrency scenarios will be 
studied. 

The specific implementation ideas of this 
paper's scheme are as follows: firstly, the various 
modules of the web server must be implemented, 
including the event driver module, network 
connection module, network processing module, 
thread pool module, socket module, event module 
and asynchronous driver module. Secondly, the 
thesis employs a thread pool to manage multiple 
threads, thereby enabling the server to transition 
between a single-threading and a multi-threading 
model by activating or deactivating the thread pool. 
Subsequently, the maximum number of 
concurrently active threads that the thread pool can 
accommodate is determined by setting the number 
of threads, thereby enabling an investigation into 
the impact of varying thread numbers on the 
performance of a multi-threading web server under 
high concurrency. Ultimately, the modules are 
integrated to create three reactor models of web 
servers through a combination of disparate 
configurations and parameter modifications. 

A. system architecture 

Event-driven programming is employed in the 
construction of high-performance Web servers. 

These servers are designed to remain continuously 
attentive to network connection requests, and upon 
the establishment of a connection, the server will 
initiate the relevant event processing function to 
facilitate the processing of the network connection. 
Once the process of establishing a network 
connection has been completed, the client socket 
must be obtained and the corresponding event 
handler must be triggered in order to read the 
information from the client. Subsequently, the 
event handler is triggered in order to respond to 
the client request. 

The Reactor model represents the 
implementation of event-driven programming 
concepts within a Web server design pattern. The 
system is equipped with an event loop, which is 
responsible for listening to and distributing events. 
Upon the occurrence of an event, the relevant 
processor is duly informed and tasked with 
handling the event. 

The Reactor module of the server is 
implemented by the event driver as the core 
component. The Reactor module is designed to 
constantly listen for client requests. Upon 
detecting a client request, the Reactor is called to 
handle the connection request event. This enables 
the establishment of a connection between the 
server and the client through the Linux kernel, as 
facilitated by the API for the configuration of 
client sockets. Consequently, the Reactor module 
represents the connection between the two entities. 
Subsequently, the Reactor module will process 
further events pertaining to the connected client, 
calling upon the module that has been specifically 
designed to serve the client in question with the 
requisite services. Subsequently, the Reactor 
module will persist in monitoring for new client 
connection requests and disseminating them to 
clients who have successfully established a 
connection. To facilitate the module's service to 
the client, it will receive the data from the client 
through the API provided by the Linux kernel, 
generate the data corresponding to the client after 
service processing, and transmit the generated data 
to the client through the API provided by the 
Linux kernel once more. Figure 2 illustrates the 
configuration of the Reactor model web server.
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Figure 2.  Reactor model based web server 

Reactor implementations The development of 
the Web server is carried out under Linux, and the 
implementation of the server's Reactor uses Epoll, 
an I/O multiplexing interface provided by Linux. 

Epoll is an I/O event notification mechanism 
provided by Linux to listen for the occurrence of 
events registered on Epoll. When Epoll is enabled, 
the programme blocks until an event occurs in the 
listening event, and then it returns to that event. 
This mechanism allows for efficient I/O 
multiplexing and is often used to build high-
performance web servers. 

The Reactor module uses Epoll as an event 
loop for registering, listening, and distributing 
events, as shown in Figure 3. 

 
Figure 3.  Reactor Modules 

Given that Reactor is based on an event-driven 
model, it can be seen that the key to this model lies 
in the occurrence and processing of events. 
Furthermore, given that the web server handles 
multiple network connection requests 
simultaneously, it can be seen that this is also a 
key factor in the event-driven model. The server 
initially listens to the first client and establishes a 

connection (listen event), then performs a read 
event on the first client (read event 1), and finally 
executes a business process (business process 1) 
subsequent to the completion of the read event. At 
this juncture, the second client requests a 
connection from the server. Consequently, two 
events are registered on Epoll: the listen event and 
the write event 1. The order of execution of these 
two events is indeterminate. The server may 
execute the listen event first, after which the read 
event 2 is registered on Epoll. At this juncture, two 
events are registered on the Epoll (write event 1 
and read event 2). The order of execution of these 
two events is also unknown. This is followed by 
the occurrence of all subsequent events. 

 
Figure 4.  Reactor Modules 

The actual test is conducted in a highly 
concurrent environment, wherein thousands of 
clients are accessing the web server 
simultaneously. Consequently, the order of events 
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processed by the server is entirely random. 
With regard to the type of processor employed in 
the project, please refer to Figure 4. 

B. system implementation 

In the implementation of a web server based on 
disparate Reactor models, it is first necessary to 
construct the server modules that would be typical 
of a generic web server. In addition, the specific 
modules required for each Reactor model must be 
developed. These include the Reactor module, 
which implements the Reactor model, and the 
thread module, which implements the Thread 
model. In essence, the server implements the web 
server for different Reactor models by enabling 
the requisite modules. 

With regard to the server module, the 
fundamental component of the server as a Reactor 
model is Reactor. Given that Reactor is based on 
event-driven concepts, it is essential to implement 
the event-driven module as a preliminary step, and 
subsequently construct the server module on the 
foundation of the event-driven module. 

The Event-Driven module employs the Event-
Driven class as the fundamental component of the 
event driver, the Epoll class as the implementation 
of the Event-Driven class for the event driver, and 
the Event class as the abstract conduit for event 
interaction with the Event-Driven module to 
facilitate registration, listening, and updating of 
events. 

1) Event Driver Module 

The event-driven module comprises the Event-
Driven, Epoll and Event classes, as illustrated in 
Figure 5. 

 

 
Figure 5.  Event Driven Modules 

The Epoll class represents an encapsulation of 
the epoll file descriptor. Epoll is responsible for 

the registration and updating of events, which it 
achieves by interacting with the Linux system. 
Additionally, Epoll listens for the triggering of 
events. The Event class provides an abstraction of 
events. The properties of events can be controlled, 
and interaction with the Epoll class can be 
facilitated through the Event-Driven class, which 
is used for the registration and updating of events. 
The Event-Driven class encapsulates the Epoll 
class and is employed to initiate the event loop, 
awaiting the occurrence of events that can be 
accessed. 

a) Event-Driven Class 
The Event-Driven class is responsible for event 

driving, whereby epollfd is employed to 
encapsulate the I/O multiplexing interface Epoll, 
provided by Linux. Update Event is used to call 
the epollfd function of the same name, with the 
objective of updating the event. The Event-Driven 
class is illustrated in Figure 6. 

 
Figure 6.  Event-Driven Class 

b) Epoll Class 
The Epoll class encapsulates epoll, which 

interacts with the Linux system for the purpose of 
event management. The updateEvent function is 
employed for the purpose of registering or 
updating events, while the wait function is used 
for the purpose of waiting for a registered event to 
be triggered. The Epoll class is illustrated in 
Figure 7. 

 
Figure 7.  Epoll Class 

c) Event Class 
The Event class provides an abstraction of an 

event, utilizing the fd file descriptor to represent a 
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specific event object. It also employs the use of 
event, inEpoll and callback to represent the type of 
the current event, the registration status of the 
event and the event handler function to be 
executed for the event, respectively. The ed 
variable is used to associate the Event with Event-
Driven, while the latter is used to associate an 
Event with an Event-Driven. Additionally, ed is 
employed to pass the Event itself as a parameter to 
the Event-Driven, thus enabling the execution of 
the updateEvent function. 

The function comprises several parts, including 
those that set the current event as a listen, read or 
write event, close the event, check or set whether it 
is registered, obtain a file descriptor, execute the 
event handler and set the event handler. The 
implementation of the code constitutes a direct call 
to the relevant API provided by the Linux system. 

Consequently, the logic related to the execution of 
the program is not presented, as it is not pertinent 
to this discussion. The Event class is illustrated in 
Figure 8. 

 
Figure 8.  Event Class

 

Figure 9.  Server Module

2) Server module 
The server module serves as the foundation for 

the implementation of all Reactor-type servers in 
the thesis. By adding or removing specific 
modules, it is possible to create different Reactor 
model web servers. Figure 9 illustrates the server 
module. 

He fundamental component of a server based 
on the Reactor model is the Reactor module, 
which is founded upon the principle of event-
driven processing. Consequently, the thesis 
employs the Event-Driven class as the actual 
Reactor module. The functionality of registering, 
listening and distributing events inherent to 
Reactor is achieved through the interaction of the 
Event-Driven class. 

With the Epoll class and the Event class. In the 
case of the multi-Reactor model, the use of 
multiple Reactor modules is necessary, with these 
being divided into Master Reactor and Slave 
Reactor for different purposes. 

The server's function for receiving client 
requests and establishing connections is designed 
as the Acceptor class, which interacts with the 
Linux kernel through the socket class that abstracts 
sockets to establish a connection with the client.  

The Connection class is used to provide 
specific services to the client, including reading 
the client's request message, processing the 
business logic and generating a response message 
and returning it to the client. In the case of servers 
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operating in a multi-threading mode, the thread 
pool module is employed. 

a) Server Class 
The Server class provides the external 

framework for the entire server model, which 
serves as a user-facing object and offers methods 
for initializing the server and initiating the various 
Reactor models, as illustrated in Figure 10. 

 
Figure 10.  Server Class 

The main Reactor module, designated as 
"main-Reactor," is the primary component of the 
server. It is responsible for registering, listening to, 
and distributing all events within the single 
Reactor model. In contrast, the sub-Reactors 
module, or "sub-Reactors," operates as a slave 
Reactor module of the server. In the single Reactor 
model, it is effectively null. In the multi-Reactor 
model, the reactor model is empty and receives 
and processes clients distributed by the main-
Reactor. The acceptor is used as an interface to 
access the Acceptor class. The num parameter is 
used to specify the number of sub-Reactors, while 
the thread parameter is used to specify the size of 
the thread pool. The time parameter is used to 
specify the length of the business processing time. 
The new-Connection parameter is used to specify 
the number of sub-Reactors and the length of the 
business processing time. The length parameter is 
used to establish a new client connection. 

The server is initiated through the constructor, 
which first establishes the parameters provided by 
the user, defining the number of reactors, the 
number of threads, and the business processing 
time. Secondly, the acceptor class is initialized, 
thereby establishing the manner in which the 
server will handle client connections. Ultimately, 
the number of reactors serves to distinguish 

between a single reactor model and a multi-reactor 
model for the server. In the event that the model is 
that of a single reactor, the process concludes 
directly, with the initialization of the slave reactor. 
The flowchart of the constructor is presented in 
Figure 11. 

 

Figure 11.  Flowchart of The New-Connection Function 

The flowchart of the newConnection function is 
presented in Figure 12. The responsibility for 
establishing the connection is allocated to either 
the slave or the master reactor, depending on 
whether multiple reactors are employed. 

 
Figure 12.  Epoll Class 
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b) Socket class 
The Socket class is analogous to the Event class 

in that it represents an abstraction of a particular 
entity, as illustrated in Figure 13. The Socket class 
provides an abstraction of sockets, where fd 
represents the file descriptor created by the Linux 
system to represent the socket. As with the Event 
class, the functions of the Socket class are all calls 
to the Linux system APIs, and there is no need to 
specify the implementation. 

 
Figure 13.  Socket Class 

c) Acceptor Class 
The Acceptor class is employed to receive new 

client connection requests and establish a 
connection, as illustrated in Figure 14. The listen 
fd socket is utilized as a listening socket to 
monitor client requests directed towards the server. 
The event variable represents the current event 
type, while the callback variable represents the 
event handler. The setCallback variable represents 
the event handler. The acceptConnection function 
is employed to create a connection, which 
constitutes the primary call listenfd accept 
function. This is achieved through the utilization 
of the Linux system API to establish a connection, 
without the provision of a specific code 
demonstration. 

 
Figure 14.  Acceptor Class 

d) Connection Class 
The Connection class is employed for the 

purpose of serving clients, as illustrated in Figure 
15. 

 
Figure 15.  Connection Class 

The event represents the current event type. 
The recvbuf is used to receive the client request 
message, while the sendbuf is used to send the 
response message to the client. The pool is the 
thread pool, while the num is the size of the thread 
pool. The time is the transaction processing time, 
and the checkErr is a utility function used to check 
whether some API calls of the Linux system have 
returned an error. Finally, the handleReadEvent is 
used to handle read events, while the 
handleWriteEvent is used to handle write events. 
The process is employed for business processing 
in order to implement the client request. The 
handleReadEvent is utilized for the handling of 
read events. The handleWriteEvent is employed 
for the handling of write events. The process is 
used for business processing with the objective of 
fulfilling the client's request. The constructor of 
Connection will set the event type to read, in 
addition to initializing the members and binding 
the event handler to the handleReadEvent. The 
handleReadEvent is employed for the execution of 
the read event. With regard to the implementation 
of the handleReadEvent and handleWriteEvent 
functions, a number of approaches may be adopted 
with regard to the reading or writing of data to the 
buffer. The focus of this paper is on the manner in 
which the server assigns transactions to the worker 
threads of the thread pool in a multi-threading 
model. The flowchart of the handleReadEvent 
function is shown in Figure 16. 
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Figure 16.  Flowchart of the handle-ReadEvent 

Firstly, the message sent by the client is read 
into a read buffer for parsing and subsequent 
specific business processing. Secondly, it 
determines whether the thread pool is to be 
employed. In the event that the thread pool is to be 
utilized, the business processing tasks are assigned 
to the thread pool for completion. Otherwise, the 
business processing tasks are continued to be 
executed in the current thread. 

e) ThreadPool Class 
Figure 17 illustrates the thread pool utilized by 

the ThreadPool class as a server. The term "works" 
encompasses all worker threads, while "tasks" 
represents the functions to be executed. The 
"mutex" is employed to guarantee synchronization 
between threads, and the "condition condition 
variable" is utilized to notify if a new function task 
has been queued. The "stop" indicator determines 
whether to halt the pool, and the "enqueue 
function" is utilized to receive a function to be 
added to tasks awaiting execution. A function is 
appended to the list of tasks that are to be executed. 

 
Figure 17.  ThreadPool Class 

IV. SIMULATION EXPERIMENTS AND 

ANALYSES 

A. Introduction to the experimental environment 

The hardware configuration of the test 
equipment described in the thesis is as follows: the 
processor is an AMD Ryzen 7 4800H with 8 cores 
and 16 threads; the memory size is 16 GB at 3200 
MHz; and the network card is an Intel® Wi-Fi 6 
AX200 160 MHz. The operating system used for 
the test is Arch Linux. 

The test environment is a high concurrency 
network test environment, utilizing the Webbench 
stress test tool for high concurrency testing. 
Webbench is capable of simulating multiple 
concurrent clients, sending HTTP requests to the 
server in order to evaluate the server's QPS 
performance. QPS, Queries Per Second, is a 
significant index of server performance. It 
represents the number of network requests that can 
be processed per second on a web server, and is 
specifically employed to gauge the server's 
capacity to withstand high concurrency. 

The Webbench test of the web server utilizes a 
uniform client concurrency of 20,000, requesting 
the web server's static pages, with an HTTP 
request time of 5 seconds. The parameters are set 
in accordance with the specifications outlined in 
Figure 18. 

 
Figure 18.  Using of Webbench 

A detailed account of the startup options 
employed by Webbench is presented in Table 1. 
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TABLE I.  EXPLANATION OF WEBBENCH USAGE OPTIONS 

Webbench Usage 

Parameters 

Parameter explanation 

./webbench Starts the Webbench testing tool. 

-c Specify the number of concurrent 

clients 

-t Specify the duration of HTTP requests 

http://127.0.0.1:2000/ accesses the specified web server 

The test results for the web server, as displayed 
in Figure 19, indicate a speed of 81,780 pages per 
minute and 126,805 bytes per second. The value 
following 'Speed' represents the number of bytes 
processed by the web server per second; however, 
this is not employed as an indicator in the thesis. 
The value following the designation "Speed" 
represents the number of bytes per second that are 
processed by the web server. 

 
Figure 19.  Webbench Test Result Chart 

A significant variable in the experimental 
design is the time required for business processing. 
The business processing time is employed in the 
modelling of the type and size of network requests. 
To illustrate, if a client requests a static web page 
from the server and requests the server to 
download a file from the server, the input/output 
(I/O) time spent is different. In most cases, the 
former is processed more quickly than the latter, 
which is simulated by the business processing time. 
A longer business processing time will simulate a 
longer I/O operation, such as the reading and 
writing of a large number of files, database queries, 
and so forth. Conversely, a shorter business 
processing time will simulate a shorter I/O 
operation, such as the accessing of some static 
web pages and small files. 

In the web server implementation, the business 
processing time is set in the business processing 
events in the connection class, thereby simulating 
the requisite time for processing the current 
business by allowing the system to enter a sleep 
state. 

The business processing time is measured in 
microseconds and is set at server startup; 
subsequently, it is tested using Webbench. The 
business processing time is evaluated over a range 
of 0 to 1000 microseconds, with the server 
configured to test at 100 microsecond intervals. 

The final result for a web server is that the 
processing time for each service is proportional to 
the QPS of the current server. This represents the 
server's performance in handling the current type 
of service in a highly concurrent environment. 
Ultimately, the data values (with one business 
processing time equating to one QPS) are 
presented in graphical form using Matlab, thus 
enabling observation of the trend in the optimal 
performance of the current web server for different 
business types in a highly concurrent environment. 

B. Experimental results and analysis 

1) Single Reactor single-threading web server 
test 

The single Reactor single-threading server was 
subjected to a series of tests using Webbench, with 
a concurrency of 20000 and a single HTTP request 
time of 5 seconds. Table 2 illustrates the business 
processing time for the test variables. 

TABLE II.  TABLE TYPE STYLES 

Variable Test range 

Number of Sub-Reactors 1-50 

Number of threads 1-50 

The outcomes of the single Reactor single-
threading server examination are illustrated in 
Figure 20. It can be observed that the QPS of the 
server declines in conjunction with the expansion 
of business processing time. The most pronounced 

decline is evident within the 0–100 range. It is 

evident that the performance of the single Reactor 
single-threading Web server is sub-optimal when 
processing business that requires a significant 
amount of time. This is due to the fact that all 
business processing of the single Reactor single-
threading Web server is conducted on a single 
thread. Consequently, if a business process cannot 
be completed within the allotted time, it will result 
in the obstruction of other events, thereby 
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preventing other clients from communicating with 
the server or causing significant delays. 

 
Figure 20.  Single Reactor Single Thread Web Server Test Results 

2) Single Reactor Multi-threading Web Server 
Testing 

The single Reactor multi-threading server was 
subjected to testing using Webbench with a 
concurrency of 20000 and a single HTTP request 
time of 5 seconds. As illustrated in Table 3, the 
variables under examination are business 
processing time and the number of threads. The 
single Reactor multi-threading mode in which the 
server operates is dependent on the number of 
threads. By continually adjusting the number of 
threads, the optimal QPS value that can be attained 
by this single reactor multi-threading web server 
with the optimal number of threads is determined. 

TABLE III.  SCOPE OF TESTING FOR SINGLE REACTOR MULTI-
THREADING WEB SERVER 

Variable  Test Range 

Number of threads 1-30 

Transaction processing 

time (us) 

0-1000 

Figure 21 illustrates the single Reactor multi-
threading web server QPS, which demonstrates a 
general upward trend from the bottom right to the 
top left, reaching a peak, before exhibiting a slight 
decline and subsequently stabilizing. When the 
value of TIMES (business processing time) is held 
constant, there is a notable rise in the QPS of the 
server as the number of THREADS (threads) 
increases. This evidence substantiates the assertion 
that multi-threading effectively addresses the issue 
of performance degradation caused by single 
thread blocking. 

 
Figure 21.  Test Results of Single Reactor Multi thread Web Server 

Nevertheless, when a sufficient number of 
threads are in operation, the server has already 
reached its optimal performance value. At this 
juncture, the introduction of additional threads will 
not yield a positive effect on the optimization of 
the server. Instead, the frequent switching of 
threads will result in a reduction in performance. 

At this juncture, the optimization component of 
the thread pool has reached its limit, and the 
introduction of additional threads does not result in 
enhanced performance unless the underlying 
circumstances are altered. The question currently 
under investigation is what other optimizations are 
available for single Reactor multi-threading web 
servers. 

3) Multi-Reactor Multi-threading Web Server 
Testing 

The Multi-Reactor Multi thread Web Server 
should be tested with Webbench using a 
concurrency of 20000 and a single HTTP request 
time of 5 seconds. In the context of multi-reactor 
multi-threading web servers, a comparison is 
drawn between these and single-reactor multi-
threading web servers in terms of business 
processing time and the number of threads. In 
addition to these two variables, the reactor number 
is also taken into account, resulting in a new 
variable. The number of threads and the number of 
reactors are combined to create a multitude of 
potential multi-reactor multi-threading web servers, 
each with its own distinctive characteristics. To 
ensure comprehensive evaluation, it is essential to 
assess the performance of each server under 
varying service processing times. 
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TABLE IV.  MULTI-REACTOR MULTI-THREADING TEST SCOPE UNDER 

200US 

Variable Test range 

Operational processing 

time (us) 

0-1000 

Table 4 illustrates the results of a performance 
test conducted on a multi-reactor multi-threading 
web server with a service processing time of 200 
microseconds. 

The QPS of the web server was obtained from 
different combinations of the number of Reactors 
(subReactors) and the number of threads (threads), 

measured when processing 200 microseconds 
of business data. The results are presented in 
Figure 22. 

 
Figure 22.  Test Results of Single Reactor Multi thread Web Server 

The graph demonstrates a rise in QPS from left 
to right, reaching a peak and subsequently leveling 
off. From the outset to the conclusion, the QSP 
experiences an initial surge and then a decline 
following a period of sustained peak performance.  

As illustrated in Figure 23, the graph is more 
readily comprehensible when divided vertically 

into two sections on the X Y axis.：A·m2.” 

 
（a）Y-axis section 

 
（b）X-axis section 

Figure 23.  Cross-section at 200us 

As illustrated in Fig. 23(a), the line graph of 
QPS with the number of threads is fixed with 
respect to the number of reactors, with each line in 
the graph corresponding to a specific number of 
reactors. It is evident that as the number of threads 
increases, the QPS value rises and reaches a peak; 
subsequently, as the number of threads continues 
to increase, the QPS value declines and then 
stabilizes. It can be observed that after the optimal 
QPS has been reached, increasing the number of 
threads in the thread pool does not result in 
improved server performance. Instead, it has the 
opposite effect, leading to a decline in server 
performance. This is due to the fact that an excess 
of threads causes meaningless thread switching, 
which results in the waste of server resources and 
a subsequent reduction in server performance. 

As illustrated in Fig. 23(b), a line graph of QPS 
versus the number of Reactors is presented for a 
fixed number of threads, with each line 
corresponding to a number of threads. It can be 
observed that as the number of slave reactors 
increases, the QPS of the server exhibits a marked 
improvement. Further increases in the number of 
reactors beyond the optimal point have no 
discernible impact on performance. The 
continuation of this process resulted in a decline in 
performance. A notable increase in performance is 
observed when the number of Reactors opened on 
the server is compared to the number of Reactors 
with a smaller number of threads. This increase 
reaches its peak immediately and subsequent 
increases in the number of Reactors have a 
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minimal impact on performance. It can be 
observed that a specific quantity of slave reactors 
is sufficient to manage high concurrency. The 
master reactor distributes client services to the 
slave reactor at a rate of one per second. 

The test results for multi-reactor, multi-
threading servers under other business processing 

times are not significantly different. The primary 
discrepancy lies in the optimal number of slave 
reactors and the number of threads required to 
achieve peak server QPS. The trend of server QPS 
for these tests is analogous to that observed in the 
aforementioned test, as illustrated in Figure 24. 

.  
FIGURE（ a）Test results at 0us                     FIGURE（ b）Test results at 100us 

 
FIGURE（ c）Test results at 300us                    FIGURE（ d）Test results at 400us 

 
FIGURE（ e）Test results at 500us                     FIGURE（ f）Test results at 600us 
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FIGURE（ g）Test results at 700us                     FIGURE（ h)Test results at 800us 

 
FIGURE（ i）Test results at 900us                    FIGURE（ j）Test results at 1000us 

Figure 24.  Comparison Chart of QPS for Different Time periods

Upon each examination of a server, the source 
of its performance bottleneck is identified and 
enhanced, thereby achieving an enhanced 
performance web server. This process continues 
until the optimal solution, currently represented by 
the Multi-Reactor Multi thread Web Server, is 
reached. 

Based on the data shown in the graph, it is 
evident that the multi - reactor multi - threading 
web server has significant advantages over the 
single - reactor single - threading web server. 
Specifically, the QPS (Queries Per Second) metric 
of the multi - reactor multi - threading web server 
is three times higher than that of the single - 
reactor single - threading web server. 

When observing the graph in detail, the single - 
reactor single - threading web server shows a 
relatively lower QPS value. Its performance curve 
rises gradually with the increase of time, but the 
overall value is not high. This is because, in a 
single - reactor single - threading architecture, the 
server can only handle one request at a time. If a 
new request arrives while the server is processing 
a previous request, the new request has to wait 
until the current one is finished. This sequential 

processing limits the server's throughput and 
responsiveness, especially when dealing with a 
large number of concurrent requests. 

On the contrary, the multi - reactor multi - 
threading web server's QPS value shows a 
remarkable growth. In a multi - reactor multi - 
threading architecture, multiple reactors are used 
to monitor different types of events, such as 
network I/O events. Each reactor can handle 
multiple threads simultaneously. When a request 
arrives, it can be quickly assigned to an available 
thread within the appropriate reactor for 
processing. This parallel processing mechanism 
enables the server to handle multiple requests 
concurrently, greatly improving the processing 
efficiency. 

This substantial improvement in QPS indicates 
that the multi - reactor multi - threading web 
server is capable of handling a much larger 
number of requests simultaneously. In high - 
concurrency scenarios, where a large number of 
requests are received in a short period of time, the 
multi - reactor multi - threading web server can 
process these requests more efficiently, reducing 
waiting times and improving overall system 
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performance. The multiple reactors and threads 
work in parallel, allowing for a greater number of 
requests to be processed concurrently. Each 
reactor can handle different sets of requests, and 
multiple threads within each reactor can execute 
tasks simultaneously, thereby maximizing the 
utilization of system resources. 

Moreover, the enhanced QPS also implies that 
the multi - reactor multi - threading web server is 
better suited for long - term business processing. It 
can maintain a high level of performance over 
extended periods, ensuring stable and reliable 
service delivery. During long - term operation, the 
single - reactor single - threading web server may 
encounter bottlenecks due to limited processing 
capacity, resulting in a decline in performance. For 
example, if there are a large number of requests 
queuing up, the single - threaded processing may 
lead to long - waiting times for some requests, and 
even cause time - out errors in extreme cases. 
However, the multi - reactor multi - threading web 
server can evenly distribute the workload among 
multiple reactors and threads, avoiding 
performance degradation caused by long - term 
operation. This is crucial for applications that 
require continuous and efficient processing of a 
large volume of requests, such as e - commerce 
platforms or large - scale data - intensive services. 

In conclusion, the experimental data clearly 
validates the superiority of the multi - reactor 
multi - threading web server in terms of high - 

concurrency handling and long - term business 
processing capabilities. The significant increase in 
QPS not only reflects its ability to handle 
concurrent requests more effectively but also its 
stability and reliability in long - term operation, 
making it a preferred choice for web server 
architectures in high - traffic and data - intensive 
environments. 

The relationship between business processing 
time and QPS for the final test results of the three 
Reactor models is presented in a single graph, as 
illustrated in Figure 25. 

 

Figure 25.  Final Test Results 

C. Conclusion of the experiment 

The performance of three Reactor models 
(Single Reactor Single threading, Single Reactor 
Multi - threading, and Multi - Reactor Multi - 
threading) in a highly concurrent environment was 
evaluated, as illustrated in Table 5. 

TABLE V.  SCOPE OF TESTING FOR SINGLE REACTOR MULTI 

Model  Advantages  Disadvantages 

Single-Reactor  

Single Threading 

Simple to implement, easy to program and debug; 

suitable for low concurrency and lightweight 
business processing scenarios 

Poor performance in high concurrency and long time 

business processing, easy to single thread blocking caused 
by other requests are delayed processing 

Single-Reactor  

Multi-Threading 

The introduction of a thread pooling mechanism 

serves to enhance the concurrent processing 
capacity, circumventing the issue of single-thread 

blocking. This approach is particularly effective in 

scenarios involving medium concurrency and 
medium business processing times, offering optimal 

performance. 

The use of multiple threads in a single program can lead to 

data contention and synchronization problems, necessitating 
the implementation of locking mechanisms. This, in turn, 

can result in increased programming complexity and 

resource overhead. Furthermore, the overhead associated 
with thread switching may contribute to performance 

bottlenecks in highly concurrent environments. 

Multi-Reactor  

Multi-Threading 

The concurrent processing capability is 

significantly enhanced by dividing the work among 
multiple reactors. Each reactor operates 

independently, reducing competition for resources 

and improving overall performance. It demonstrates 
robust performance in high concurrency and long-

term business processing. 

The complexity of the programming and maintenance 

processes, coupled with the necessity of dealing with 
multiple reactor and thread synchronization, gives rise to a 

considerable challenge in terms of resource management. In 

order to circumvent performance bottlenecks, it is essential 
to configure the reactor and thread pool in a reasonable 

manner. 
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The Single Reactor Single threading model has 
a simple structure. However, in a highly 
concurrent environment, it can only process one 
request at a time due to having only one thread. 
This leads to long waiting times as requests queue 
up, and its performance degrades quickly with 
increasing concurrency. 

The Single Reactor Multi - threading model is 
an improvement. It uses multiple threads for 
processing while still relying on a single reactor 
for event handling. It can handle more concurrent 
requests compared to the single - threaded model, 
but the single reactor may become a bottleneck in 
extremely high - concurrency situations. 

The Multi - Reactor Multi - threading model is 
the most advanced. With multiple reactors and 
associated threads, it enables a high level of 
parallelism. Requests can be evenly distributed 
among the reactors and threads, allowing the 
system to handle a large number of concurrent 
requests with short response times. It is highly 
scalable and suitable for highly concurrent 
environments like large - scale e - commerce 
platforms. 

These evaluations help in choosing the right 
architecture for different application scenarios. 

V. CONCLUSIONS 

In the ever-evolving domain of web server 
performance, the network programming model, 
with the Reactor model at its core, has 
indisputably been a pivotal area of exploration. 
This comprehensive study has achieved a series of 
remarkable and significant milestones. 

To begin with, it embarked on a detailed 
investigation into the load capacity of servers that 
utilize different variants of the Reactor model 
when confronted with high concurrency scenarios. 
This entailed meticulously examining how servers 
with single-reactor single-threading, single-reactor 
multi-threading, and multi-reactor multi-threading 
architectures coped under intense traffic loads. 
Through painstaking research efforts, the study 
managed to precisely determine the design 
blueprints and implementation intricacies of high 
concurrency servers. These were based on the 
integration of the Reactor model with the highly 

efficient Epoll mechanism and a well-structured 
thread pool, all operating within the Linux system 
environment. The utilization of the Epoll 
mechanism was particularly crucial as it enabled 
more efficient event handling and notification, 
reducing latency and enhancing overall 
responsiveness. 

Subsequently, a series of rigorous stress tests 
were meticulously carried out on web servers 
equipped with these diverse Reactor models. The 
tests were conducted in highly concurrent 
environments that mimicked real-world, heavy-
traffic situations as closely as possible. By 
subjecting the servers to a barrage of simultaneous 
requests and analyzing their responses over an 
extended period, the research team was able to 
gather a wealth of data. Through painstaking and 
comprehensive analysis of this data, the final 
application scenarios for each of the different 
Reactor models were accurately identified and 
thoroughly summarized. One of the most 
significant findings was that, within the constraints 
and characteristics of the current Linux system, the 
multi-Reactor multi-threading web server clearly 
emerged as the preeminent choice for proficiently 
handling high concurrency requests. It 
demonstrated superior throughput, shorter 
response times, and greater scalability compared 
to its counterparts. 

Nevertheless, it is important to acknowledge 
that, like any research endeavor, this study also 
has its inherent limitations. The implementation of 
each model within the scope of this paper was, to 
some extent, relatively basic and elementary. 
Crucial elements that are of paramount importance 
in real-world, practical applications, such as 
advanced load balancing techniques and 
sophisticated caching mechanisms, were not given 
the full consideration they deserved. These factors 
can have a profound impact on the overall 
performance and user experience of a web server. 
For instance, without proper load balancing, 
servers may experience uneven workload 
distribution, leading to bottlenecks in some areas 
while other resources remain underutilized. 
Similarly, an effective caching mechanism can 
significantly reduce the need to repeatedly process 
the same data, thereby enhancing efficiency. 
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Moreover, the testing regime employed had its 
own set of constraints. The testing scope was 
somewhat narrow, primarily focusing on a specific 
range of concurrency levels and business 
processing time frames. This meant that it failed to 
comprehensively encompass all the potential and 
diverse business scenarios and load conditions that 
a web server might encounter in the real world. 
There could be niche applications or extreme 
traffic spikes that were not adequately represented 
in the tests, potentially leading to inaccurate 
generalizations about the performance of the 
models. 

Looking to the future, there is a vast expanse of 
opportunities and areas ripe for further exploration 
and research. Future work will be centered around 
optimizing the design of the multi-reactor model. 
This will involve delving deep into exploring more 
efficient thread management strategies. For 
example, investigating techniques to minimize 
thread context switching overheads, which can 
consume significant computational resources and 
degrade performance. Additionally, the 
development of more advanced load balancing 
strategies will be a key focus. This could involve 
dynamic load balancing algorithms that can adapt 
to changing traffic patterns and server loads in 
real-time, ensuring optimal resource utilization. 

The model will also be extended to a broader 
array of real-world applications. In particular, 
scenarios involving dynamic content processing, 
such as real-time video streaming or interactive 
web applications, and large-scale data 
transmission, like bulk file transfers or database 
synchronization, will be explored. By applying the 
model to these diverse settings, its adaptability and 
effectiveness can be accurately gauged. 

Furthermore, it is highly recommended that 
performance evaluations be carried out across a 
wide variety of test environments. This would 
involve incorporating different hardware 
configurations, ranging from low-end consumer-
grade systems to high-performance enterprise 
servers. Different network conditions, such as 
high-latency satellite connections or low-
bandwidth mobile networks, as well as diverse 
load modes, including bursty traffic patterns and 
steady-state loads, should all be considered. By 

doing so, a more exhaustive and accurate set of 
performance data can be collected, providing a 
more comprehensive understanding of the model's 
capabilities. 

Finally, further efforts will be dedicated to 
developing more efficient synchronization 
mechanisms. In multi-threading environments, 
resource contention and excessive thread 
switching can be major bottlenecks. By devising 
more intelligent synchronization strategies, such as 
lock-free data structures or fine-grained locking 
techniques, the aim is to minimize these overheads 
and thereby bolster the server's concurrent 
processing capabilities to new heights. This will 
ensure that web servers based on the multi-reactor 
model can meet the ever-increasing demands of 
modern, high-traffic, and data-intensive 
applications. 
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