

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

DOI: 10.2478/ijanmc-2025-0006 62

Study and Optimization of Server Load Capacity in High

Concurrency Scenarios

Hui Wang

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: wanghuihy@xatu.edu.cn

Jiasheng Wei

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: weijiacheng@st.xatu.edu.cn

Teng Yan

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: yanteng@st.xatu.edu.cn

Le Qiang

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: qiangle@st.xatu.edu.cn

Haoyu Li

Faculty of Transportation Engineering

Kunming University of Science and Technology

Kunming China

E-mail: haoyumli@gmail.com (H.Y.)

Abstract—In high-concurrency scenarios, network and

disk I/O-intensive operations often compete for shared

resources, resulting in a decline in the server's load

capacity. To address this challenge, this paper proposes

a sophisticated high-concurrency server optimization

solution. It utilizes various Reactor models in the Linux

system, combined with the powerful Epoll mechanism

and thread pool, to conduct research and optimization

on the server's load capacity.Firstly, the event-driven

and other modules required by the Web server are

implemented and integrated. Secondly, the number of

Reactors, the number of threads, and the business

processing time under the Linux system are designed

and controlled, and the design and implementation

scheme of the high-concurrency server based on the

Reactor model with the Epoll mechanism and thread

pool are determined. Finally, the performance

differences and the best usage scenarios of Web servers

with different Reactor models in high-concurrency

environments are analyzed through stress tests. The

comparison results show that the QPS (Queries Per

Second) indicator of the Web server based on the multi-

Reactor multi-thread model is three times higher than

that of the single-Reactor single-thread Web server,

verifying its overall advantages in high-concurrency and

long-term business processing. The research results

demonstrate the applicable scenarios of different

Reactor models, providing theoretical basis,

implementation examples, and data support for choosing

the appropriate Reactor model in actual server

development, helping developers select the most suitable

Reactor model according to specific server requirements

to ensure higher efficiency in high-concurrency

scenarios.

Keywords-component; High Concurrency ； Load

Capacity；Thread Pool；Reactor model；Web server

I. INTRODUCTION

In the context of the Internet era, which is
characterized by an exponential growth in the
number of websites and server applications, there
has been a significant increase in the volume of
data accessed via these platforms. This
considerable rise in demand for server resources
has consequently resulted in a notable escalation
of the load pressure experienced by these servers.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

63

In instances where multiple users access the server
simultaneously, the resulting burden on the
server's resources is likely to lead to a decline in
performance, as well as potential server downtime.
An efficacious solution to this problem is the
construction of web servers that are capable of
effectively managing high concurrency scenarios.
The fundamental technology underlying web
servers, specifically network programming, has a
direct impact on the overall performance of the
system.

The most commonly utilized web programming
models are the Reactor and Proactor models [2],
with the Reactor model being further subdivided
into three types based on the number of processes
or threads employed. It is important to note that
different network programming models are
suitable for web servers under varying operational
scenarios. Therefore, the aim of this thesis is to
investigate the load capacity of servers utilizing
different Reactor models in high concurrency
scenarios, while also analyzing and summarizing
the performance differences between these models.
Additionally, the thesis seeks to provide
theoretical foundations, implementation examples,
and data support for selecting appropriate Reactor
models for actual server development. The main
work of this article includes:

The objective is to implement the web server
modules within the Linux system, which
encompasses the following components: event
driver, network connection, network processing,
thread pool, socket, event, and asynchronous
driver.

Each module will be integrated, with the Epoll
mechanism and thread pool identified as the
foundation for the design and implementation of a
high concurrency server based on the Reactor
model. Subsequently, the web server will be
constructed according to the Reactor model
through various combinations and parameter
adjustments.

The Web bench stress test tool [3] will be
employed to conduct stress tests on web servers
utilizing different Reactor models within a highly
concurrent environment. The performance of the
three Reactor models will then be analyzed using

MATLAB, thereby providing a reference for the
selection of an appropriate web server
programming model based on the performance
outcomes of these Reactor models in high
concurrency situations.

The remaining sections of this paper are
organized as follows:

Section II introduces the relevant technical
foundations. Section III introduces the specific
design and implementation ideas of the scheme.
Section IV introduces the experimental design and
result analysis. The conclusions and future work
are discussed in Section V.

II. GUIDELINES FOR MANUSCRIPT

PREPARATION

A. Technical Architecture for High Concurrency

Scenarios

The concurrent access of a large number of
users places significant pressure on the server's
data exchange and processing capabilities. In order
to ensure the successful completion of business
operations, a variety of highly concurrent
processing techniques have emerged, which are
tailored to different application scenarios and
present a range of technical architectures. In the
context of the civil aviation passenger service
information system, Li Yongjin et al. proposed a
phased event-driven architecture with the
objective of enhancing the system's capacity to
process highly concurrent requests [4]. In a further
development of WeChat, Li et al. employed Redis
caching technology to enhance the system's
concurrency [5]. Yuntao Xu et al. employed the
use of a Nginx reverse proxy, along with
techniques such as multi-processing, multi-
threading, and multi-core, with the objective of
accelerating the parallel search process in a highly
concurrent iris recognition system [6]. Li Junfeng
et al. conducted a comprehensive and effective
analysis of the high concurrency issue in the
airline ticket reservation system, identifying
potential solutions through load balancing, page
optimization, cache design optimization and
database optimization [7]. Wang Jiye et al.
achieved high concurrency in the processing of
large-scale heterogeneous sensory data, including
reception, parsing and distribution, through the

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

64

utilization of bespoke data structures and
asynchronous I/O multiplexing [8]. In addition to
such application-specific high concurrency
solutions, numerous scholars have also conducted
research and advocated for mainstream high
concurrency processing techniques. For example,
Yannan Wang et al. delineated high concurrency
optimization solutions from five perspectives: the
web application front-end, back-end program code,
database, web application middleware
configuration and server load [9]. Kewei Li
provided an overview of high concurrency
processing techniques for network links, reverse
proxies, application services, data caching, and
databases, respectively, in Internet distributed
architectures [10].

B. multi-threading technology

In addition to enhancing the concurrency of the
system through the utilization of hardware
technology, prominent web servers such as IIS,
Apache, and Tomcat respond to a considerable
number of concurrent requests through the
implementation of a multi-threading mechanism
[11, 12].

In the literature, Bojin Sun et al. put forth a
solution to the resource occupancy and contention
problems through the implementation of
algorithms, data structures, optimized interrupts,
and optimized process and routine scheduling. The
literature [14] describes the factors that play an
important role in the performance of web servers
and proposes a new thread-based server
architecture. Asynchronous programming enables
the development of services capable of handling
millions of requests without saturating memory
and CPU utilization, thereby enhancing the I/O
capabilities of server systems. Karsten M. et al.
present the design and implementation of a
flexible user-level M: N threading runtime,
constructed from scratch, which has been
developed to achieve these objectives in [16]. The
system's principal components are efficient load
balancing and user-level I/O blocking. To address
the issue of threads being affected by blocking
anomalies, namely the loss of parallelism when
executing blocking system calls, which leads to
low kernel utilization and unnecessarily high
response times, Florian Schmaus et al. introduced

pseudo-blocking system calls based on modern
asynchronous queuing system call techniques (e.g.,
Linux's io_uring) in the literature [17] in order to
circumvent these anomalies. Techniques such as
Nginx and Keepalived are frequently employed to
address the load challenges encountered by highly
concurrent applications. Literature [18] assesses
the performance of a server cluster environment
based on Nginx and Keepalived, evaluates the
efficacy of Nginx-based algorithms such as WRR,
IP_HASH and LEAST_CONN, and designs and
optimizes the IP_HASH algorithm.

C. Reactor model

The Reactor model represents an event-driven
design pattern that is widely employed in web
server development with the objective of creating
highly concurrent and high performance web
applications. The fundamental concept is to
monitor and disseminate input/output (I/O) events
via an event distributor (Reactor) and relay the
events to the designated event processor for
processing. The Reactor model attains efficient
concurrent processing through non-blocking I/O
and event notification mechanisms, rendering it
suitable for highly concurrent, low-latency
application scenarios.

The Reactor model may encounter performance
bottlenecks and scalability challenges when
processing a large number of concurrent
connections. The performance and scalability of
the Reactor model may be enhanced through the
optimization of event processing, scheduling
algorithms and I/O multiplexing techniques. The
advancement of asynchronous programming and
co processing technology has led to the
introduction of asynchronous I/O, co-processing
scheduler, and other related technologies [21],
which have further enhanced the concurrent
processing capability and resource utilization of
the Reactor model. The Reactor model is currently
employed not only in the development of
standalone web applications, but also in the
context of distributed systems. By designing a
distributed event-driven architecture and
optimizing the message passing mechanism, the
Reactor model is employed in the construction of a
highly reliable and high-performance distributed
system [22].

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

65

The literature [19] examines the advantages,
limitations, and applicable scenarios of the Reactor
model through an analysis of the event-driven
programming model, the design of the event loop,
and the registration and distribution of event
processors. With regard to the Reactor
programming model, domestic and foreign
research institutions and enterprises have
developed numerous frame-works and libraries
with the objective of simplifying the development
and maintenance of event drivers. For example,
Node.js and Netty [20] represent such frameworks.

The Reactor model typically comprises an
event distributor, which monitors input/output (I/O)
events and distributes them to the relevant event
handlers upon occurrence, and an event handler,
which handles the components of a specific I/O
event. Event handlers are registered with the event
distributor and are invoked upon the occurrence of
an event.Three principal models for Reactor
modelling in web servers have been identified: the
single Reactor single-threading model, the single
Reactor multi-threading model, and the multi-
Reactor multi-threading model. The suit-ability of
different Reactor models for use in various web
server environments is a key consideration.

The single Reactor single-threading model
represents the most fundamental iteration of the
Reactor model, characterized by a straightforward
structure, making it well-suited to scenarios
involving a limited number of I/O events. The
single Reactor multi-threading model builds upon

the single Reactor single-threading model by
incorporating a thread pool to facilitate event
handling and enhance concurrent processing
capabilities. The multi-Reactor multi-threading
model represents a further optimization of the
Reactor model, whereby the concurrent processing
capability is enhanced by the distribution of the
task of event listening and distribution among
multiple Reactor instances. The system is typically
constituted of a master Reactor, which listens for
connection requests and distributes new
connections to slave Reactors. Each slave Reactor
runs in a separate thread and listens for I/O events
on its respective connection. The slave Reactor
then disseminates the events to the worker threads
within its management thread pool for processing.

The implementation of multi-Reactor multi-
threading represents a departure from the single
Reactor multi-threading approach. In this new
approach, the Reactor component has been
decoupled from a single Reactor module, and
instead, it is comprised of a master Reactor
module and multiple slave Reactor modules.
Concurrently, the original discrete Reactor module
is tasked with event listening and distribution, but
has also been divided into a master Reactor and a
slave Reactor module [24]. The master Reactor
module listens for events and disseminates them to
a slave Reactor, which oversees the events
assigned to it and handles them with an event
handler. Multi-Reactor multi-threading is
illustrated in Figure 1.

Figure 1. Reactor model based web server

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

66

III. DESIGN IDEAS AND SYSTEM CONSTRUCTION

In the Linux system, a web server is designed
to control the number of Reactor threads and
business processing time, among other variables,
in order to simulate different Reactor models. The
single Reactor single-threading server serves as
the foundation for the subsequent stages of
development, beginning with its construction and
subsequent evaluation in a highly concurrent
environment. This process entails the
identification of shortcomings and the
implementation of improvements and
optimizations to enhance the server model to a
single Reactor multi-threaded. The subsequent
phase involves rigorous testing and the eventual
realization of the multi-Reactor multi-threading
model. Finally, the data obtained from the testing
phase is subjected to comprehensive analysis and
synthesis. Subsequently, the data obtained from
the testing of all models will be analyzed and
summarized, after which the load capacity of the
server in high concurrency scenarios will be
studied.

The specific implementation ideas of this
paper's scheme are as follows: firstly, the various
modules of the web server must be implemented,
including the event driver module, network
connection module, network processing module,
thread pool module, socket module, event module
and asynchronous driver module. Secondly, the
thesis employs a thread pool to manage multiple
threads, thereby enabling the server to transition
between a single-threading and a multi-threading
model by activating or deactivating the thread pool.
Subsequently, the maximum number of
concurrently active threads that the thread pool can
accommodate is determined by setting the number
of threads, thereby enabling an investigation into
the impact of varying thread numbers on the
performance of a multi-threading web server under
high concurrency. Ultimately, the modules are
integrated to create three reactor models of web
servers through a combination of disparate
configurations and parameter modifications.

A. system architecture

Event-driven programming is employed in the
construction of high-performance Web servers.

These servers are designed to remain continuously
attentive to network connection requests, and upon
the establishment of a connection, the server will
initiate the relevant event processing function to
facilitate the processing of the network connection.
Once the process of establishing a network
connection has been completed, the client socket
must be obtained and the corresponding event
handler must be triggered in order to read the
information from the client. Subsequently, the
event handler is triggered in order to respond to
the client request.

The Reactor model represents the
implementation of event-driven programming
concepts within a Web server design pattern. The
system is equipped with an event loop, which is
responsible for listening to and distributing events.
Upon the occurrence of an event, the relevant
processor is duly informed and tasked with
handling the event.

The Reactor module of the server is
implemented by the event driver as the core
component. The Reactor module is designed to
constantly listen for client requests. Upon
detecting a client request, the Reactor is called to
handle the connection request event. This enables
the establishment of a connection between the
server and the client through the Linux kernel, as
facilitated by the API for the configuration of
client sockets. Consequently, the Reactor module
represents the connection between the two entities.
Subsequently, the Reactor module will process
further events pertaining to the connected client,
calling upon the module that has been specifically
designed to serve the client in question with the
requisite services. Subsequently, the Reactor
module will persist in monitoring for new client
connection requests and disseminating them to
clients who have successfully established a
connection. To facilitate the module's service to
the client, it will receive the data from the client
through the API provided by the Linux kernel,
generate the data corresponding to the client after
service processing, and transmit the generated data
to the client through the API provided by the
Linux kernel once more. Figure 2 illustrates the
configuration of the Reactor model web server.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

67

Figure 2. Reactor model based web server

Reactor implementations The development of
the Web server is carried out under Linux, and the
implementation of the server's Reactor uses Epoll,
an I/O multiplexing interface provided by Linux.

Epoll is an I/O event notification mechanism
provided by Linux to listen for the occurrence of
events registered on Epoll. When Epoll is enabled,
the programme blocks until an event occurs in the
listening event, and then it returns to that event.
This mechanism allows for efficient I/O
multiplexing and is often used to build high-
performance web servers.

The Reactor module uses Epoll as an event
loop for registering, listening, and distributing
events, as shown in Figure 3.

Figure 3. Reactor Modules

Given that Reactor is based on an event-driven
model, it can be seen that the key to this model lies
in the occurrence and processing of events.
Furthermore, given that the web server handles
multiple network connection requests
simultaneously, it can be seen that this is also a
key factor in the event-driven model. The server
initially listens to the first client and establishes a

connection (listen event), then performs a read
event on the first client (read event 1), and finally
executes a business process (business process 1)
subsequent to the completion of the read event. At
this juncture, the second client requests a
connection from the server. Consequently, two
events are registered on Epoll: the listen event and
the write event 1. The order of execution of these
two events is indeterminate. The server may
execute the listen event first, after which the read
event 2 is registered on Epoll. At this juncture, two
events are registered on the Epoll (write event 1
and read event 2). The order of execution of these
two events is also unknown. This is followed by
the occurrence of all subsequent events.

Figure 4. Reactor Modules

The actual test is conducted in a highly
concurrent environment, wherein thousands of
clients are accessing the web server
simultaneously. Consequently, the order of events

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

68

processed by the server is entirely random.
With regard to the type of processor employed in
the project, please refer to Figure 4.

B. system implementation

In the implementation of a web server based on
disparate Reactor models, it is first necessary to
construct the server modules that would be typical
of a generic web server. In addition, the specific
modules required for each Reactor model must be
developed. These include the Reactor module,
which implements the Reactor model, and the
thread module, which implements the Thread
model. In essence, the server implements the web
server for different Reactor models by enabling
the requisite modules.

With regard to the server module, the
fundamental component of the server as a Reactor
model is Reactor. Given that Reactor is based on
event-driven concepts, it is essential to implement
the event-driven module as a preliminary step, and
subsequently construct the server module on the
foundation of the event-driven module.

The Event-Driven module employs the Event-
Driven class as the fundamental component of the
event driver, the Epoll class as the implementation
of the Event-Driven class for the event driver, and
the Event class as the abstract conduit for event
interaction with the Event-Driven module to
facilitate registration, listening, and updating of
events.

1) Event Driver Module

The event-driven module comprises the Event-
Driven, Epoll and Event classes, as illustrated in
Figure 5.

Figure 5. Event Driven Modules

The Epoll class represents an encapsulation of
the epoll file descriptor. Epoll is responsible for

the registration and updating of events, which it
achieves by interacting with the Linux system.
Additionally, Epoll listens for the triggering of
events. The Event class provides an abstraction of
events. The properties of events can be controlled,
and interaction with the Epoll class can be
facilitated through the Event-Driven class, which
is used for the registration and updating of events.
The Event-Driven class encapsulates the Epoll
class and is employed to initiate the event loop,
awaiting the occurrence of events that can be
accessed.

a) Event-Driven Class
The Event-Driven class is responsible for event

driving, whereby epollfd is employed to
encapsulate the I/O multiplexing interface Epoll,
provided by Linux. Update Event is used to call
the epollfd function of the same name, with the
objective of updating the event. The Event-Driven
class is illustrated in Figure 6.

Figure 6. Event-Driven Class

b) Epoll Class
The Epoll class encapsulates epoll, which

interacts with the Linux system for the purpose of
event management. The updateEvent function is
employed for the purpose of registering or
updating events, while the wait function is used
for the purpose of waiting for a registered event to
be triggered. The Epoll class is illustrated in
Figure 7.

Figure 7. Epoll Class

c) Event Class
The Event class provides an abstraction of an

event, utilizing the fd file descriptor to represent a

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

69

specific event object. It also employs the use of
event, inEpoll and callback to represent the type of
the current event, the registration status of the
event and the event handler function to be
executed for the event, respectively. The ed
variable is used to associate the Event with Event-
Driven, while the latter is used to associate an
Event with an Event-Driven. Additionally, ed is
employed to pass the Event itself as a parameter to
the Event-Driven, thus enabling the execution of
the updateEvent function.

The function comprises several parts, including
those that set the current event as a listen, read or
write event, close the event, check or set whether it
is registered, obtain a file descriptor, execute the
event handler and set the event handler. The
implementation of the code constitutes a direct call
to the relevant API provided by the Linux system.

Consequently, the logic related to the execution of
the program is not presented, as it is not pertinent
to this discussion. The Event class is illustrated in
Figure 8.

Figure 8. Event Class

Figure 9. Server Module

2) Server module
The server module serves as the foundation for

the implementation of all Reactor-type servers in
the thesis. By adding or removing specific
modules, it is possible to create different Reactor
model web servers. Figure 9 illustrates the server
module.

He fundamental component of a server based
on the Reactor model is the Reactor module,
which is founded upon the principle of event-
driven processing. Consequently, the thesis
employs the Event-Driven class as the actual
Reactor module. The functionality of registering,
listening and distributing events inherent to
Reactor is achieved through the interaction of the
Event-Driven class.

With the Epoll class and the Event class. In the
case of the multi-Reactor model, the use of
multiple Reactor modules is necessary, with these
being divided into Master Reactor and Slave
Reactor for different purposes.

The server's function for receiving client
requests and establishing connections is designed
as the Acceptor class, which interacts with the
Linux kernel through the socket class that abstracts
sockets to establish a connection with the client.

The Connection class is used to provide
specific services to the client, including reading
the client's request message, processing the
business logic and generating a response message
and returning it to the client. In the case of servers

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

70

operating in a multi-threading mode, the thread
pool module is employed.

a) Server Class
The Server class provides the external

framework for the entire server model, which
serves as a user-facing object and offers methods
for initializing the server and initiating the various
Reactor models, as illustrated in Figure 10.

Figure 10. Server Class

The main Reactor module, designated as
"main-Reactor," is the primary component of the
server. It is responsible for registering, listening to,
and distributing all events within the single
Reactor model. In contrast, the sub-Reactors
module, or "sub-Reactors," operates as a slave
Reactor module of the server. In the single Reactor
model, it is effectively null. In the multi-Reactor
model, the reactor model is empty and receives
and processes clients distributed by the main-
Reactor. The acceptor is used as an interface to
access the Acceptor class. The num parameter is
used to specify the number of sub-Reactors, while
the thread parameter is used to specify the size of
the thread pool. The time parameter is used to
specify the length of the business processing time.
The new-Connection parameter is used to specify
the number of sub-Reactors and the length of the
business processing time. The length parameter is
used to establish a new client connection.

The server is initiated through the constructor,
which first establishes the parameters provided by
the user, defining the number of reactors, the
number of threads, and the business processing
time. Secondly, the acceptor class is initialized,
thereby establishing the manner in which the
server will handle client connections. Ultimately,
the number of reactors serves to distinguish

between a single reactor model and a multi-reactor
model for the server. In the event that the model is
that of a single reactor, the process concludes
directly, with the initialization of the slave reactor.
The flowchart of the constructor is presented in
Figure 11.

Figure 11. Flowchart of The New-Connection Function

The flowchart of the newConnection function is
presented in Figure 12. The responsibility for
establishing the connection is allocated to either
the slave or the master reactor, depending on
whether multiple reactors are employed.

Figure 12. Epoll Class

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

71

b) Socket class
The Socket class is analogous to the Event class

in that it represents an abstraction of a particular
entity, as illustrated in Figure 13. The Socket class
provides an abstraction of sockets, where fd
represents the file descriptor created by the Linux
system to represent the socket. As with the Event
class, the functions of the Socket class are all calls
to the Linux system APIs, and there is no need to
specify the implementation.

Figure 13. Socket Class

c) Acceptor Class
The Acceptor class is employed to receive new

client connection requests and establish a
connection, as illustrated in Figure 14. The listen
fd socket is utilized as a listening socket to
monitor client requests directed towards the server.
The event variable represents the current event
type, while the callback variable represents the
event handler. The setCallback variable represents
the event handler. The acceptConnection function
is employed to create a connection, which
constitutes the primary call listenfd accept
function. This is achieved through the utilization
of the Linux system API to establish a connection,
without the provision of a specific code
demonstration.

Figure 14. Acceptor Class

d) Connection Class
The Connection class is employed for the

purpose of serving clients, as illustrated in Figure
15.

Figure 15. Connection Class

The event represents the current event type.
The recvbuf is used to receive the client request
message, while the sendbuf is used to send the
response message to the client. The pool is the
thread pool, while the num is the size of the thread
pool. The time is the transaction processing time,
and the checkErr is a utility function used to check
whether some API calls of the Linux system have
returned an error. Finally, the handleReadEvent is
used to handle read events, while the
handleWriteEvent is used to handle write events.
The process is employed for business processing
in order to implement the client request. The
handleReadEvent is utilized for the handling of
read events. The handleWriteEvent is employed
for the handling of write events. The process is
used for business processing with the objective of
fulfilling the client's request. The constructor of
Connection will set the event type to read, in
addition to initializing the members and binding
the event handler to the handleReadEvent. The
handleReadEvent is employed for the execution of
the read event. With regard to the implementation
of the handleReadEvent and handleWriteEvent
functions, a number of approaches may be adopted
with regard to the reading or writing of data to the
buffer. The focus of this paper is on the manner in
which the server assigns transactions to the worker
threads of the thread pool in a multi-threading
model. The flowchart of the handleReadEvent
function is shown in Figure 16.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

72

Figure 16. Flowchart of the handle-ReadEvent

Firstly, the message sent by the client is read
into a read buffer for parsing and subsequent
specific business processing. Secondly, it
determines whether the thread pool is to be
employed. In the event that the thread pool is to be
utilized, the business processing tasks are assigned
to the thread pool for completion. Otherwise, the
business processing tasks are continued to be
executed in the current thread.

e) ThreadPool Class
Figure 17 illustrates the thread pool utilized by

the ThreadPool class as a server. The term "works"
encompasses all worker threads, while "tasks"
represents the functions to be executed. The
"mutex" is employed to guarantee synchronization
between threads, and the "condition condition
variable" is utilized to notify if a new function task
has been queued. The "stop" indicator determines
whether to halt the pool, and the "enqueue
function" is utilized to receive a function to be
added to tasks awaiting execution. A function is
appended to the list of tasks that are to be executed.

Figure 17. ThreadPool Class

IV. SIMULATION EXPERIMENTS AND

ANALYSES

A. Introduction to the experimental environment

The hardware configuration of the test
equipment described in the thesis is as follows: the
processor is an AMD Ryzen 7 4800H with 8 cores
and 16 threads; the memory size is 16 GB at 3200
MHz; and the network card is an Intel® Wi-Fi 6
AX200 160 MHz. The operating system used for
the test is Arch Linux.

The test environment is a high concurrency
network test environment, utilizing the Webbench
stress test tool for high concurrency testing.
Webbench is capable of simulating multiple
concurrent clients, sending HTTP requests to the
server in order to evaluate the server's QPS
performance. QPS, Queries Per Second, is a
significant index of server performance. It
represents the number of network requests that can
be processed per second on a web server, and is
specifically employed to gauge the server's
capacity to withstand high concurrency.

The Webbench test of the web server utilizes a
uniform client concurrency of 20,000, requesting
the web server's static pages, with an HTTP
request time of 5 seconds. The parameters are set
in accordance with the specifications outlined in
Figure 18.

Figure 18. Using of Webbench

A detailed account of the startup options
employed by Webbench is presented in Table 1.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

73

TABLE I. EXPLANATION OF WEBBENCH USAGE OPTIONS

Webbench Usage

Parameters

Parameter explanation

./webbench Starts the Webbench testing tool.

-c Specify the number of concurrent

clients

-t Specify the duration of HTTP requests

http://127.0.0.1:2000/ accesses the specified web server

The test results for the web server, as displayed
in Figure 19, indicate a speed of 81,780 pages per
minute and 126,805 bytes per second. The value
following 'Speed' represents the number of bytes
processed by the web server per second; however,
this is not employed as an indicator in the thesis.
The value following the designation "Speed"
represents the number of bytes per second that are
processed by the web server.

Figure 19. Webbench Test Result Chart

A significant variable in the experimental
design is the time required for business processing.
The business processing time is employed in the
modelling of the type and size of network requests.
To illustrate, if a client requests a static web page
from the server and requests the server to
download a file from the server, the input/output
(I/O) time spent is different. In most cases, the
former is processed more quickly than the latter,
which is simulated by the business processing time.
A longer business processing time will simulate a
longer I/O operation, such as the reading and
writing of a large number of files, database queries,
and so forth. Conversely, a shorter business
processing time will simulate a shorter I/O
operation, such as the accessing of some static
web pages and small files.

In the web server implementation, the business
processing time is set in the business processing
events in the connection class, thereby simulating
the requisite time for processing the current
business by allowing the system to enter a sleep
state.

The business processing time is measured in
microseconds and is set at server startup;
subsequently, it is tested using Webbench. The
business processing time is evaluated over a range
of 0 to 1000 microseconds, with the server
configured to test at 100 microsecond intervals.

The final result for a web server is that the
processing time for each service is proportional to
the QPS of the current server. This represents the
server's performance in handling the current type
of service in a highly concurrent environment.
Ultimately, the data values (with one business
processing time equating to one QPS) are
presented in graphical form using Matlab, thus
enabling observation of the trend in the optimal
performance of the current web server for different
business types in a highly concurrent environment.

B. Experimental results and analysis

1) Single Reactor single-threading web server
test

The single Reactor single-threading server was
subjected to a series of tests using Webbench, with
a concurrency of 20000 and a single HTTP request
time of 5 seconds. Table 2 illustrates the business
processing time for the test variables.

TABLE II. TABLE TYPE STYLES

Variable Test range

Number of Sub-Reactors 1-50

Number of threads 1-50

The outcomes of the single Reactor single-
threading server examination are illustrated in
Figure 20. It can be observed that the QPS of the
server declines in conjunction with the expansion
of business processing time. The most pronounced

decline is evident within the 0–100 range. It is

evident that the performance of the single Reactor
single-threading Web server is sub-optimal when
processing business that requires a significant
amount of time. This is due to the fact that all
business processing of the single Reactor single-
threading Web server is conducted on a single
thread. Consequently, if a business process cannot
be completed within the allotted time, it will result
in the obstruction of other events, thereby

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

74

preventing other clients from communicating with
the server or causing significant delays.

Figure 20. Single Reactor Single Thread Web Server Test Results

2) Single Reactor Multi-threading Web Server
Testing

The single Reactor multi-threading server was
subjected to testing using Webbench with a
concurrency of 20000 and a single HTTP request
time of 5 seconds. As illustrated in Table 3, the
variables under examination are business
processing time and the number of threads. The
single Reactor multi-threading mode in which the
server operates is dependent on the number of
threads. By continually adjusting the number of
threads, the optimal QPS value that can be attained
by this single reactor multi-threading web server
with the optimal number of threads is determined.

TABLE III. SCOPE OF TESTING FOR SINGLE REACTOR MULTI-
THREADING WEB SERVER

Variable Test Range

Number of threads 1-30

Transaction processing

time (us)

0-1000

Figure 21 illustrates the single Reactor multi-
threading web server QPS, which demonstrates a
general upward trend from the bottom right to the
top left, reaching a peak, before exhibiting a slight
decline and subsequently stabilizing. When the
value of TIMES (business processing time) is held
constant, there is a notable rise in the QPS of the
server as the number of THREADS (threads)
increases. This evidence substantiates the assertion
that multi-threading effectively addresses the issue
of performance degradation caused by single
thread blocking.

Figure 21. Test Results of Single Reactor Multi thread Web Server

Nevertheless, when a sufficient number of
threads are in operation, the server has already
reached its optimal performance value. At this
juncture, the introduction of additional threads will
not yield a positive effect on the optimization of
the server. Instead, the frequent switching of
threads will result in a reduction in performance.

At this juncture, the optimization component of
the thread pool has reached its limit, and the
introduction of additional threads does not result in
enhanced performance unless the underlying
circumstances are altered. The question currently
under investigation is what other optimizations are
available for single Reactor multi-threading web
servers.

3) Multi-Reactor Multi-threading Web Server
Testing

The Multi-Reactor Multi thread Web Server
should be tested with Webbench using a
concurrency of 20000 and a single HTTP request
time of 5 seconds. In the context of multi-reactor
multi-threading web servers, a comparison is
drawn between these and single-reactor multi-
threading web servers in terms of business
processing time and the number of threads. In
addition to these two variables, the reactor number
is also taken into account, resulting in a new
variable. The number of threads and the number of
reactors are combined to create a multitude of
potential multi-reactor multi-threading web servers,
each with its own distinctive characteristics. To
ensure comprehensive evaluation, it is essential to
assess the performance of each server under
varying service processing times.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

75

TABLE IV. MULTI-REACTOR MULTI-THREADING TEST SCOPE UNDER

200US

Variable Test range

Operational processing

time (us)

0-1000

Table 4 illustrates the results of a performance
test conducted on a multi-reactor multi-threading
web server with a service processing time of 200
microseconds.

The QPS of the web server was obtained from
different combinations of the number of Reactors
(subReactors) and the number of threads (threads),

measured when processing 200 microseconds
of business data. The results are presented in
Figure 22.

Figure 22. Test Results of Single Reactor Multi thread Web Server

The graph demonstrates a rise in QPS from left
to right, reaching a peak and subsequently leveling
off. From the outset to the conclusion, the QSP
experiences an initial surge and then a decline
following a period of sustained peak performance.

As illustrated in Figure 23, the graph is more
readily comprehensible when divided vertically

into two sections on the X Y axis.：A·m2.”

（a）Y-axis section

（b）X-axis section

Figure 23. Cross-section at 200us

As illustrated in Fig. 23(a), the line graph of
QPS with the number of threads is fixed with
respect to the number of reactors, with each line in
the graph corresponding to a specific number of
reactors. It is evident that as the number of threads
increases, the QPS value rises and reaches a peak;
subsequently, as the number of threads continues
to increase, the QPS value declines and then
stabilizes. It can be observed that after the optimal
QPS has been reached, increasing the number of
threads in the thread pool does not result in
improved server performance. Instead, it has the
opposite effect, leading to a decline in server
performance. This is due to the fact that an excess
of threads causes meaningless thread switching,
which results in the waste of server resources and
a subsequent reduction in server performance.

As illustrated in Fig. 23(b), a line graph of QPS
versus the number of Reactors is presented for a
fixed number of threads, with each line
corresponding to a number of threads. It can be
observed that as the number of slave reactors
increases, the QPS of the server exhibits a marked
improvement. Further increases in the number of
reactors beyond the optimal point have no
discernible impact on performance. The
continuation of this process resulted in a decline in
performance. A notable increase in performance is
observed when the number of Reactors opened on
the server is compared to the number of Reactors
with a smaller number of threads. This increase
reaches its peak immediately and subsequent
increases in the number of Reactors have a

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

76

minimal impact on performance. It can be
observed that a specific quantity of slave reactors
is sufficient to manage high concurrency. The
master reactor distributes client services to the
slave reactor at a rate of one per second.

The test results for multi-reactor, multi-
threading servers under other business processing

times are not significantly different. The primary
discrepancy lies in the optimal number of slave
reactors and the number of threads required to
achieve peak server QPS. The trend of server QPS
for these tests is analogous to that observed in the
aforementioned test, as illustrated in Figure 24.

.
FIGURE（ a）Test results at 0us FIGURE（ b）Test results at 100us

FIGURE（ c）Test results at 300us FIGURE（ d）Test results at 400us

FIGURE（ e）Test results at 500us FIGURE（ f）Test results at 600us

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

77

FIGURE（ g）Test results at 700us FIGURE（ h)Test results at 800us

FIGURE（ i）Test results at 900us FIGURE（ j）Test results at 1000us

Figure 24. Comparison Chart of QPS for Different Time periods

Upon each examination of a server, the source
of its performance bottleneck is identified and
enhanced, thereby achieving an enhanced
performance web server. This process continues
until the optimal solution, currently represented by
the Multi-Reactor Multi thread Web Server, is
reached.

Based on the data shown in the graph, it is
evident that the multi - reactor multi - threading
web server has significant advantages over the
single - reactor single - threading web server.
Specifically, the QPS (Queries Per Second) metric
of the multi - reactor multi - threading web server
is three times higher than that of the single -
reactor single - threading web server.

When observing the graph in detail, the single -
reactor single - threading web server shows a
relatively lower QPS value. Its performance curve
rises gradually with the increase of time, but the
overall value is not high. This is because, in a
single - reactor single - threading architecture, the
server can only handle one request at a time. If a
new request arrives while the server is processing
a previous request, the new request has to wait
until the current one is finished. This sequential

processing limits the server's throughput and
responsiveness, especially when dealing with a
large number of concurrent requests.

On the contrary, the multi - reactor multi -
threading web server's QPS value shows a
remarkable growth. In a multi - reactor multi -
threading architecture, multiple reactors are used
to monitor different types of events, such as
network I/O events. Each reactor can handle
multiple threads simultaneously. When a request
arrives, it can be quickly assigned to an available
thread within the appropriate reactor for
processing. This parallel processing mechanism
enables the server to handle multiple requests
concurrently, greatly improving the processing
efficiency.

This substantial improvement in QPS indicates
that the multi - reactor multi - threading web
server is capable of handling a much larger
number of requests simultaneously. In high -
concurrency scenarios, where a large number of
requests are received in a short period of time, the
multi - reactor multi - threading web server can
process these requests more efficiently, reducing
waiting times and improving overall system

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

78

performance. The multiple reactors and threads
work in parallel, allowing for a greater number of
requests to be processed concurrently. Each
reactor can handle different sets of requests, and
multiple threads within each reactor can execute
tasks simultaneously, thereby maximizing the
utilization of system resources.

Moreover, the enhanced QPS also implies that
the multi - reactor multi - threading web server is
better suited for long - term business processing. It
can maintain a high level of performance over
extended periods, ensuring stable and reliable
service delivery. During long - term operation, the
single - reactor single - threading web server may
encounter bottlenecks due to limited processing
capacity, resulting in a decline in performance. For
example, if there are a large number of requests
queuing up, the single - threaded processing may
lead to long - waiting times for some requests, and
even cause time - out errors in extreme cases.
However, the multi - reactor multi - threading web
server can evenly distribute the workload among
multiple reactors and threads, avoiding
performance degradation caused by long - term
operation. This is crucial for applications that
require continuous and efficient processing of a
large volume of requests, such as e - commerce
platforms or large - scale data - intensive services.

In conclusion, the experimental data clearly
validates the superiority of the multi - reactor
multi - threading web server in terms of high -

concurrency handling and long - term business
processing capabilities. The significant increase in
QPS not only reflects its ability to handle
concurrent requests more effectively but also its
stability and reliability in long - term operation,
making it a preferred choice for web server
architectures in high - traffic and data - intensive
environments.

The relationship between business processing
time and QPS for the final test results of the three
Reactor models is presented in a single graph, as
illustrated in Figure 25.

Figure 25. Final Test Results

C. Conclusion of the experiment

The performance of three Reactor models
(Single Reactor Single threading, Single Reactor
Multi - threading, and Multi - Reactor Multi -
threading) in a highly concurrent environment was
evaluated, as illustrated in Table 5.

TABLE V. SCOPE OF TESTING FOR SINGLE REACTOR MULTI

Model Advantages Disadvantages

Single-Reactor

Single Threading

Simple to implement, easy to program and debug;

suitable for low concurrency and lightweight
business processing scenarios

Poor performance in high concurrency and long time

business processing, easy to single thread blocking caused
by other requests are delayed processing

Single-Reactor

Multi-Threading

The introduction of a thread pooling mechanism

serves to enhance the concurrent processing
capacity, circumventing the issue of single-thread

blocking. This approach is particularly effective in

scenarios involving medium concurrency and
medium business processing times, offering optimal

performance.

The use of multiple threads in a single program can lead to

data contention and synchronization problems, necessitating
the implementation of locking mechanisms. This, in turn,

can result in increased programming complexity and

resource overhead. Furthermore, the overhead associated
with thread switching may contribute to performance

bottlenecks in highly concurrent environments.

Multi-Reactor

Multi-Threading

The concurrent processing capability is

significantly enhanced by dividing the work among
multiple reactors. Each reactor operates

independently, reducing competition for resources

and improving overall performance. It demonstrates
robust performance in high concurrency and long-

term business processing.

The complexity of the programming and maintenance

processes, coupled with the necessity of dealing with
multiple reactor and thread synchronization, gives rise to a

considerable challenge in terms of resource management. In

order to circumvent performance bottlenecks, it is essential
to configure the reactor and thread pool in a reasonable

manner.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

79

The Single Reactor Single threading model has
a simple structure. However, in a highly
concurrent environment, it can only process one
request at a time due to having only one thread.
This leads to long waiting times as requests queue
up, and its performance degrades quickly with
increasing concurrency.

The Single Reactor Multi - threading model is
an improvement. It uses multiple threads for
processing while still relying on a single reactor
for event handling. It can handle more concurrent
requests compared to the single - threaded model,
but the single reactor may become a bottleneck in
extremely high - concurrency situations.

The Multi - Reactor Multi - threading model is
the most advanced. With multiple reactors and
associated threads, it enables a high level of
parallelism. Requests can be evenly distributed
among the reactors and threads, allowing the
system to handle a large number of concurrent
requests with short response times. It is highly
scalable and suitable for highly concurrent
environments like large - scale e - commerce
platforms.

These evaluations help in choosing the right
architecture for different application scenarios.

V. CONCLUSIONS

In the ever-evolving domain of web server
performance, the network programming model,
with the Reactor model at its core, has
indisputably been a pivotal area of exploration.
This comprehensive study has achieved a series of
remarkable and significant milestones.

To begin with, it embarked on a detailed
investigation into the load capacity of servers that
utilize different variants of the Reactor model
when confronted with high concurrency scenarios.
This entailed meticulously examining how servers
with single-reactor single-threading, single-reactor
multi-threading, and multi-reactor multi-threading
architectures coped under intense traffic loads.
Through painstaking research efforts, the study
managed to precisely determine the design
blueprints and implementation intricacies of high
concurrency servers. These were based on the
integration of the Reactor model with the highly

efficient Epoll mechanism and a well-structured
thread pool, all operating within the Linux system
environment. The utilization of the Epoll
mechanism was particularly crucial as it enabled
more efficient event handling and notification,
reducing latency and enhancing overall
responsiveness.

Subsequently, a series of rigorous stress tests
were meticulously carried out on web servers
equipped with these diverse Reactor models. The
tests were conducted in highly concurrent
environments that mimicked real-world, heavy-
traffic situations as closely as possible. By
subjecting the servers to a barrage of simultaneous
requests and analyzing their responses over an
extended period, the research team was able to
gather a wealth of data. Through painstaking and
comprehensive analysis of this data, the final
application scenarios for each of the different
Reactor models were accurately identified and
thoroughly summarized. One of the most
significant findings was that, within the constraints
and characteristics of the current Linux system, the
multi-Reactor multi-threading web server clearly
emerged as the preeminent choice for proficiently
handling high concurrency requests. It
demonstrated superior throughput, shorter
response times, and greater scalability compared
to its counterparts.

Nevertheless, it is important to acknowledge
that, like any research endeavor, this study also
has its inherent limitations. The implementation of
each model within the scope of this paper was, to
some extent, relatively basic and elementary.
Crucial elements that are of paramount importance
in real-world, practical applications, such as
advanced load balancing techniques and
sophisticated caching mechanisms, were not given
the full consideration they deserved. These factors
can have a profound impact on the overall
performance and user experience of a web server.
For instance, without proper load balancing,
servers may experience uneven workload
distribution, leading to bottlenecks in some areas
while other resources remain underutilized.
Similarly, an effective caching mechanism can
significantly reduce the need to repeatedly process
the same data, thereby enhancing efficiency.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

80

Moreover, the testing regime employed had its
own set of constraints. The testing scope was
somewhat narrow, primarily focusing on a specific
range of concurrency levels and business
processing time frames. This meant that it failed to
comprehensively encompass all the potential and
diverse business scenarios and load conditions that
a web server might encounter in the real world.
There could be niche applications or extreme
traffic spikes that were not adequately represented
in the tests, potentially leading to inaccurate
generalizations about the performance of the
models.

Looking to the future, there is a vast expanse of
opportunities and areas ripe for further exploration
and research. Future work will be centered around
optimizing the design of the multi-reactor model.
This will involve delving deep into exploring more
efficient thread management strategies. For
example, investigating techniques to minimize
thread context switching overheads, which can
consume significant computational resources and
degrade performance. Additionally, the
development of more advanced load balancing
strategies will be a key focus. This could involve
dynamic load balancing algorithms that can adapt
to changing traffic patterns and server loads in
real-time, ensuring optimal resource utilization.

The model will also be extended to a broader
array of real-world applications. In particular,
scenarios involving dynamic content processing,
such as real-time video streaming or interactive
web applications, and large-scale data
transmission, like bulk file transfers or database
synchronization, will be explored. By applying the
model to these diverse settings, its adaptability and
effectiveness can be accurately gauged.

Furthermore, it is highly recommended that
performance evaluations be carried out across a
wide variety of test environments. This would
involve incorporating different hardware
configurations, ranging from low-end consumer-
grade systems to high-performance enterprise
servers. Different network conditions, such as
high-latency satellite connections or low-
bandwidth mobile networks, as well as diverse
load modes, including bursty traffic patterns and
steady-state loads, should all be considered. By

doing so, a more exhaustive and accurate set of
performance data can be collected, providing a
more comprehensive understanding of the model's
capabilities.

Finally, further efforts will be dedicated to
developing more efficient synchronization
mechanisms. In multi-threading environments,
resource contention and excessive thread
switching can be major bottlenecks. By devising
more intelligent synchronization strategies, such as
lock-free data structures or fine-grained locking
techniques, the aim is to minimize these overheads
and thereby bolster the server's concurrent
processing capabilities to new heights. This will
ensure that web servers based on the multi-reactor
model can meet the ever-increasing demands of
modern, high-traffic, and data-intensive
applications.

ACKNOWLEDGMENT

The work presented in this paper was supported
in part by the Key Industry Chain Technology
Research Project of Xi'an Science and Technology
Bureau (Grant No. 23ZDCYJSGG0018-2023), the
Science and Technology Planning Project (Grant
No. GX2412) and the Research project on
teaching reform of education in Shaanxi province
(Grant No. 23BY082).

REFERENCES

[1] Yuguang Zhang, a layered architecture system for high
concurrent processing integrating different scenarios
[J]. Communication Technology, 2020, 53(01): 93-100.

[2] Chen R, Mou Y, Li W. A provably secure multi-server
authentication scheme based on Chebyshev chaotic map
[J]. Journal of Information Security and Applications,
2024, 83: 103788.

[3] Babou N, Boudhar M, Rebaine D. Two-machine job
shop problem with a single server and sequence-
independent non-anticipatory set-up times [J]. Discrete
Optimization, 2024, 53: 100845.

[4] Li YJ, Tian F, Ni ZY. Server architecture design for
highly concurrent complex civil aviation services [J].
Computer Applications and Software, 2016, 33(05): 4-
7, 39.

[5] Li Jianhua, Xia Flood, Luo Mingquan. Research and
implementation of high concurrency WeChat public
development based on ThinkPHP and Redis [J].
Computer Application and Software, 2019, 36(02):
108-112.

[6] Yuntao Xu, Wujun Xu, Menglin Zhai. A high
concurrency iris recognition system based on B/S

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

81

architecture [J]. Computer Engineering, 2019, 45(08):
102-106, 112.

[7] Junfeng Li, Mingxin He. Design and implementation of
high concurrency Web airline ticket spike system [J].
Computer Engineering and Design, 2013, 34(03): 778-
782.

[8] Wang Jiye, Ding Weilong, Gao Lingchao et al. A
sensory data access service supporting high
concurrency [J]. Small Microcomputer Systems, 2017,
38(12): 2703-2706.

[9] Yannan Wang, Huarui Wu, Feng Huang. Performance
optimisation analysis and research on high concurrency
web application system [J]. Computer Engineering and
Design, 2014, 35(08): 2976-2981.

[10] Li KW. Practice of high concurrency technology
architecture in the Internet [J]. Digital Communication
World, 2019(03): 65-66.

[11] Jiexin Zhang, Jianmin Pang, Zheng Zhang, et al. An
approach to quantify service quality of mimetic
constructed web servers [J]. Computer Science, 2019,
46(11):109-118.

[12] Jiexin Zhang, Jianmin Pang, Zheng Zhang. A method
for quantifying web server heterogeneity by mimetic
construction [J]. Journal of Software, 2020, 31(2):564-
577.

[13] Sun B,Sun M. Concurrency and Operating Systems,
Processors, and Programming Languages [J].
Highlights in Science, Engineering and Technology,
2023, 39: 881-887.

[14] Roper M D, Ishihara T, Olsson R A. Critical
Performance Factors in Web Server Design: Experience
Implementing CoW, a Cooperative Multithreading Web
Server [J].

[15] Moslehian A S. An Experimental Integration of io uring
and Tokio: An Asynchronous Runtime for Rust [D].

[16] Karsten M, Barghi S. User-level threading: have your
cake and eat it too [J]. Proceedings of the ACM on
Measurement and Analysis of Computing Systems,
2020, 4(1): 1-30.

[17] Schmaus F, Fischer F, Hönig T, et al. Modern
Concurrency Platforms Require Modern System-Call
Techniques [J]. 2021.

[18] Ma C, Chi Y. Evaluation test and improvement of load
balancing algorithms of Nginx [J]. IEEE Access, 2022,
10: 14311-14324.

[19] Li G, Li J. Optimising low-power task scheduling for
multiple users and servers in mobile edge computing by
the MUMS framework [J]. Heliyon, 2024, 10(11).

[20] Liu T. Software design of wireless adaptation terminal
server in distributed testing system [D]. University of
Electronic Science and Technology, 2023. doi:
10.27005/d.cnki.gdzku.2023.000535.

[21] Nie Fanjie. Research and case analysis of high
performance server-side framework technology based
on Reactor pattern [D]. Zhejiang University of
Technology, 2020. doi:
10.27786/d.cnki.gzjlg.2020.000175.

[22] E Qin. Research and improvement of load balancing
algorithm based on Nginx high concurrency server [D].
Wuhan University of Technology, 2020. doi:
10.27381/d.cnki.gwlgu.2020.000368.

[23] Ge Y., Li H. Ochre, Li S. Fei. An adaptive dynamic
load balancing design and implementation for web
server cluster [J]. Computer and Digital Engineering,
2020, 48(12):3002-3007.

[24] Wu Chen. Research and improvement of server cluster
load balancing strategy based on Nginx [D]. South
China University of Technology, 2020. doi:10.

