
International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

DOI: 10.2478/ijanmc-2025-0005 50

Research on Dictionary-Based Word Segmentation

Algorithms Using Trie Structure

Boxing Zhang

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 1824595833@qq.com

Xin Jing

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: jingxin@xatu.edu.cn

Qinlong Kang

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 1142926763@qq.com

Abstract—This study investigates dictionary-based word

segmentation algorithms, which are essential in Natural

Language Processing (NLP). Chinese word segmentation

poses significant challenges due to the lack of clear word

delimiters in the language. This paper explores the

advantages and limitations of dictionary-based

segmentation algorithms, focusing on how data

structures such as Trie and Double-Array Trie (DAT)

can enhance segmentation efficiency. An analysis of Trie

and DAT structures leads to an optimization achieving

constant-time state transitions. This paper evaluates and

compares various segmentation algorithms, including

full segmentation, forward maximum matching,

backward maximum matching, and bidirectional

maximum matching. The inherent limitations of

dictionary-based segmentation, particularly its

dependence on dictionaries and poor disambiguation

capability, are also discussed.

Keywords-Word Segmentation; Trie; Natural

Language Processing; Double-Array Trie

I. INTRODUCTION

Word segmentation [1] is a fundamental in
Natural Language Processing (NLP). It forms the
basis for tasks such as word vector encoding, part-
of-speech tagging, syntactic parsing, and text
analysis. Unlike English, where words are clearly
separated by spaces, Chinese words appear as

continuous strings. Consequently, any NLP task
involving Chinese must address the issue of
segmenting text into individual words.

Popular approaches to Chinese word
segmentation [2] include statistical-based methods
and dictionary-based techniques. Statistics-based
segmentation methods are more expensive and
slower. Dictionary-based segmentation is one of
the simplest and most frequently used methods. It
only requires the construction of a dictionary and a
strategy for matching words against it. Dictionary
lookup essentially involves string matching, where
a target string is compared to entries in the
dictionary based on specific rules. This approach
can be categorized into Full segmentation
algorithms, Forward maximum matching
algorithms, Backward maximum matching
algorithms, and Bidirectional maximum matching
algorithms.

Though dictionary-based segmentation is not
complex, and its disambiguation performance is
poor, it has the advantage of being fast. The key to
leveraging this advantage lies not in the
segmentation algorithm itself but in the underlying
data structure supporting the dictionary.
Dictionary-based segmentation efficiency depends

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

51

heavily on the underlying data structure used to
represent the dictionary. Traditional approaches
relying on linear scans or hash-based lookups may
struggle to achieve the speed and scalability
required for modern NLP applications. In this
context, advanced data structures like Trie and
Double-Array Trie (DAT) provide significant
advantages:

Efficient matching: Tries enable prefix-based
matching with time complexity proportional to the
length of the query, making them well-suited for
word segmentation tasks.

Optimized memory usage: DAT structures
further enhance Tries by reducing memory
overhead and enabling constant-time state
transitions, which is critical for handling large-
scale dictionaries.

The study aims to address the problem of low
efficiency in traditional Chinese word
segmentation by integrating Trie and DAT
structures into dictionary-based algorithms.
Specifically, the research seeks to:

Analyze the theoretical advantages of Trie and
DAT in the context of Chinese word segmentation.
Design and implement segmentation algorithms
leveraging these data structures. Evaluate the
performance of the proposed methods through
extensive experiments, focusing on speed,
memory usage, and scalability.

Combining theoretical insights with practical
experiments comprehensively explores the
optimization of Chinese word segmentation using
advanced data structures. The findings aim to
contribute to the broader field of NLP by offering
efficient solutions to a critical preprocessing step
in text analysis.

II. DATA STRUCTURE

A. Trie

Trie, also known as a prefix tree, is a tree-like
data structure [3] that represents a deterministic
finite automaton (DFA), where each node
corresponds to a state representing the prefix of a
string. Moving from a parent node to a child node
signifies a state transition. A search is completed

when the terminal state is reached, or no further
transitions are possible. The key idea of a Trie is
leveraging shared prefixes to save time at the cost
of additional space, minimizing redundant string
comparisons, thus reducing query time and
improving efficiency.

Trie is particularly suited for tasks such as
statistics [4], sorting, and storing large amounts of
strings. Each edge in the Trie corresponds to a
character, and a path from the root node to a leaf
node forms a complete string. Trie structure do not
directly store strings at nodes. Instead, they treat a
word as the path from the root to a specific node,
marking that node as the word's endpoint.

For example, in the Trie shown in Fig. 1, each
string is represented by a path. Searching for a
word involves following the path starting from the
root node. If the search reaches a node with a
special marker, it indicates that the string exists in
the set; otherwise, it means the string is not present.

1) Construction

A Trie works like a dictionary, with its
directory structure mimicking real-life dictionary
organization.

Figure 1. Trie

A string is essentially a path. To query a word,
simply follow this path starting from the root node.
If it reaches a node with a special marker, it
indicates that the string exists in the set; otherwise,

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

52

it means the string is not present. The paths for
string are shown in Table 1.

a) First, a root node is defined, which does

not contain any value.

TABLE I. PATH DIAGRAM

String Path

by 0—1—2

he 0—3—4

heir 0—3—4—5—6

her 0—3—4—7

hi 0—3—8

my 0—9—10

b) Then, using a for loop in a manner similar

to Depth-First Search (DFS), each character of

the string is checked sequentially to see if it exists

in the Trie.

c) If a character does not exist, a child node is

created and inserted.

d) If it does exist, the next subtree is retrieved

in a DFS manner.

The construction process of the Trie can be
broken down as shown in Fig. 2.

The overall steps are as follows:

a) First, define the root node, which does not

store any characters.

b) When adding the first string, “by”, to the

Trie, since “b” does not exist in the Trie, it is

added. Since the first character is not present in

the Trie, none of the subsequent characters in the

string will have been traversed either, so the

following characters are added starting from the

node indicated by “b”.

c) After all characters of the first string are

added to the Trie, the current node's isEnd is set

to True, indicating that this node marks the end of

the added string.

d) This process is repeated until all strings

are added.

2) Lookup

Trie lookup involves matching a string by
traversing the nodes in the Trie:

a) Start at the root node and search for the

first character of the string.

b) If the character is not found, return a

negative result, indicating that the string is not in

the dictionary.

c) If the first character is found, proceed with

a DFS from the matched node. If at any point

during this traversal, the character is not found,

as described in step b, the matching is considered

unsuccessful.

Figure 2. The construction process of the Trie

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

53

d) If all characters in the string are matched,

check whether the final node is marked as a

special terminal node, if isEnd=True, indicating

that the full string is present in the dictionary.

In Fig. 1, the blue path shows the matching
process for “hei”, but since the last node (node 5)
is not a terminal node, “hei” is a substring rather
than a complete string in the Trie, resulting in a
failed match.

3) Performance Evaluation
Constructing a Trie requires scanning all strings,

resulting in a time complexity of O(n), where n is
the total length of the strings. However, the Trie
can be constructed incrementally, allowing for
simultaneous querying. The time complexity for
querying is O(k), where k is the average length of
the strings. Thus, for frequent lookups within a set
of strings, the Trie structure is highly efficient.

The key concept of the Trie is to trade space for
time. In a typical binary tree, nodes store pointers
to left and right children. However, in a Trie,
nodes can have many children—up to 26 in the
case of the English alphabet. To store these child
pointers, an array of pointers (or indices) is used,
where each pointer corresponds to a child node.
For a set of strings with an average length of l, the
worst-case memory usage for storing the pointers
in a Trie would be proportional to 26l, leading to
significant memory overhead.

This is particularly problematic in Chinese,
where each node needs an array far larger than 26.
Even with Java's UTF-16 encoding, a perfect hash
requires each node to maintain an array of size
65,536. For a string of length n, the worst-case
memory usage can grow exponentially, leading to
Out of Memory (OOM) errors. Such a design is
impractical for Chinese word segmentation.

What are potential solutions to this issue?

B. Double-Array Trie (DAT)

We apply a binary search strategy to all nodes
except the root, enabling the first character match
to be achieved with a time complexity of O(1).
However, for subsequent nodes using binary
search, the state transition complexity is O(log c),
where c represents the number of child nodes.

When c is large, the transition speed is still slow.
In 1989, Jun-Ichi Aoe proposed the Double-Array
Trie [5], a data structure with a constant state
transition complexity.

1) Algorithm Principles
The DAT is a finite-state automaton [6] that

consists of two integer arrays: base and check.
Each element in the base array represents a node
(or state), while the check array indicates the
predecessor state of a node. Initially, all elements
in the base and check arrays are set to 0, signifying
that a state is unoccupied. If a state represents a
complete word, its corresponding base value is set
to a negative number (if the state represents a
complete word and is not a prefix for any other
word, its base value can be set to the negative
value of its state position). A state transition is
successful when the following conditions are met:

 p = base[b] + c

 check[p] = base[b]
Where b is the index of the current state, c is

the value of the accepted character, and p is the
index of the transition state. If these conditions are
not met, the state transition fails. The state transfer
process is shown in Fig. 3.

For example, to check if a transition to the state

“西安工” is possible, we compute: “西安工” =

base[西安] + “工” and verify whether check[西安
工] == base[西安]， This check is performed with

one addition and one integer comparison,
allowing state transitions in constant time.

2) Construction
The construction of the DAT essentially

involves traversing a regular Trie and assigning
indices in the double arrays for each node while
maintaining and updating the values of the arrays.
The most complex part of the construction is
determining the base value for each state. The base
value of a state must ensure that there is enough
space in the array for all its child nodes. The
construction process can be outlined as follows:

Take Trie shown in Fig. 4 as an example.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

54

Figure 3. The state transfer process

Figure 4. Example of Trie

To simplify, we manually encode the characters
in the dictionary as follows, as in Table 2.

a) Initialize the Arrays, as in Table 3

Initialize base [0] = 1, with the check array set
to all zeros.

b) Assign subscripts to nodes

The root node has child nodes: “西”, “长”, and

“安”. We assign positions to them such that check

[base [0] + Si.code] = 0, meaning the assigned
positions are free.

For “西”, S 西.code = 1, base[0] = 1, base[0]+ S

西.code = 2. If check[2] = 0, assign index 2 to “西”,

setting check[2] = base[0] = 1, linking the state
represented by index 2 with its parent (the root

node). For “长”, assign index 6 similarly, setting

check[6] = base[0] = 1. For “安”, assign index 3,

setting check[3] = base[0] = 1.

No conflicts occurred during this round of array
maintenance, and the results are shown in Table 4.

c) Continued distribution

In the next round, treat the child node “西” as

the new parent. First, check whether “西” is a leaf

node; since it’s not, find its children: “安” and

“咸”. For “安”, S 安.code = 2, the task is to find a

free position for insertion. The transition point is

no longer the root node but its parent node “西”.

Following the rule for calculating the index p
using the formula base[s]+c = p, where is the

current node, we have: base[2]+S 安 .code = p.

There are two unknowns in this equation: the
position of base [2] and the index p for insertion.
Let’s assume that the insertion index p is 4, i.e., p
= 4. We can then deduce: base [2] = p - 2 = 2. The
results at this stage are shown in Table 5.

TABLE II. ENCODE THE CHARACTERS

Character Code

西 1

安 2

城 3

咸 4

长 5

全 6

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

55

TABLE III. INITIALIZE THE ARRAYS

Character

Serial Number 0 1 2 3 4 5 6 7 8 9 10

base 1

check 0 0 0 0 0 0 0 0 0 0 0

TABLE IV. START ALLOCATION

Character 西 安 长

Serial

Number
0 1 2 3 4 5 6 7 8 9 10

base 1

check 0 0 1 1 0 0 1 0 0 0 0

Next, we process the second child node, “咸.”

Based on the known information, we can calculate

check[base[2] + S 咸 .code] = check[6]. Since

check[6] ≠ 0, this indicates a conflict because the

position was already assigned to the character “长”

during a previous step. To resolve this conflict, we
shift the pre-allocated position by one slot (though
it can be shifted by more depending on the
algorithm’s rules). Now, check[7] = 0, so position

7 is allocated to “咸”.

To ensure that both base[s]+c = p and check[p]
= base[s] are satisfied, we update the arrays. By

backtracking, we compute base[2] = p - S 咸.code =

3. Additionally, the state of the previously inserted

node “安” must be maintained. Thus, we verify if

check[base[2]+ S 安.code] = check[5] = 0. If this

condition is satisfied, “安” is inserted at position 5,

and both base[5] and check[5] are updated
accordingly. The array at this point is shown in
Table 6.

d) Iteration

And so on, Similarly, it is worth noting that
when a node is a leaf node, the corresponding base
value is set to -1, as shown in Table 7.

It can be observed that the key challenge in
constructing the DAT lies in handling state
conflicts. In the process of constructing the DAT,
conflicts are inevitable. These conflicts often arise
when multiple words share common characters.

For example, in the words “西安城”, “长安”, and

“安全”, the character “安” is common across all of

them. While these words can share a common
prefix in the Trie, issues arise when the suffixes
contain identical characters, or when suffixes
overlap with prefixes. In such cases, a new node
must be constructed, which will inevitably cause a
conflict. Once a conflict occurs, the base value of
the parent node must be adjusted to ensure that all
child nodes can find a free position for insertion.
This also necessitates the reconstruction of any
previously constructed child nodes.

TABLE V. CONTINUE ALLOCATION

Character 西 安 安 长

Serial Number 0 1 2 3 4 5 6 7 8 9 10

base 1 2

check 0 0 1 1 0 0 1 0 0 0

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

56

TABLE VI. REALLOCATION PROCESS

Character 西 安 安 长 咸

Serial Number 0 1 2 3 4 5 6 7 8 9 10

base 1 3

check 0 0 1 1 0 3 1 3 0 0

TABLE VII. FINAL RESULT

Character 西 安 安 安 长 咸 城 全

Serial Number 0 1 2 3 4 5 6 7 8 9 10

base 1 3 4 -1 5 2 -1 -1 -1

check 0 0 1 1 2 3 1 3 5 0 4

As a result, the construction time for a DAT
can be quite long, and sometimes inserting a single
new word may require reconstructing the entire
Trie. Additionally, the order in which words are
inserted can lead to different conflict scenarios.
Typically, when constructing DAT, all the first
characters of the words are built first, followed by
the child nodes for each word. In this way, if a
conflict arises, it can be isolated to a single parent
and its immediate child nodes, thus avoiding the
need for widespread reconstruction of the Trie.

III. ALGORITHM

A. Full Segmentation Algorithms

1) Algorithm Concept
The Full Segmentation Algorithms aim to

identify all possible words in a segment of text.
The logic behind implementing naive full
segmentation algorithms is simple: simply traverse
the continuous sequences in the text and check
whether each sequence exists in the dictionary.
The algorithm concept is illustrated in Fig. 5.

The core idea of the Full Segmentation
Algorithms involves two for loops that traverse
every possible continuous sequence in the text for
comparison. The first comparison starts with the
first character and then sequentially adds each
following character to form a string. If the string
exists in the dictionary as a valid word, it is

considered a word and added to our list of
segmented words. The second loop starts from the
second character and combines subsequent
characters to form new strings, continuing this
process until the last character of the text is
reached.

Figure 5. Full Segmentation Algorithm Flow

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

57

In the code, an ordered set TreeMap [7] is used,
with a complexity of O(log n). The test results are
shown in Fig. 6.

As shown, the Full Segmentation Algorithm
outputs all individual characters and words from
the text. However, this is not the desired outcome
for Chinese word segmentation. In practice, what
we need is a meaningful sequence of words. For

example, we expect “西安工业大学 ” to be

segmented as a single word, rather than

fragmented as “西安+工业+大学”. This problem

occurs for two reasons:

a) The dictionary does not contain “西安工业大学”

as a continuous word.

b) The Full Segmentation Algorithm does not account

for the fact that longer words typically express meanings

that are closer to the actual context.

Thus, we can solve these issues by expanding
the dictionary and incorporating the Longest
Matching Algorithm.

2) Modifying the Dictionary Word Repository
We can use the mini core dictionary that comes

with HanLP. This dictionary is a plain text file that
can be opened directly with a text editor. The
format after opening is shown in Fig. 7.

The dictionary format in HanLP is a space-
separated table. The first column contains the
words, and the next two columns represent the
word type and corresponding word frequency (the
frequency is derived from a corpus). During full
segmentation, it was observed that the dictionary

does not contain “西安工业大学” as a continuous

word.

By manually modifying the dictionary, “西安
工业大学” is added to the dictionary repository, as

shown in Fig. 8.

Figure 6. Test results

Now, let's retest the Full Segmentation results,
as shown in Fig. 9. As the results clearly show,

“西安工业大学 ” appears in the segmentation

output. This validates our solution to the first

problem, which involved modifying the dictionary.
However, in real applications, it is not feasible to
manually create a dictionary based on the text to
be segmented. Instead, segmentation is performed
based on an existing dictionary, which inherently
limits the ability to recognize new words.

Figure 7. The format

Figure 8. added to the dictionary repository

Figure 9. Results After Dictionary Modification

B. Maximum Matching Algorithm

While Full Segmentation Algorithms can
capture all the words present in the dictionary,
many of the words identified, particularly single
characters, are often meaningless. To obtain a
more meaningful sequence of words, we introduce
the Maximum Matching Algorithm [8],

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

58

establishing the rule that “longer words take
priority”. Specifically, when traversing and
matching words starting from a particular index,
the longer word is preferred. Depending on the
strategy, this leads to three variants: Forward
Maximum Matching Algorithm (FMM),
Backward Maximum Matching Algorithm (BMM),
and Bidirectional Maximum Matching Algorithm
(BIMM).

1) Forward Maximum Matching Algorithm
FMM begin by scanning the text from index 0

in a forward direction. In contrast to the logic of
the Full Segmentation Algorithm, a new variable
longestword is introduced to record the longest
matched word. The longest word is then added to
the word list. The algorithm concept is shown in
Fig. 10.

In the FMM, the first for loop retrieves the
longest string starting from the first character. The
second for loop then iterates over all possible
combinations starting from the first character. If a
word exists in the dictionary, the algorithm checks
whether the current word is longer than the
previous longest match. If it is, the previous match
is replaced with the current one. The longest word
found in the first round of matching is then added
to the list. To ensure the segmentation results,
when concatenated, match the original text, the
second round of traversal begins from the next
character after the longest matched word, and the
process repeats until 𝑖 > text.length(). The
implementation result is shown in Fig. 11.

Observation of the output successfully
addressed the two main issues encountered with
the Full Segmentation Algorithm. However, a new

issue arises. In the text “西安工业大学计算机科
学与工程学院”, the valid word segments are “工
程” and “学院”. Using the Forward Segmentation

Algorithm, based on the principle that “longer
words take priority”, the segmentation results

include “工程学” and the single character “院”,

which are clearly incorrect. The error arises

because “工程学” takes precedence over “工程”

due to its length.

To eliminate this ambiguity, the process can
start from the end of the text and traverse forward
to find the longest match.

Figure 10. FMM Concept

Figure 11. FMM Segmentation Results

2) Backward Maximum Matching Algorithm
BMM [9] follows the same concept as the

FMM, but instead starts from the last character of
the text and traverses forward. It’s important to
note that does not mean reversing the text; the
segmentation results are still ordered according to
the sentence’s original sequence. As the algorithm
concept has already been described.

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

59

Fortunately, the issues caused by the FMM do
not appear in the BMM. However, if we use the

phrase “醒目的大树” as the segmentation

target, the result is problematic:[醒,目的,大树].

This demonstrates that the BMM is not perfect
either, and it’s difficult to definitively say whether
the FMM or BMM performs better.

3) Bidirectional Maximum Matching Algorithm
By applying both the FMM and BMM to

segment certain texts, we see that sometimes
forward matching performs better, and sometimes
backward matching is superior. There are also
cases where neither algorithm successfully
resolves the ambiguity.

According to Professor Sun Maosong from
Tsinghua University, in about 90% of Chinese
sentences, the segmentation results of the FMM
and BMM are identical. However, in 9% of
sentences, the two algorithms produce different
results, and one of these results is always correct.
Only in 1% of cases do both algorithms fail to
produce a correct segmentation result.

This raises the question: is it possible to design
a rule-based strategy that selects the correct
segmentation result from the two algorithms? In
response, the BIMM [10] was proposed,
combining both FMM and BMM with the
following strategy:

a) Perform both FMM and BMM. If the

number of words differs, return the result with

fewer words.

b) If the word counts are the same, return the

result with fewer single-character words.

c) If the number of single-character words is

also the same, prioritize the result from BMM.

The results indicate that while the BIMM
successfully selects the best result in certain cases,
it chooses incorrect results in others. As a result,
its overall accuracy is sometimes even lower than
that of the BMM. Therefore, rule-based
segmentation algorithms are fragile and cannot
guarantee an optimal result, the end result is just
robbing Peter to pay Paul.

IV. EXPERIMENTAL RESULT AND ANALYSIS

Dictionary-based Segmentation Algorithms are
limited by the dictionary.

A. Naive Implementation

The performance of the four segmentation
algorithms was tested under the naive
implementation.

1) Definition of Test Methods and Test Cases

a) Speed Test Method

The speed test method is shown in Fig. 12.

Figure 12. Speed test method

First, use the System.currentTimeMillis method
to record the program's start time and store it in the
variable start. Then, use a for loop to repeatedly
perform the segmentation operation pressure times.
Within the loop, call the back_longest_seg method
to segment the text text.

After the loop completes, record the end time
and calculate the total time taken for the entire
segmentation process, costTime, in seconds. This
is calculated by subtracting the start time from the
end time and dividing by 1000.

Finally, print the segmentation speed (i.e., the
number of characters processed per second). The
speed is calculated as (text.length * pressure) /
costTime / 10000, with the result expressed in
units of “ten thousand characters per second”.

b) Test Case

Text = “西安工业大学计算机科学与工程学
院”.

Pressure = 100,000 iterations.

2) Test Results

The test results are shown in Fig. 13.

The results of these tests demonstrated that,
under naive conditions, the FMM outperformed
the other algorithms in terms of speed. While the

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

60

BMM showed competitive performance, the
BIMM was slightly slower due to the overhead of
combining both forward and backward passes. The
Full Segmentation Algorithm was the slowest,
given its need to evaluate all possible word
combinations, significantly increasing its
computational complexity.

Under these circumstances, the time complexity
is O (log n).

B. Trie Implementation

We tested the performance of the Full
Segmentation Algorithm and the FMM using the
Trie structure.

1) Defining the Test Method and Test Cases

The testing method and test cases for this
structure are similar to those used in the naive
implementation.

2) Test Results

A Comparison of test results between the two
structures is shown in Fig. 14.

C. DAT Implementation

The performance of the Full Segmentation
Algorithm and the FMM were tested using the
DAT structure.

1) Defining the Test Method and Test Cases

The testing method and test cases for this
structure are similar to those used in the naive
implementation.

2) Test Results

The test results of this method are shown in Fig.
15.

The comparison results of the three cases are
shown in Fig. 16. The results showed a significant
improvement in both algorithms' performance
compared to their naive implementations. The
DAT structure achieves constant-time state
transitions. This reduces overall computational
complexity, especially for FMM, where
segmentation requires fewer comparisons and
faster state transitions.

Figure 13. Test results（Naive）

Figure 14. Test results（Trie）

Figure 15. Test results（DAT）

During the state transition process, the time
complexity approaches O (1). This is because, in
the DAT structure, once the initial state is
determined, the transition between states involves
only a constant number of operations, such as
index calculation and comparison. This efficiency
makes the DAT highly suitable for large-scale

International Journal of Advanced Network, Monitoring and Controls Volume 10, No.01, 2025

61

word segmentation tasks, as it ensures consistent performance regardless of the input size.

Figure 16. Comparison of test results between the three structures

V. CONCLUSIONS

The segmentation algorithms themselves are
not inherently complex. The key to leveraging the
natural advantages of fast segmentation lies not in
the segmentation process itself, but in the data
structure that supports the dictionary. By
optimizing the data structure, the efficiency of
string matching improves by orders of magnitude.

The DAT achieves constant-time complexity
for state transitions, though the algorithm still has
limitations:

When performing Full Segmentation on text of
length n, the complexity can degrade to O(n2).
This is because during full segmentation, the
starting point constantly shifts to discover new
matches. For example, suppose the dictionary
contains all Arabic numerals. Scanning the text
“123” results in 6 state transitions: 1, 12, 123, 2,
23, 3. Extending this to the text "123...n," the total
number of state transitions becomes n + (n-1) + …
+ 1 = n(n+1)/2 = O(n2). An Aho-Corasick
Automaton can optimize the DAT by performing
only a single scan to find all matches.

On the other hand, it is noted that dictionary-
based segmentation heavily relies on the
dictionary itself, leading to poor disambiguation
and limited ability to recognize new words. Today,
in the field of NLP, deep learning-powered
statistical models are more prevalent in
segmentation algorithms.

REFERENCES

[1] Pak I, Teh P L. Text segmentation techniques: a critical
review [J]. Innovative Computing, Optimization and Its
Applications: Modelling and Simulations, 2018: 167-
181.

[2] Liu C, Zhang Q, Feng J, et al. A Chinese word
segmentation method based on dictionary and HMM
[C]//Proceedings of the 2022 6th International
Conference on Electronic Information Technology and
Computer Engineering. 2022: 644-649.

[3] Sugahara R, Nakashima Y, Inenaga S, et al. Efficiently
computing runs on a trie [J]. Theoretical Computer
Science, 2021, 887: 143-151.

[4] Yeasin Emon R, Chanda Tista S. An Efficient Word
Lookup System by using Improved Trie Algorithm [J].
arXiv e-prints, 2019: arXiv: 1911.01763.

[5] Bannai H, Goto K, Kanda S, et al. NP-Completeness for
the Space-Optimality of Double-Array Tries [J]. arXiv
preprint arXiv:2403.04951, 2024.

[6] Piedeleu R, Zanasi F. A String Diagrammatic
Axiomatisation of Finite-State Automata [C]//FoSSaCS.
2021: 469-489.

[7] Scheibel W, Limberger D, Döllner J. Survey of treemap
layout algorithms [C]//Proceedings of the 13th
international symposium on visual information
communication and interaction. 2020: 1-9.

[8] Pei J. A dictionary-based maximum match algorithm
via statistical information for Chinese word
segmentation [J]. International Journal of Electronics
and Information Engineering, 2020, 12(1): 24-33.

[9] Li R. English Translation Intelligent Recognition Model
Based on Reverse Maximum Matching Segmentation
Algorithm [C]//International Conference on Innovative
Computing. Singapore: Springer Nature Singapore,
2023: 342-349.

[10] Yan X, Xiong X, Cheng X, et al. HMM-BiMM: Hidden
Markov Model-based word segmentation via improved
Bi-directional Maximal Matching algorithm [J].
Computers & Electrical Engineering, 2021, 94: 107354.

