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Abstract—This study investigates dictionary-based word 

segmentation algorithms, which are essential in Natural 

Language Processing (NLP). Chinese word segmentation 

poses significant challenges due to the lack of clear word 

delimiters in the language. This paper explores the 

advantages and limitations of dictionary-based 

segmentation algorithms, focusing on how data 

structures such as Trie and Double-Array Trie (DAT) 

can enhance segmentation efficiency. An analysis of Trie 

and DAT structures leads to an optimization achieving 

constant-time state transitions. This paper evaluates and 

compares various segmentation algorithms, including 

full segmentation, forward maximum matching, 

backward maximum matching, and bidirectional 

maximum matching. The inherent limitations of 

dictionary-based segmentation, particularly its 

dependence on dictionaries and poor disambiguation 

capability, are also discussed. 

Keywords-Word Segmentation; Trie; Natural 

Language Processing; Double-Array Trie 

I. INTRODUCTION  

Word segmentation [1] is a fundamental in 
Natural Language Processing (NLP). It forms the 
basis for tasks such as word vector encoding, part-
of-speech tagging, syntactic parsing, and text 
analysis. Unlike English, where words are clearly 
separated by spaces, Chinese words appear as 

continuous strings. Consequently, any NLP task 
involving Chinese must address the issue of 
segmenting text into individual words. 

Popular approaches to Chinese word 
segmentation [2] include statistical-based methods 
and dictionary-based techniques. Statistics-based 
segmentation methods are more expensive and 
slower. Dictionary-based segmentation is one of 
the simplest and most frequently used methods. It 
only requires the construction of a dictionary and a 
strategy for matching words against it. Dictionary 
lookup essentially involves string matching, where 
a target string is compared to entries in the 
dictionary based on specific rules. This approach 
can be categorized into Full segmentation 
algorithms, Forward maximum matching 
algorithms, Backward maximum matching 
algorithms, and Bidirectional maximum matching 
algorithms. 

Though dictionary-based segmentation is not 
complex, and its disambiguation performance is 
poor, it has the advantage of being fast. The key to 
leveraging this advantage lies not in the 
segmentation algorithm itself but in the underlying 
data structure supporting the dictionary. 
Dictionary-based segmentation efficiency depends 
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heavily on the underlying data structure used to 
represent the dictionary. Traditional approaches 
relying on linear scans or hash-based lookups may 
struggle to achieve the speed and scalability 
required for modern NLP applications. In this 
context, advanced data structures like Trie and 
Double-Array Trie (DAT) provide significant 
advantages: 

Efficient matching: Tries enable prefix-based 
matching with time complexity proportional to the 
length of the query, making them well-suited for 
word segmentation tasks. 

Optimized memory usage: DAT structures 
further enhance Tries by reducing memory 
overhead and enabling constant-time state 
transitions, which is critical for handling large-
scale dictionaries. 

The study aims to address the problem of low 
efficiency in traditional Chinese word 
segmentation by integrating Trie and DAT 
structures into dictionary-based algorithms. 
Specifically, the research seeks to: 

Analyze the theoretical advantages of Trie and 
DAT in the context of Chinese word segmentation. 
Design and implement segmentation algorithms 
leveraging these data structures. Evaluate the 
performance of the proposed methods through 
extensive experiments, focusing on speed, 
memory usage, and scalability. 

Combining theoretical insights with practical 
experiments comprehensively explores the 
optimization of Chinese word segmentation using 
advanced data structures. The findings aim to 
contribute to the broader field of NLP by offering 
efficient solutions to a critical preprocessing step 
in text analysis. 

II. DATA STRUCTURE 

A. Trie 

Trie, also known as a prefix tree, is a tree-like 
data structure [3] that represents a deterministic 
finite automaton (DFA), where each node 
corresponds to a state representing the prefix of a 
string. Moving from a parent node to a child node 
signifies a state transition. A search is completed 

when the terminal state is reached, or no further 
transitions are possible. The key idea of a Trie is 
leveraging shared prefixes to save time at the cost 
of additional space, minimizing redundant string 
comparisons, thus reducing query time and 
improving efficiency. 

Trie is particularly suited for tasks such as 
statistics [4], sorting, and storing large amounts of 
strings. Each edge in the Trie corresponds to a 
character, and a path from the root node to a leaf 
node forms a complete string. Trie structure do not 
directly store strings at nodes. Instead, they treat a 
word as the path from the root to a specific node, 
marking that node as the word's endpoint. 

For example, in the Trie shown in Fig. 1, each 
string is represented by a path. Searching for a 
word involves following the path starting from the 
root node. If the search reaches a node with a 
special marker, it indicates that the string exists in 
the set; otherwise, it means the string is not present. 

1) Construction 

A Trie works like a dictionary, with its 
directory structure mimicking real-life dictionary 
organization. 

 

Figure 1. Trie 

A string is essentially a path. To query a word, 
simply follow this path starting from the root node. 
If it reaches a node with a special marker, it 
indicates that the string exists in the set; otherwise, 
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it means the string is not present. The paths for 
string are shown in Table 1. 

a) First, a root node is defined, which does 

not contain any value. 

TABLE I.  PATH DIAGRAM 

String Path 

by 0—1—2 

he 0—3—4 

heir 0—3—4—5—6 

her 0—3—4—7 

hi 0—3—8 

my 0—9—10 

b) Then, using a for loop in a manner similar 

to Depth-First Search (DFS), each character of 

the string is checked sequentially to see if it exists 

in the Trie. 

c) If a character does not exist, a child node is 

created and inserted. 

d) If it does exist, the next subtree is retrieved 

in a DFS manner. 

The construction process of the Trie can be 
broken down as shown in Fig. 2. 

The overall steps are as follows: 

a) First, define the root node, which does not 

store any characters. 

b) When adding the first string, “by”, to the 

Trie, since “b” does not exist in the Trie, it is 

added. Since the first character is not present in 

the Trie, none of the subsequent characters in the 

string will have been traversed either, so the 

following characters are added starting from the 

node indicated by “b”. 

c) After all characters of the first string are 

added to the Trie, the current node's isEnd is set 

to True, indicating that this node marks the end of 

the added string. 

d) This process is repeated until all strings 

are added. 

2) Lookup 

Trie lookup involves matching a string by 
traversing the nodes in the Trie: 

a) Start at the root node and search for the 

first character of the string. 

b) If the character is not found, return a 

negative result, indicating that the string is not in 

the dictionary. 

c) If the first character is found, proceed with 

a DFS from the matched node. If at any point 

during this traversal, the character is not found, 

as described in step b, the matching is considered 

unsuccessful. 

 

 
Figure 2. The construction process of the Trie 
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d) If all characters in the string are matched, 

check whether the final node is marked as a 

special terminal node, if isEnd=True, indicating 

that the full string is present in the dictionary. 

In Fig. 1, the blue path shows the matching 
process for “hei”, but since the last node (node 5) 
is not a terminal node, “hei” is a substring rather 
than a complete string in the Trie, resulting in a 
failed match. 

3) Performance Evaluation 
Constructing a Trie requires scanning all strings, 

resulting in a time complexity of O(n), where n is 
the total length of the strings. However, the Trie 
can be constructed incrementally, allowing for 
simultaneous querying. The time complexity for 
querying is O(k), where k is the average length of 
the strings. Thus, for frequent lookups within a set 
of strings, the Trie structure is highly efficient. 

The key concept of the Trie is to trade space for 
time. In a typical binary tree, nodes store pointers 
to left and right children. However, in a Trie, 
nodes can have many children—up to 26 in the 
case of the English alphabet. To store these child 
pointers, an array of pointers (or indices) is used, 
where each pointer corresponds to a child node. 
For a set of strings with an average length of l, the 
worst-case memory usage for storing the pointers 
in a Trie would be proportional to 26l, leading to 
significant memory overhead. 

This is particularly problematic in Chinese, 
where each node needs an array far larger than 26. 
Even with Java's UTF-16 encoding, a perfect hash 
requires each node to maintain an array of size 
65,536. For a string of length n, the worst-case 
memory usage can grow exponentially, leading to 
Out of Memory (OOM) errors. Such a design is 
impractical for Chinese word segmentation. 

What are potential solutions to this issue? 

B. Double-Array Trie (DAT) 

We apply a binary search strategy to all nodes 
except the root, enabling the first character match 
to be achieved with a time complexity of O(1). 
However, for subsequent nodes using binary 
search, the state transition complexity is O(log c), 
where c represents the number of child nodes. 

When c is large, the transition speed is still slow. 
In 1989, Jun-Ichi Aoe proposed the Double-Array 
Trie [5], a data structure with a constant state 
transition complexity. 

1) Algorithm Principles 
The DAT is a finite-state automaton [6] that 

consists of two integer arrays: base and check. 
Each element in the base array represents a node 
(or state), while the check array indicates the 
predecessor state of a node. Initially, all elements 
in the base and check arrays are set to 0, signifying 
that a state is unoccupied. If a state represents a 
complete word, its corresponding base value is set 
to a negative number (if the state represents a 
complete word and is not a prefix for any other 
word, its base value can be set to the negative 
value of its state position). A state transition is 
successful when the following conditions are met: 

 p = base[b] + c 

 check[p] = base[b] 
Where b is the index of the current state, c is 

the value of the accepted character, and p is the 
index of the transition state. If these conditions are 
not met, the state transition fails. The state transfer 
process is shown in Fig. 3. 

For example, to check if a transition to the state 

“西安工” is possible, we compute: “西安工” = 

base[西安] + “工” and verify whether check[西安
工] == base[西安]， This check is performed with 

one addition and one integer comparison,  
allowing state transitions in constant time.  

2) Construction 
The construction of the DAT essentially 

involves traversing a regular Trie and assigning 
indices in the double arrays for each node while 
maintaining and updating the values of the arrays. 
The most complex part of the construction is 
determining the base value for each state. The base 
value of a state must ensure that there is enough 
space in the array for all its child nodes. The 
construction process can be outlined as follows: 

Take Trie shown in Fig. 4 as an example. 
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Figure 3. The state transfer process 

 

Figure 4. Example of Trie 

To simplify, we manually encode the characters 
in the dictionary as follows, as in Table 2. 

a) Initialize the Arrays, as in Table 3 

Initialize base [0] = 1, with the check array set 
to all zeros. 

b) Assign subscripts to nodes 

The root node has child nodes: “西”, “长”, and 

“安”. We assign positions to them such that check 

[base [0] + Si.code] = 0, meaning the assigned 
positions are free. 

For “西”, S 西.code = 1, base[0] = 1, base[0]+ S

西.code = 2. If check[2] = 0, assign index 2 to “西”, 

setting check[2] = base[0] = 1, linking the state 
represented by index 2 with its parent (the root 

node). For “长”, assign index 6 similarly, setting 

check[6] = base[0] = 1. For “安”, assign index 3, 

setting check[3] = base[0] = 1.  

No conflicts occurred during this round of array 
maintenance, and the results are shown in Table 4. 

c) Continued distribution 

In the next round, treat the child node “西” as 

the new parent. First, check whether “西” is a leaf 

node; since it’s not, find its children: “安” and 

“咸”. For “安”, S 安.code = 2, the task is to find a 

free position for insertion. The transition point is 

no longer the root node but its parent node “西”. 

Following the rule for calculating the index p 
using the formula base[s]+c = p, where is the 

current node, we have: base[2]+S 安 .code = p. 

There are two unknowns in this equation: the 
position of base [2] and the index p for insertion. 
Let’s assume that the insertion index p is 4, i.e., p 
= 4. We can then deduce: base [2] = p - 2 = 2. The 
results at this stage are shown in Table 5. 

TABLE II.  ENCODE THE CHARACTERS 

Character Code 

西 1 

安 2 

城 3 

咸 4 

长 5 

全 6 
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TABLE III.  INITIALIZE THE ARRAYS 

Character            

Serial Number 0 1 2 3 4 5 6 7 8 9 10 

base 1           

check 0 0 0 0 0 0 0 0 0 0 0 

TABLE IV.  START ALLOCATION 

Character   西 安   长     

Serial 

Number 
0 1 2 3 4 5 6 7 8 9 10 

base 1           

check 0 0 1 1 0 0 1 0 0 0 0 

 

Next, we process the second child node, “咸.” 

Based on the known information, we can calculate 

check[base[2] + S 咸 .code] = check[6]. Since 

check[6] ≠ 0, this indicates a conflict because the 

position was already assigned to the character “长” 

during a previous step. To resolve this conflict, we 
shift the pre-allocated position by one slot (though 
it can be shifted by more depending on the 
algorithm’s rules). Now, check[7] = 0, so position 

7 is allocated to “咸”. 

To ensure that both base[s]+c = p and check[p] 
= base[s] are satisfied, we update the arrays. By 

backtracking, we compute base[2] = p - S 咸.code = 

3. Additionally, the state of the previously inserted 

node “安” must be maintained. Thus, we verify if 

check[base[2]+ S 安.code] = check[5] = 0. If this 

condition is satisfied, “安” is inserted at position 5, 

and both base[5] and check[5] are updated 
accordingly. The array at this point is shown in 
Table 6. 

d) Iteration 

And so on, Similarly, it is worth noting that 
when a node is a leaf node, the corresponding base 
value is set to -1, as shown in Table 7. 

It can be observed that the key challenge in 
constructing the DAT lies in handling state 
conflicts. In the process of constructing the DAT, 
conflicts are inevitable. These conflicts often arise 
when multiple words share common characters. 

For example, in the words “西安城”, “长安”, and 

“安全”, the character “安” is common across all of 

them. While these words can share a common 
prefix in the Trie, issues arise when the suffixes 
contain identical characters, or when suffixes 
overlap with prefixes. In such cases, a new node 
must be constructed, which will inevitably cause a 
conflict. Once a conflict occurs, the base value of 
the parent node must be adjusted to ensure that all 
child nodes can find a free position for insertion. 
This also necessitates the reconstruction of any 
previously constructed child nodes. 

TABLE V.  CONTINUE ALLOCATION 

Character   西 安 安  长     

Serial Number 0 1 2 3 4 5 6 7 8 9 10 

base 1  2         

check 0 0 1 1 0 0 1 0 0 0  
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TABLE VI.  REALLOCATION PROCESS 

Character   西 安  安 长 咸    

Serial Number 0 1 2 3 4 5 6 7 8 9 10 

base 1  3         

check 0 0 1 1 0 3 1 3 0 0  

TABLE VII.  FINAL RESULT 

Character   西 安 安 安 长 咸 城  全 

Serial Number 0 1 2 3 4 5 6 7 8 9 10 

base 1  3 4 -1 5 2 -1 -1  -1 

check 0 0 1 1 2 3 1 3 5 0 4 

As a result, the construction time for a DAT 
can be quite long, and sometimes inserting a single 
new word may require reconstructing the entire 
Trie. Additionally, the order in which words are 
inserted can lead to different conflict scenarios. 
Typically, when constructing DAT, all the first 
characters of the words are built first, followed by 
the child nodes for each word. In this way, if a 
conflict arises, it can be isolated to a single parent 
and its immediate child nodes, thus avoiding the 
need for widespread reconstruction of the Trie. 

III. ALGORITHM 

A. Full Segmentation Algorithms 

1) Algorithm Concept 
The Full Segmentation Algorithms aim to 

identify all possible words in a segment of text. 
The logic behind implementing naive full 
segmentation algorithms is simple: simply traverse 
the continuous sequences in the text and check 
whether each sequence exists in the dictionary. 
The algorithm concept is illustrated in Fig. 5. 

The core idea of the Full Segmentation 
Algorithms involves two for loops that traverse 
every possible continuous sequence in the text for 
comparison. The first comparison starts with the 
first character and then sequentially adds each 
following character to form a string. If the string 
exists in the dictionary as a valid word, it is 

considered a word and added to our list of 
segmented words. The second loop starts from the 
second character and combines subsequent 
characters to form new strings, continuing this 
process until the last character of the text is 
reached. 

 

Figure 5. Full Segmentation Algorithm Flow 
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In the code, an ordered set TreeMap [7] is used, 
with a complexity of O(log n). The test results are 
shown in Fig. 6. 

As shown, the Full Segmentation Algorithm 
outputs all individual characters and words from 
the text. However, this is not the desired outcome 
for Chinese word segmentation. In practice, what 
we need is a meaningful sequence of words. For 

example, we expect “西安工业大学 ” to be 

segmented as a single word, rather than 

fragmented as “西安+工业+大学”. This problem 

occurs for two reasons: 

a) The dictionary does not contain “西安工业大学” 

as a continuous word. 

b) The Full Segmentation Algorithm does not account 

for the fact that longer words typically express meanings 

that are closer to the actual context. 

Thus, we can solve these issues by expanding 
the dictionary and incorporating the Longest 
Matching Algorithm. 

2) Modifying the Dictionary Word Repository 
We can use the mini core dictionary that comes 

with HanLP. This dictionary is a plain text file that 
can be opened directly with a text editor. The 
format after opening is shown in Fig. 7. 

The dictionary format in HanLP is a space-
separated table. The first column contains the 
words, and the next two columns represent the 
word type and corresponding word frequency (the 
frequency is derived from a corpus). During full 
segmentation, it was observed that the dictionary 

does not contain “西安工业大学” as a continuous 

word. 

By manually modifying the dictionary, “西安
工业大学” is added to the dictionary repository, as 

shown in Fig. 8. 

 

Figure 6. Test results 

Now, let's retest the Full Segmentation results, 
as shown in Fig. 9. As the results clearly show, 

“西安工业大学 ” appears in the segmentation 

output. This validates our solution to the first 

problem, which involved modifying the dictionary. 
However, in real applications, it is not feasible to 
manually create a dictionary based on the text to 
be segmented. Instead, segmentation is performed 
based on an existing dictionary, which inherently 
limits the ability to recognize new words. 

 

Figure 7. The format 

 

Figure 8. added to the dictionary repository 

 
Figure 9. Results After Dictionary Modification 

B. Maximum Matching Algorithm 

While Full Segmentation Algorithms can 
capture all the words present in the dictionary, 
many of the words identified, particularly single 
characters, are often meaningless. To obtain a 
more meaningful sequence of words, we introduce 
the Maximum Matching Algorithm [8], 
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establishing the rule that “longer words take 
priority”. Specifically, when traversing and 
matching words starting from a particular index, 
the longer word is preferred. Depending on the 
strategy, this leads to three variants: Forward 
Maximum Matching Algorithm (FMM), 
Backward Maximum Matching Algorithm (BMM), 
and Bidirectional Maximum Matching Algorithm 
(BIMM). 

1) Forward Maximum Matching Algorithm 
FMM begin by scanning the text from index 0 

in a forward direction. In contrast to the logic of 
the Full Segmentation Algorithm, a new variable 
longestword is introduced to record the longest 
matched word. The longest word is then added to 
the word list. The algorithm concept is shown in 
Fig. 10. 

In the FMM, the first for loop retrieves the 
longest string starting from the first character. The 
second for loop then iterates over all possible 
combinations starting from the first character. If a 
word exists in the dictionary, the algorithm checks 
whether the current word is longer than the 
previous longest match. If it is, the previous match 
is replaced with the current one. The longest word 
found in the first round of matching is then added 
to the list. To ensure the segmentation results, 
when concatenated, match the original text, the 
second round of traversal begins from the next 
character after the longest matched word, and the 
process repeats until 𝑖 > text.length(). The 
implementation result is shown in Fig. 11. 

Observation of the output successfully 
addressed the two main issues encountered with 
the Full Segmentation Algorithm. However, a new 

issue arises. In the text “西安工业大学计算机科
学与工程学院”, the valid word segments are “工
程” and “学院”. Using the Forward Segmentation 

Algorithm, based on the principle that “longer 
words take priority”, the segmentation results 

include “工程学” and the single character “院”, 

which are clearly incorrect. The error arises 

because “工程学” takes precedence over “工程” 

due to its length. 

To eliminate this ambiguity, the process can 
start from the end of the text and traverse forward 
to find the longest match. 

 

Figure 10. FMM Concept 

 

Figure 11. FMM Segmentation Results 

2) Backward Maximum Matching Algorithm 
BMM [9] follows the same concept as the 

FMM, but instead starts from the last character of 
the text and traverses forward. It’s important to 
note that does not mean reversing the text; the 
segmentation results are still ordered according to 
the sentence’s original sequence. As the algorithm 
concept has already been described. 
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Fortunately, the issues caused by the FMM do 
not appear in the BMM. However, if we use the 

phrase “醒目的大树”  as the segmentation 

target, the result is problematic:[醒,目的,大树]. 

This demonstrates that the BMM is not perfect 
either, and it’s difficult to definitively say whether 
the FMM or BMM performs better. 

3) Bidirectional Maximum Matching Algorithm 
By applying both the FMM and BMM to 

segment certain texts, we see that sometimes 
forward matching performs better, and sometimes 
backward matching is superior. There are also 
cases where neither algorithm successfully 
resolves the ambiguity. 

According to Professor Sun Maosong from 
Tsinghua University, in about 90% of Chinese 
sentences, the segmentation results of the FMM 
and BMM are identical. However, in 9% of 
sentences, the two algorithms produce different 
results, and one of these results is always correct. 
Only in 1% of cases do both algorithms fail to 
produce a correct segmentation result. 

This raises the question: is it possible to design 
a rule-based strategy that selects the correct 
segmentation result from the two algorithms? In 
response, the BIMM [10] was proposed, 
combining both FMM and BMM with the 
following strategy: 

a) Perform both FMM and BMM. If the 

number of words differs, return the result with 

fewer words. 

b) If the word counts are the same, return the 

result with fewer single-character words. 

c) If the number of single-character words is 

also the same, prioritize the result from BMM. 

The results indicate that while the BIMM 
successfully selects the best result in certain cases, 
it chooses incorrect results in others. As a result, 
its overall accuracy is sometimes even lower than 
that of the BMM. Therefore, rule-based 
segmentation algorithms are fragile and cannot 
guarantee an optimal result, the end result is just 
robbing Peter to pay Paul. 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

Dictionary-based Segmentation Algorithms are 
limited by the dictionary. 

A. Naive Implementation 

The performance of the four segmentation 
algorithms was tested under the naive 
implementation. 

1) Definition of Test Methods and Test Cases 

a) Speed Test Method 

The speed test method is shown in Fig. 12. 

 
Figure 12. Speed test method 

First, use the System.currentTimeMillis method 
to record the program's start time and store it in the 
variable start. Then, use a for loop to repeatedly 
perform the segmentation operation pressure times. 
Within the loop, call the back_longest_seg method 
to segment the text text. 

After the loop completes, record the end time 
and calculate the total time taken for the entire 
segmentation process, costTime, in seconds. This 
is calculated by subtracting the start time from the 
end time and dividing by 1000. 

Finally, print the segmentation speed (i.e., the 
number of characters processed per second). The 
speed is calculated as (text.length * pressure) / 
costTime / 10000, with the result expressed in 
units of “ten thousand characters per second”. 

b) Test Case 

Text = “西安工业大学计算机科学与工程学
院”. 

Pressure = 100,000 iterations. 

2) Test Results 

The test results are shown in Fig. 13. 

The results of these tests demonstrated that, 
under naive conditions, the FMM outperformed 
the other algorithms in terms of speed. While the 
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BMM showed competitive performance, the 
BIMM was slightly slower due to the overhead of 
combining both forward and backward passes. The 
Full Segmentation Algorithm was the slowest, 
given its need to evaluate all possible word 
combinations, significantly increasing its 
computational complexity. 

Under these circumstances, the time complexity 
is O (log n). 

B. Trie Implementation 

We tested the performance of the Full 
Segmentation Algorithm and the FMM using the 
Trie structure. 

1) Defining the Test Method and Test Cases 

The testing method and test cases for this 
structure are similar to those used in the naive 
implementation. 

2) Test Results 

A Comparison of test results between the two 
structures is shown in Fig. 14. 

C. DAT Implementation 

The performance of the Full Segmentation 
Algorithm and the FMM were tested using the 
DAT structure. 

1) Defining the Test Method and Test Cases 

The testing method and test cases for this 
structure are similar to those used in the naive 
implementation. 

2) Test Results 

The test results of this method are shown in Fig. 
15. 

The comparison results of the three cases are 
shown in Fig. 16. The results showed a significant 
improvement in both algorithms' performance 
compared to their naive implementations. The 
DAT structure achieves constant-time state 
transitions. This reduces overall computational 
complexity, especially for FMM, where 
segmentation requires fewer comparisons and 
faster state transitions. 

 

Figure 13. Test results（Naive） 

 

Figure 14. Test results（Trie） 

 

Figure 15. Test results（DAT） 

During the state transition process, the time 
complexity approaches O (1). This is because, in 
the DAT structure, once the initial state is 
determined, the transition between states involves 
only a constant number of operations, such as 
index calculation and comparison. This efficiency 
makes the DAT highly suitable for large-scale 



International Journal of Advanced Network, Monitoring and Controls            Volume 10, No.01, 2025 

61 

word segmentation tasks, as it ensures consistent performance regardless of the input size. 

 

Figure 16. Comparison of test results between the three structures 

V. CONCLUSIONS 

The segmentation algorithms themselves are 
not inherently complex. The key to leveraging the 
natural advantages of fast segmentation lies not in 
the segmentation process itself, but in the data 
structure that supports the dictionary. By 
optimizing the data structure, the efficiency of 
string matching improves by orders of magnitude. 

The DAT achieves constant-time complexity 
for state transitions, though the algorithm still has 
limitations: 

When performing Full Segmentation on text of 
length n, the complexity can degrade to O(n2). 
This is because during full segmentation, the 
starting point constantly shifts to discover new 
matches. For example, suppose the dictionary 
contains all Arabic numerals. Scanning the text 
“123” results in 6 state transitions: 1, 12, 123, 2, 
23, 3. Extending this to the text "123...n," the total 
number of state transitions becomes n + (n-1) + … 
+ 1 = n(n+1)/2 = O(n2). An Aho-Corasick 
Automaton can optimize the DAT by performing 
only a single scan to find all matches. 

On the other hand, it is noted that dictionary-
based segmentation heavily relies on the 
dictionary itself, leading to poor disambiguation 
and limited ability to recognize new words. Today, 
in the field of NLP, deep learning-powered 
statistical models are more prevalent in 
segmentation algorithms. 
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