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Abstract—Remote Sensing Object Tracking refers to the 

process of detecting, recognizing, and tracking targets on 

the ground or at sea using remote sensing technology, 

particularly sensors mounted on satellite or aerial 

platforms to obtain high-resolution remote sensing image 

sequences. Current methods for remote sensing object 

tracking face challenges such as low tracking success 

rates and inefficiencies. This paper proposes a neural 

network for remote sensing object tracking based on 

SiamRPN++, which introduces an improved network 

structure incorporating the C3Minus module and a 

coordinate attention mechanism within the backbone 

extraction network. Furthermore, we design a feature 

extraction module, ResSwinT, that combines ResNet and 

Swin Transformer architectures to integrate local and 

global information obtained from feature maps as 

foundational features. This approach effectively 

addresses the aforementioned issues, and quantitative 

experiments demonstrate an increase in accuracy and 

success rates by 1.9% and 4.7%, respectively, indicating 

that our method effectively handles object tracking in 

remote sensing images. 
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I. INTRODUCTION  

In this paper, remote sensing targets refer to 
various objects captured in remote sensing images 
by satellite sensors in the visible light spectrum, 
specifically within the range of 0.38 to 0.76 
micrometers. These images contain a wealth of 
detailed information, effectively reflecting the 
shape, color, and texture of terrestrial objects, 
making them easily observable by the human eye. 
Target recognition represents a significant area of 
research within the field of computer vision, with 
the objective of detecting and tracking objects of 
interest within video sequences. 

The core task of target tracking involves 
predicting a target's future position and dimensions, 
starting from its initial state in the first video frame. 
This task comprises several crucial components: 
motion models, feature extraction, observation 
models, model updating, and ensemble methods. 
The motion model generates samples, feature 
extraction represents the target, the observation 
model evaluates the samples, model updating 
adjusts for target changes, and ensemble methods 
combine decisions for improved predictions. 

The field of remote sensing would be incomplete 
without the technology of remote sensing object 
tracking, which plays a pivotal role in the discipline. 
It involves detecting and identifying specific targets 
or features from remote sensing images, where the 
targets typically refer to roads, buildings, vehicles, 
aircraft, and ships. With advancements in remote 
sensing technology, remote sensing images now 
possess broad perspectives and ultra-high spatial 
and temporal resolutions, and they are minimally 
affected by variations in viewing angles and 
lighting conditions. The development of high 
resolution remote sensing portraits had increasingly 
emphasized the importance of remote sensing 
object recognition in various fields such as urban 
planning, environmental monitoring, agriculture, 
military applications, and disaster management. 
However, this advancement has also introduced 
new challenges within the remote sensing domain. 
As illustrated in Figure 1, remote sensing object 
difficulty recognition significantly increases in 
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Figure 1. Shows remote sensing portraits. The left portrait is the original image, which contains a lot of information. The right image is a partial image 
captured from the left image. It can be seen that even if it is magnified many times, the information in the image is still very rich

high-resolution images due to complex back-
grounds and the small size of targets relative to the 
overall image. 

To address the aforementioned issues, this study 
employs deep learning techniques to improve the 
SiamRPN++ [1] algorithm, enhancing its resolution 
and feature extraction capabilities in complex 
backgrounds, thereby significantly improving the 
tracking performance of small targets in remote 
sensing portraits. In modified neural network 
architecture, we introduce the C3Minus module 
structure and coordinate attention mechanism [2] to 
optimize the feature extraction capabilities of the 
backbone network. Furthermore, this study design 
a composite feature extraction module, ResSwinT, 
which combines CNN [3] and Swin Transformer 
[4]. This module effectively integrates local and 
global feature information, providing a richer 
representation foundation for the underlying 
features. 

II. RELATED WORKS 

Remote sensing target tracking can be classified 
into classical tracking methods, correlation filter-
based tracking methods, and deep learning-based 
tracking methods. 

Classical tracking methods mainly include 
Kalman filtering, particle filtering, and Bayesian 

estimation. Kalman filtering provides optimal 
estimates only within Gaussian linear models. To 
address this limitation, Kulikova [5] proposed a 
NIRK-based precise continuous-discrete extended 
Kalman filter, while Zhou Huan et al. [6] 
introduced an adaptive unscented Kalman filter for 
target tracking in nonlinear systems involving 
model mismatches, which can handle divergence 
caused by sensor failures or model mismatches 
during the tracking process. Particle filtering is a 
Monte Carlo-based method that models the target 
state as a set of particles, where each particle 
represents a possible estimate of the target state. 
The particles propagate over time according to a 
process model and update their weights based on 
measurement information. Particle filtering has 
been applied to target tracking in remote sensing 
images by modeling the target state as a set of 
variables and updating the particle weights 
according to remote sensing data. Bayesian 
estimation is a probabilistic method for target 
tracking that models the target state as a probability 
distribution. It updates the distribution based on 
measurement information and former knowledge of 
the target condition. Bayesian calculation 
represents the target state as a set of variables and 
updates the distribution according to remote 
sensing data. The Smooth Variable Structure Filter 
(SVSF) [7] was the model-based estimation method 
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suitable for smoothing nonlinear dynamic systems. 
It accounts for sources of uncertainty and ensures 
stability the maximum limits on uncertainty and 
noise levels, with performance improvements 
achievable through finer definitions of parameter 
variations or uncertainty bounds.  

Methods based on correlation filtering begin 
with initializing a target template, which is defined 
according to the initial target position. This 
template typically encompasses the target and 
surrounding pixels within a region of interest (ROI), 
and it is updated throughout subsequent video 
frames. S. Xuan et al. [8] developed a correlation 
filter based on embedded motion estimation to 
address the tracking of rapidly moving targets in 
satellite videos. Y. Liu [9] proposed a novel method 
employing an embedded multi-feature fusion and 
motion trajectory compensation kernelized 
correlation filter for tracking fast-moving targets in 
satellite videos. This approach utilizes a multi-
feature fusion strategy to comprehensively describe 
the target, thus addressing issues of tracking 
accuracy caused by inaccurate target localization. 
Additionally, it incorporates adaptive Kalman 
filtering to compensate for the kernel correction in 
the KCF tracker, reducing boundary box drift of the 
objects. 

In recent years, with the development of neural 
networks, an increasing number of remote sensing 
image target tracking methods have employed 
convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and attention mechanisms. 
Some studies utilize pre-trained CNNs, such as 
VGG [10] and ResNet [11], to extract features from 
remote sensing images, while others focus on 
training CNNs from scratch using large datasets. 
Target tracking networks based on Siamese 
networks have also been applied by Bertinetto et al. 
[12] They introduced SiamFC, which integrates 
Siamese networks into target tracking. However, 
SiamFC relies on exhaustive multi-scale search to 
regress the target bounding box, resulting in low 
efficiency and accuracy. Based on SiamFC, Li et 
al.[13] proposed SiamRPN, which integrates 
previous correlation filtering methods. It uses the 
first frame as a detection template while improving 
the output of SiamFC by enhancing the twin 
network's output layer. This enhancement allows 
for the extraction of proposed regions and scoring, 

resulting in more accurate target bounding boxes. 
Zhu et al.[14] introduced DaSiamRPN, which 
focuses more on semantic interference factors and 
incorporates an interference-aware module for 
incremental learning. Building on SiamRPN, Li et 
al.[1] developed SiamRPN++, which employs 
multi-layer aggregation to fuse shallow and deep 
features during feature extraction. This approach 
leverages modern deep neural networks' capability 
to capture features, significantly enhancing the 
model's accuracy. Wang et al. [15] presented 
SiamMask, which combines segmentation concepts 
with the twin network, adding a mask branch during 
the regression phase to compute the loss of the 
segmentation network. Xu et al. [16] proposed 
SiamFC++, which employs an anchor-free design, 
allowing the network to directly classify and 
regress candidate boxes for each position of the 
corresponding features, thus avoiding the impact of 
predefined anchors on network speed. In the field 
of remote sensing object tracking, Yan et al. [17] 
proposed a novel search algorithm, LightTrack, 
which encodes all possible frames into a BackBone 
supernet and a head supernet, significantly reducing 
inference time and thus speeding up the overall 
tracking process. Cao et al. [18] introduced online 
temporal adaptive convolution and an adaptive 
temporal transformer. The former dynamically 
adjusts convolutional weights using temporal 
information from previous frames to enhance 
spatial features, while the latter employs efficient 
temporal encoding to adjust similarity maps 
accurately, thereby improving the network's 
temporal awareness. Zhou et al. [19] integrated 
computer vision with natural language processing 
by unifying visual localization and object tracking 
into a single task. This framework leverages a 
multi-source relational module in the Transformer 
to effectively build a multimodal network structure. 
Hong et al. [20] developed a unified visual object 
tracking framework, OneTracker, which can handle 
multiple tracking tasks, including conventional 
RGB and RGB+X tracking, where X represents 
additional information, such as natural language 
descriptions, depth, thermal imaging, or event maps. 
OneTracker abstracts the common characteristics 
of tracking tasks and extends based on them to 
adapt to various tracking scenarios. 
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III. METHODS 

This study proposes an improved overall 
network structure based on SiamRPN++, aiming to 
enhance tracking accuracy in the context of remote 
sensing images. The architecture of the entire 
network is illustrated in the figure below. 

The network architecture employed in this 
research builds upon the foundational framework of 
SiamRPN++, incorporating significant 
modifications to several key modules. The 
architecture is systematically divided into three 
distinct components. The first component is the 
feature extraction module. In this study, we have 
modified the ResNet backbone, enhancing its 
enhancing feature extraction by incorporating the 

C3Minus and CA modules. These enhancements 
are designed to bolster the network’s ability to 
extract relevant features from remote sensing 
images effectively. The second component consists 
of the ResSwinT module, which consolidates image 
patches from deeper layers to construct hierarchical 
feature maps. This approach significantly augments 
the network's modeling capacity, enabling it to 
capture complex representations within the input 
data. Finally, the third component is the regression 
head, which facilitates the precise localization of 
the target within the search space. This component 
is critical for ensuring that the network can 
accurately identify and track the target across 
varying conditions in remote sensing applications.

 

 
Figure 2. Network Structure. The proposed network's architecture is organized into three main components: the Backbone, the ResSwinT module, and the 

regression head. The Backbone is constructed upon the ResNet-50 architecture, with significant enhancements that include the incorporation of 
C3Minus and CA modules. These additions are designed to enhance the ability to extract features. The network effectively fuses the outputs from 

three distinct convolutional layers along with the outputs from the CA module. This fused information is subsequently passed to the ResSwinT 

module, which processes the data to generate hierarchical feature representations. Finally, the output from the ResSwinT module is directed to the 
regression head, which is responsible for accurately locating the target object in the image.

A. C3Minus 

C3Minus module represents a significant 
advancement over the traditional CSPBottleneck 
block. It incorporates several key enhancements 
that contribute to improved performance and 
efficiency in convolutional neural networks. The 
specific improvements offered by C3Minus are as 
follows: 

 Efficiency: C3Minus optimizes the 
convolutional operations by combining 

multiple individual convolutions into a 
single convolution layer. This strategic 
integration reduces the overall number of 
operations required during the forward pass, 
leading to reduced memory consumption 
and enhanced convolution efficiency. 
Consequently, this allows the network to 
process inputs more swiftly while 
maintaining performance. 
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 Simplified Architecture: By streamlining 
the structure of the network, C3Minus 
eliminates redundant convolutions that do 
not contribute significantly to feature 
extraction. This simplification results in a 
more compact architecture, which not only 
facilitates faster training times but also eases 
the deployment of the model in resource-
constrained environments. 

 Reduced Computational Cost: The 
C3Minus module effectively integrates 
convolutions, which leads to a decrease in 
both the number of parameters and the 
overall computational costs associated with 
the model. This reduction in complexity not 
only shortens the training duration but also 
enhances the model's scalability, allowing it 
to be more adaptable to various tasks and 
datasets. 

The C3Minus module is of paramount 
importance in enhancing the performance of 
network by streamlining architecture, improving 
operational efficiency, and minimizing 
computational demands. 

 
Figure 3. C3Minus network structure. The network consists of three 

convolution layers and one BottleNeck layer. ConvBN refers to the 

Batch Normalization and activation function, and Concat is a short 

circuit 

B. CA 

The CA module, which stands for Coordinate 
Attention, introduces a novel attention mechanism 
specifically designed for lightweight neural 
networks. Proposed by Hou et al.[2], this 
mechanism effectively integrates positional 
information into the channel attention framework, 
improving the model's capacity to detect critical 

spatial correlations and extended dependencies in 
the input data. 

The CA module operates through two 
fundamental steps: 

 Coordinate Information Fusion: In this 
initial phase, the module incorporates spatial 
coordinate information, which serves as a 
crucial component in understanding the 
spatial arrangement of features. By fusing 
this positional information with the channel-
wise features, the CA module creates a more 
comprehensive representation that reflects 
the significance of different spatial locations 
relative to the features being processed. This 
fusion allows the network to prioritize 
certain features based on their spatial context, 
thereby improving its ability to discern 
important patterns. 

 Coordinate Attention Generation: 
Following the fusion of coordinate 
information, the module generates 
coordinate attention maps. These maps are 
designed to emphasize relevant features 
across various spatial coordinates, 
effectively guiding the network to focus on 
critical areas within the input image. The 
generation of coordinate attention maps 
enables the network to adaptively weigh 
features based on their spatial context, 
enhancing the overall representation 
capabilities of the model. 

 
Figure 4. CA network structure. The entire module performs average 
pooling in the horizontal and vertical directions, then uses Transform to 

encode the spatial information, and finally fuses the spatial information by 

weighting it on the channel, making the network's overall perception of 
space more profound. 



International Journal of Advanced Network, Monitoring and Controls            Volume 10, No.01, 2025 

6 

C. ResSwinT 

In this study, the ResSwinT module is developed 
as an advanced extension of the ResNet block, 
integrating Swin Transformer layers to leverage the 
strengths of both convolutional neural networks 
(CNNs) and transformers. Inclusion of Swin 
Transformer layers allows for the construction of 
hierarchical feature representations, which are 
essential for capturing complex patterns and 
relationships within the data. 

The ResSwinT module operates by utilizing the 
local and global attention mechanisms inherent in 
the Swin Transformer architecture. This enables the 
network to effectively learn contextual information 
across various scales, improving its capacity for 
discern intricate details in the input images. 
Specifically, hierarchical representations derived 
from the transformer layers facilitate the 
construction of detailed feature maps, which are 
crucial for accurately identifying and tracking 
targets. 

One of the key advantages of the ResSwinT 
module is its capability to enhance local detail 
capture at lower stages of the network. By focusing 
on fine-grained features at these early stages, the 
module ensures that essential information is 
preserved and emphasized throughout the 
subsequent processing layers. This focus on local 
details is particularly beneficial in remote sensing 
applications, where variations in target appearance 
and background complexity can pose significant 
challenges. 

Moreover, the integration of the Swin 
Transformer layers introduces a flexible 
windowing mechanism that enables the model to 
adaptively adjust its concentrate on different 
regions from the input image. This adaptability not 
only improves the model's efficiency but also 
enhances its performance in diverse scenarios, 
making it robust against various conditions 
encountered in real-world tracking tasks. 

 
Figure 5. ResSwinT network structure, the overall structure uses a 

RestNet module as the basis, adds a Swin Transformer layer, and further 
extracts and fuses image features. 

D. Detection Head 

In this study, the detection head processes the 
outputs from the ResSwinT module to produce two 
distinct outputs: a binary classification output and a 
regression output. The main goal of binary 
classification is to distinguish the target object from 
the background within the search area. Meanwhile, 
the regression output is planned determine the 
accurate location of the target. 

Regression head employs deep cross-correlation 
convolution to assess the relationship between the 
search area and the target template. This operation 
begins with feature maps secured since both the 
template and search branches, which were 
processed in batches to ensure they have the same 
number of channels. Subsequently, these two 
feature maps undergo a channel-wise correlation 
operation (essentially a convolution operation) to 
produce a result that maintains same number of 
channels. Finally, resulting feature maps are 
normalized to effectively merge the outputs from 
different channels. To finalize the process, an extra 
convolutional layer is included to produce the 
ultimate classification and regression outcomes. 

 
Figure 6. Depth-wise Cross Correlation 



International Journal of Advanced Network, Monitoring and Controls            Volume 10, No.01, 2025 

7 

E. Loss Function and Optimizer 

Since the network employed in this study 
outputs both classification and regression results, a 
mixed loss function[21] is used to measure the 
discrepancy between each branch output and the 
ground truth. The overall loss function is defined as: 

 cls regLoss L L    

Where   and   are the weight coefficients for 
balancing the classification and regression loss 
components, set to 0.3 and 0.7 in this study, respect-

tively. clsL
 and regL

 represent the classification loss 
and regression loss functions. As the Backbone 
used in this study is based on ResNet-50, a model 
with strong classification capabilities, we assign a 
higher weight (0.7) to the classification component. 

The classification output is responsible for 
distinguishing pixels within the search region as 
either background or target of interest, essentially a 
binary classification task. Therefore, we adopt the 
binary cross-entropy loss function: 

 ˆ ˆ( ) (1 ) (1 )clsL y log y y log y        

where y  denotes the ground truth, and ŷ  
represents the predicted binary output from the 
network. 

For the regression task, the output represents 
four absolute coordinates within the search region 
(upper left, upper right, lower left, and lower right), 
relative to the lower left corner of the region. Given 
that this task is essentially a regression problem, we 

apply the 1L
 loss function[22], which is commonly 

used in regression tasks for its interpretability and 
tendency to produce sparse solutions: 

 1 ( ) ( )

1

1
ˆ ˆ( , )

m

i i

i

L x x x x
m 

   

where x  represents the ground truth, x̂  is the 
network’s regression output, and mmm is the 
number of coordinates in each sample. 

The optimizer used in this study is Stochastic 
Gradient Descent (SGD). The SGD optimizer 

requires parameters such as the list of trainable 
parameters, momentum, and weight decay. It 
enhances training efficiency by accelerating the 
updates along relevant directions and reducing 
oscillations in irrelevant directions. The update 
process is given by: 

 ( ) ( 1) ( )V t V t Loss       

where t  is the iteration count,   is the learning 

rate, and ( )Loss   is the gradient of the loss with 

respect to the model parameters   at the current 
iteration. Finally, parameters are updated as: 

 ( )V t    

Here, 𝛾  represents the momentum term, 
typically set to 0.9. 

IV. EXPERIMENTS 

A. Experimental Environment & Dataset 

TABLE I. EXPERIMENTAL ENVIRONMENT 

Experimental Environment Version 

CPU Intel Xeon E5-2698 

GPU NVIDIA Tesla V100 32G 

Language Python 3.8 

Framework Pytorch 

 

The hardware configuration for this study 
consists of an Intel Xeon E5-2698 CPU, paired with 
four NVIDIA Tesla V100 GPUs. The system 
environment is Ubuntu 18.04, and the model is built 
using the PyTorch framework with Python version 
3.8. 

The dataset used in this study is based on DIOR 
and UCAS-AOD, which have been fused and 
processed together for joint training to enhance the 
model's robustness. 

The performance of the model is quantified 
using accuracy and success rate. Accuracy is 
defined as the proportion of frames in which the 

target's center position error (  ) falls below a 
specified threshold, compared to the total number 
of frames. In previous studies, this threshold is 
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typically set at 20. The method for determining 
accuracy can be expressed as follows: 


( )

( 20)

( )all

Count
Precision

Count

 



 

Where   is: 

    
2 2

p r p rx x x y      

The success rate refers to the ratio of the number 
of frames in which the overlap between the 
successfully tracked target detection box and the 
ground truth box exceeds a predefined threshold to 
the total number of frames. It measures the 
intersection-over-union (𝐼𝑜𝑈) of the computed box 

with the ground truth box, and the formula is as 
follows: 

Area of Interserction of two boxes
IoU

Area of Union of two boxes

    


    
 


( 0.5)

( )all

Count IoU
Sucess

Count IoU


  

B. Experimental Results 

In this study, we utilized a custom-built test set 
specifically designed for the evaluation of our 
proposed tracking method. The results of our 
experiments are illustrated in Figure 7, which 
showcases representative examples of the tracking 
performance achieved by our approach. 

 

 
Figure 7. Experimental results. The red part is the model result and the green part is the real frame. 

As depicted in the figure, the proposed method 
exhibits remarkable efficacy in tracking small 
targets within remote sensing images. Notably, it 
maintains a high level of accuracy in both tracking 
and recognition, even under challenging conditions 
such as occlusion. This level of robustness is 
essential in real-world scenarios where targets 
might be partially hidden by environmental eleme-
nts or other objects. 

To further validate the effectiveness of our 
approach, we conducted a comparative analysis 
against five state-of-the-art tracking models from 
recent years: SiamRPN [13], SiamRPN++ [1], 
SiamMask [15], SiamBAN [23], and SiamCar [24]. 
These models were selected based on their 
prominence in the field of object tracking, ensuring 

a comprehensive evaluation of our method's 
performance. The results are summarized in the 
table below: 

TABLE II. THE SUCCESS RATE AND ACCURACY OF THIS METHOD ARE 

COMPARED WITH THE SOTA METHOD. THE RED VALUE IN THE TABLE IS 

HIGHEST, AND GREEN VALUE IS SECOND HIGHEST. 

Models Years 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑺𝒖𝒄𝒄𝒆𝒔𝒔 

SiamRPN 2018 0.753 0.342 

SiamRPN++ 2018 0.435 0.261 

SiamMask 2019 0.569 0.278 

SiamBAN 2020 0.784 0.497 

SiamCar 2022 0.769 0.502 

Ours - 0.803 0.549 
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The experimental results clearly indicate that the 
enhancements introduced in this study have led to a 
significant improvement in the model's 
performance. Specifically, our proposed method 
achieves an impressive accuracy increase of 1.9%, 
reflecting a more precise capability in target 
tracking within remote sensing images. 
Additionally, we observe a notable improvement in 
the success rate, which has risen by 4.7%. 

This increase in success rate signifies a 
substantial advancement in the model's ability to 
consistently and reliably track targets, even under 
challenging conditions such as occlusion and 
varying backgrounds. The enhancements not only 
demonstrate the effectiveness of the modifications 
made to the network architecture but also 
underscore the potential of our approach in real-
world applications where high accuracy and 
robustness are paramount. 

V. CONCLUSION 

This study investigates target tracking methods 
for remote sensing imagery and presents several 
innovations by the authors. Based on the 
SiamRPN++ framework, a series of enhancements 
were introduced. Firstly, the C3Minus and CA 
modules were incorporated into the backbone 
network, significantly improving feature fusion and 
extraction capabilities. These additions allow the 
network to capture richer feature information when 
processing remote sensing images, resulting in 
enhanced tracking accuracy, especially in 
challenging scenarios with complex backgrounds 
and changing target appearances. Additionally, this 
study introduces the novel RestSwinT module, 
which combines the strengths of the Swin 
Transformer and ResNet to bolster the network’s 
spatiotemporal feature extraction capabilities. In 
target tracking tasks, the effective integration of 
spatiotemporal information enables the network to 
capture dynamic target changes more accurately. 
By incorporating the RestSwinT module, the 
network achieves more effective spatiotemporal 
feature fusion, further enhancing target 
identification and tracking performance. 

With ongoing advancements in deep learning 
and computer vision, future research in this domain 
could explore methods for the effective integration 
of multimodal data (such as infrared and synthetic 

aperture radar imagery) to enhance tracking 
accuracy and reliability. Optimizing network 
architectures and algorithms to enable more 
efficient real-time tracking performance is also a 
promising direction. 
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