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Abstract—In the context of rapid developments in drone 

technology, the significance of recognizing and detecting 

low-altitude unmanned aerial vehicles (UAVs) has 

grown. Although conventional algorithmic 

enhancements have increased the detection rate of low-

altitude UAV targets, they tend to neglect the intricate 

nature and computational demands of the algorithms. 

This paper introduces ATD-YOLO, an enhanced target 

detection model based on the YOLOv5s architecture, 

aimed at tackling this issue. Firstly, a realistic low-

altitude UAV dataset is fashioned by amalgamating 

various publicly available datasets. Secondly, a C3F 

module grounded in FasterNet, incorporating Partial 

Convolution (PConv), is introduced to decrease model 

parameters while upholding detection accuracy. 

Furthermore, the backbone network incorporates an 

Efficient Multi-Scale Attention (EMA) module to extract 

essential image information while filtering out irrelevant 

details, facilitating adaptive feature fusion. Additionally, 

the universal upsampling operator CARAFE (Content-

aware reassembly of features) is utilized instead of 

nearest-neighbor upsampling. This enhancement boosts 

the performance of the feature pyramid network by 

expanding the receptive field for data feature fusion. 

Lastly, the Slim-Neck network is introduced to fine-tune 

the feature fusion network, thereby reducing the model's 

floating-point calculations and parameters. 

Experimental findings demonstrate that the improved 

ATD-YOLO model achieves an accuracy of 92.8%, with 

a 31.4% decrease in parameters and a 28.7% decrease in 

floating-point calculations compared to the original 

model. The detection speed reaches 75.37 frames per 

second (FPS). These experiments affirm that the 

proposed enhancement method meets the deployment 

requirements for low computational power while 

maintaining high precision. 
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I. INTRODUCTION  

Small UAVs are aircraft known for their 
diminutive size, cost-effectiveness, and ability to 
fly at low altitudes. Due to their compactness and 
ease of operation, small UAVs have emerged 
prominently on modern military battlegrounds, 
garnering significant favor. They demonstrate 
exceptional performance in tasks such as 
reconnaissance, surveillance, communication, and 
target identification. However, the low-altitude, 
slow-flight attributes of small UAVs render them 
challenging to effectively counter using 
conventional detection methods, thus presenting 
novel challenges for military defense. 
Consequently, detecting UAV targets in flight has 
become a pivotal approach to addressing this 
issue[1]. 

Utilizing image and video analysis, employing 
computer vision algorithms for real-time UAV 
detection and tracking stands as the most 
promising method for UAV detection. In 
comparison to standard radar-based methodologies, 
this system offers a myriad of advantages, 
encompassing enhanced accuracy and reduced 
costs [2]. 

To date, the majority of detection tasks have 
been predominantly conducted through the 
utilization of deep learning methodologies for 



International Journal of Advanced Network, Monitoring and Controls        Volume 09, No.01, 2024 

88 

feature extraction. This method mainly consists of 
two types of algorithms: two-stage and single-
stage object detection. The former involves 
initially delineating the regions of interest before 
determining target position and class information. 
Representative algorithms include R-CNN [3], 
Fast R-CNN [4], Faster R-CNN [5], and Mask R-
CNN [6]. The latter directly ascertain target 
position and class information without the need for 
separately identifying regions of interest. Typical 
algorithms include YOLO [7-9] and SSD [10]. 
Given the high maneuverability of low-altitude 
UAVs, capable of swiftly altering direction, 
moving at high velocities, and executing diverse 
flight maneuvers, numerous scholars opt for the 
YOLOv5 algorithm and its enhancements to 
execute UAV target detection tasks. 

Lu et al. [11] introduced an improved 
YOLOv5s-based algorithm for small rotary-wing 
UAV target detection, demonstrating enhanced 
accuracy and feature extraction capabilities, it 
experiences a certain decrease in detection speed. 
Yang et al. [12] developed a real-time detection 
algorithm, named GCB-YOLOv5s, for low-
altitude UAVs using machine vision detection 
techniques. While this algorithm boosts detection 
speed, it also leads to a slight decline in detection 
accuracy. Bao et al. [13] presented a real-time 
detection method for micro UAVs based on 
YOLOv5. Although the algorithm demonstrates 
commendable real-time performance for UAV 
targets at low altitudes, its effectiveness in 
detecting UAV targets in distant scenes is limited, 
and its robustness is relatively poor. 

In summary, existing algorithms have improved 
the detection accuracy of low-altitude UAV targets 
but have overlooked the complexity and 
computational burden of the algorithms. Hence, 
the engineering challenge at hand is: how to 
enhance the algorithm's detection efficiency for 
UAV targets while preserving detection accuracy, 

employing lightweight design principles. 
Consequently, this paper suggests a lightweight 
detection algorithm for low-altitude UAVs, coined 
ATD-YOLO, and based on an enhanced version of 
YOLOv5s. The key enhancements of this 
algorithm are as follows: 

1. By merging multiple publicly available 
datasets, a relatively comprehensive UAV target 
dataset is constructed.2. Based on the lightweight 
model FasterNet [14], the paper proposes a 
lightweight module called C3F to substitute the C3 
module in the input feature extraction network. 
This substitution substantially reduces the number 
of parameters and floating-point calculations, 
thereby achieving lightweight effects on the 
overall network. 2. A more optimal upsampling 
method, CARAFE [15] is employed to increase 
the receptive field, enhancing feature sharpness 
post traditional upsampling. 3. EMA [16] is 
integrated into the backbone network to extract 
vital image information while filtering out 
irrelevant details, thus enabling adaptive feature 
fusion and enhancing detection accuracy. 4. Slim-
Neck [17] is introduced into the neck part of the 
network, replacing Conv layers and C3 layers with 
lightweight convolutional neural networks 
GSConv and VOVGSCSP. This further reduces 
the computational workload and parameter 
complexity of the model, thereby improving its 
inference speed without sacrificing detection 
accuracy. 

The improved ATD-YOLO network structure, 
shown in Figure 1, maintains detection accuracy 
while adopting a lightweight design, meeting the 
demands for real-time operation for UAV target 
detection. The enhanced detection model better 
accommodates the computational constraints of 
UAV detection devices, providing a research 
solution for lightweight improvements in UAV 
target detection. 
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Figure 1. ATD-YOLO Network Structure 

 

Figure 2. Framework of image measuring system [14] 

II. ALGORITHM IMPROVEMENT AND OPTIMIZATION 

A. C3F Lightweight Feature Extraction Module 

Addressing redundant computation, Chen et al. 
[14] introduced Partial Convolution (PConv), 
which reduces memory access while optimizing 
the parameter problem caused by redundant 
computation, greatly improving the ability to 
capture spatial features. FasterNet is constructed 
with PConv and 1x1 convolutional structures. In 
Figure 2, h, w, and k represent the height, width, 
and kernel size of the feature map, respectively, 

while Cp indicates the number of channels in 
conventional convolution. 

PConv only uses general Conv to achieve 
spatial feature acquisition on some input channels, 
while maintaining the remaining channels 
unchanged. Calculate by considering the first or 
last consecutive Cp channel as a representation of 
the entire feature map. Ensure its generality while 
maintaining the same number of input and output 
feature map channels. The FLOPs of PConv are h 
× w × k2 × C2p, which only accounts for 1/16 of 
the general Conv. 
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The C3 module in the YOLOv5 network is 
pivotal for increasing network depth and receptive 
field, enhancing feature extraction. Initially, it 
included Conv1, Conv2, Conv3 modules, and one 
or more Bottleneck modules. While this design 
enriches the learning capabilities of the C3 module, 
it also adds to the computational load and model 
complexity. Thus, this paper introduces a 
lightweight feature extraction module, C3F, 
inspired by the FasterNet module concept. 

Figure 3 illustrates the structural diagram of the 
C3F feature extraction module. Here, h, w, and k 
signify the height, width, and convolution kernel 
size of the feature map, while Cp represents the 
number of conventional convolution channels.This 
module introduces partial convolution and replaces 
BattleNet with FasterNet Block in the C3 module, 
reducing computational redundancy and memory 
access while maintaining the speed and efficiency 
of feature extraction. 

 

Figure 3. C3F structural schematic diagram 

B. CARAFE upsampling module 

Object detection models often employ nearest 
neighbor or bilinear interpolation for feature map 
upsampling. While adaptive upsampling uses 
methods such as deconvolution. However, these 
traditional methods have certain shortcomings in 
accurately reconstructing target detail information, 
which can easily lead to partial information loss of 
small targets, thereby affecting detection accuracy. 
In contrast, CARAFE improves the quality of 
upsampled features by recombining content aware 
features to make the upsampling kernel 
semantically relevant to the feature map. The 

CARAFE operator can better preserve and recover 
feature information details, so this article chooses 
to use the CARAFE operator for upsampling to 
enhance regional sensitivity and generate more 
accurate high-resolution feature maps. 

 

Figure 4. CARAFE upsampling calculation flowchart 

C. Multi scale attention mechanism module 

In various computer vision tasks, the significant 
effectiveness of channel or spatial attention 
mechanisms in generating clearer feature 
representations has been demonstrated. However, 
modeling cross channel relationships through 
channel dimensionality reduction may have side 
effects on extracting deep visual representations. 

 

Figure 5. EMA Attention Mechanism 
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EMA without dimensionality reduction [16] 
aims to preserve channel information while 
minimizing computational overhead. This is 
achieved by reshaping some channels into batch 
dimensions and grouping channel dimensions into 
multiple sub-features to evenly distribute spatial 
semantic features. EMA learns effective channel 
descriptions in convolutional operations without 
reducing channel dimensionality, enhancing pixel-
level attention for advanced feature maps. This 
lightweight and flexible EMA attention model 
serves as a core module applicable to lightweight 
networks. 

 Figure 5 outlines the EMA attention module, 
comprising Feature Grouping, Parallel 
Subnetworks, and Cross spatial learning. EMA 
divides the input feature map into multiple sub-
features based on channel dimensions. It employs 
two parallel subnetworks: one with 1x1 branches 
and the other with 3x3 branches. The 1x1 branch 
encodes channel information using global average 
pooling operations, while the 3x3 branch captures 
local cross-channel interaction. EMA then fuses 
the output feature maps of the two subnetworks 
using cross-space learning, resulting in an 
attention weight map of the same size as the input 
feature map to enhance its expressive power. 

D. Lightweight fusion stage  

Large deep learning models are difficult to 
deploy on industrial embedded devices. Many 
lightweight networks use a large number of 
depthwise separable convolutions, and even if the 
C3 of the backbone network is replaced with 
lighter modules, there are still a large number of 
1x1 convolution operations, making it difficult to 
achieve sufficient accuracy. This dense 
convolution operation actually consumes more 
resources, and even with channel shuffling, the 
effect is still poor. Therefore, this article embeds 
the Slim Neck [17] network is integrated into the 
feature fusion stage, incorporating the GSConv 
module and the VOVGSCSP module. 

 

Figure 6. GSConv Module 

 

Figure 7. VoVGCSP Module 

The GSConv module consists of the Conv, 
DWConv, Concat, and Channel Mixing sub-
modules, illustrated in Figure 6. Its operational 
procedure is as follows: Initially, the input feature 
map, with C1 channels, undergoes standard 
convolution to produce a feature map with C2/2 
channels. Subsequently, depthwise separable 
convolution generates another feature map with 
C2/2 channels. These two feature maps are 
concatenated to form a unified feature map with 
C2 channels. Finally, the channel mixing operation 
adjusts the output characteristics to the desired 
channel count. Through this approach, the 
GSConv module combines depthwise separable 
convolution and standard convolution to reduce 
computational complexity and improve overall 
recognition accuracy by addressing limitations in 
feature extraction and fusion. 
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The integration of GSConv convolution aims to 
simplify model complexity. To enhance model 
inference speed without sacrificing accuracy, we 
introduced the VOVGSCSP module, as depicted 
in Figure 7. In Figure 7, Unit 1 illustrates the 
bottleneck unit structure of VOVGSCSP, while 
Unit 2 showcases a cross-stage VOVGSCSP 
module employing a single aggregation method. 

 

Figure 8. The positions of GSConv and VOVGCSP modules 

III. EXPERIMENTAL TESTING AND RESULT ANALYSIS  

A. Experimental Design and Parameter Setting 

In the identical operational setting and 
employing the UAV dataset, experimental tests are 
conducted to compare the enhanced ATD-YOLO 
algorithm model with other algorithm models. The 
experimental environment configuration is 
outlined in Table 1. This comparison seeks to 
validate the improved algorithm's efficacy in 
detecting low-altitude UAV targets. 

Throughout the training phase, a combination 
of the cosine annealing learning rate decay method 
and the SGD algorithm is utilized. The training 
regimen spans 600 epochs with a batch size of 16 
and a momentum of 0.937. Mosaic data 
augmentation is employed to enrich the 
backgrounds of images by randomly scaling, 
cropping, and arranging four training images in a 
mosaic pattern. This augmentation technique 
enhances the accuracy and robustness of small 
object detection. 

TABLE I.  EXPERIMENTAL SETUP CONFIGURATION 

Name Environment Configuration 

System Environment Ubuntu 22.04 

CPU AMD Ryzen 9 5950X 

GPU RTX 4060 Ti 16GB 

Deep Learning 

Framework 
Pytorch 1.13.1 

IDE CUDA 11.7 

B. Building a Relatively Comprehensive Dataset 

In this study, extensive data from diverse 
sources and papers was reviewed and collected. 
Utilizing this data, we constructed a tailored 
dataset called "Anti-Mini Drone" for our research 
purposes. The Det-Fly dataset [18] addresses the 
lack of drone data from a single perspective by 
directly collecting images of target drones in the 
air, including various postures such as upward, 
downward, and forward views. However, this 
dataset only contains one type of drone, limiting 
its generality in detecting other types of drones. 
The Drone-vs-Bird dataset [19] not only covers 
rich drone and environmental data but also 
includes some bird data. This poses challenges 
when drones resemble birds in appearance, 
especially during long-distance observations. 
However, the drawback of this dataset is its 
inability to meet the detection requirements of 
other types of drones. The Real World dataset [20] 
contains various types of drones and environments 
sourced from YouTube videos, but the image 
resolution is low. Most of the data is captured 
from a forward and upward perspective, which 
implies certain limitations in drone detection from 
a downward view. The Multi-view drone tracking 
dataset [21] records drone flight trajectories from 
different angles using multiple consumer-grade 
cameras, but the environmental capture is 
relatively homogeneous. The DUT anti-UAV 
dataset [22]  consists of both a detection dataset 
comprising 10,000 images and a tracking dataset 
containing 20 videos. However, it's worth noting 
that the distribution of target dimensions within 
the dataset is uneven. The Anti-UAV dataset [23] 
includes visible light and infrared data, but the 
problem is that the shooting environment is 
singular, suitable only for research on multi-modal 
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fusion tracking and the alignment between infrared 
and visible light cameras is not perfect in time and 
space. 

Overall, the above drone datasets each have 
their own advantages and disadvantages, often 
overcoming only one or two difficulties in 
constructing drone datasets. By merging these six 
different datasets, a low-altitude drone dataset that 
meets the requirements of this study was 
constructed, making it more reflective of real 
outdoor flight scenarios for low-altitude drones. 
Table 2 illustrates the distribution of images. 

TABLE II.  ORIGIN OF THE DATASET AND QUANTITY OF IMAGES 

Dataset Number of Images 

Det-Fly 3893 

Drone-vs-Bird  3959 

Real World 1525 

Multi-view drone 

tracking  
3447 

DUT anti-UAV 3639 

Anti-UAV 2767 

In the Anti-Mini Drone dataset, Figure 9 
demonstrates a notable prevalence of small targets. 
The majority of targets in the dataset exhibit 
aspect ratios less than 0.1 times the original image 
dimensions. This distribution aligns with the 
relative sizes of objects commonly encountered in 
real outdoor scenarios during low-altitude 
unmanned aerial vehicle (UAV) flights. 

 

Figure 9. Length and Width Distribution Chart of the Anti-Mini Drone 

Dataset 

C. Experimental evaluation metrics 

To evaluate the enhanced ATD-YOLO 
algorithm, metrics such as parameter count, 
floating-point operations (GFLOPs), average 
precision (AP), and frames per second (FPS) are 
selected. Since the study focuses on detecting 
drones across different categories, mean average 
precision (mAP) and AP values are considered 
equivalent. Given the predominance of small 
objects, the mAP.5 criterion is adopted for 
evaluation to reflect the model's performance and 
speed accurately. Precision measures the 
proportion of correctly detected objects, while 
recall assesses the proportion of correctly 
predicted objects among all true objects: 

 
TP

Precision
TP FP




 (1) 

 Re
TP

call
TP FN




 (2) 

FN represents false positive samples predicted 
by the model, TP denotes true positive samples 
predicted correctly, and FP stands for false 
negative samples. The average precision (AP) 
reflects the detection accuracy for a single class of 
targets, usually calculated by integrating the 
Precision-Recall (P-R) graph: 

 
1

0
( )AP P R dR   (3) 

Detection speed is frequently measured in FPS 
(Frames Per Second), indicating the number of 
images processed by the object detection network 
per second. A higher FPS value signifies faster 
processing speed. The expression for FPS is given 
by Formula 4: 

 
FrameNum

FPS
ElapsedTime

  (4) 
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(a) Sky Background                  (b) Treetops Background                   (c) Dusk Background                    (d) Evening Background 

Figure 10. Samples of simple background from Anti-Mini Drone 

       
                (a) Mountainous background             (b) Wooded background                      (c) Similar colors                           (d) Semi-obscured 

Figure 11. Samples of complex background from Anti-Mini Drone 

D. Experimental Results Analysis 

a) Comparative Experiment on Lightweight 

Modules: Experimental analysis confirmed the 

effectiveness of the C3F module. Replacing the 

C3 module in YOLOv5s with C3F increased 

mAP.5 by 0.1%, while reducing parameters and 

floating-point operations by 9.7% and 12.6%, 

respectively, and improving FPS by 6.26. 

Substituting with C2f increased mAP.5 accuracy 

by 0.9%, but raised parameters and floating-point 

operations by 17.6% and 22.7%, respectively, 

while decreasing FPS by 13.41. Replacing with 

C2f-Faster decreased mAP.5 by 0.3%, with 

parameters and floating-point operations 

decreasing by 8.2% and 6.1%, respectively, and 

FPS increasing by 8.78. These results validate the 

effectiveness of the C3F module in achieving high 

accuracy with minimal algorithmic overhead. 

TABLE III.  CONTRAST EXPERIMENT OF ATTENTION MODULE 

Module mAP.5/% GFLOP /G Params/106 FPS 

C3 92.2 15.8 7.01 68.79 

C3F 92.3 13.8 6.33 75.05 

C2f 93.1 19.4 8.25 55.38 

C2f-Faster 91.9 14.5 6.58 77.57 

 
Figure 12. PR curves for various feature extraction modules (IOU=0.5) 

Figure 12 illustrates the PR curves of various 
feature extraction modules at IOU = 0.5. It also 
demonstrates that the improved algorithm's 
Precision and Recall with the C3F module are 
slightly lower than those with the original C3 
module. However, considering the improvement in 
detection accuracy, parameter count, floating-point 
operations, and frame rate, the improved model 
still exhibits superiority in target localization 
regression. 

b) Comparative Experiment on Attention 

Mechanism Modules: In response to the observed 

increase in model parameter count, floating-point 

operations, and FPS after adding EMA, various 

attention mechanisms were replaced at the 
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original position for comparative experiments. 

Table 4 presents the experimental results. The 

improved algorithm with EMA sacrifices some 

performance compared to other attention 

mechanism algorithms but achieves better 

detection accuracy. 

TABLE IV.  CONTRAST EXPERIMENT OF ATTENTION MODULE 

Module mAP.5/% GFLOP /G Params/106 FPS 

SE[24] 91.8 13.8 6.37 74.93 

ECA[25] 92.2 13.8 6.34 74.37 

CBAM[26] 92.3 13.8 6.37 72.63 

CA[27] 91.2 13.8 6.36 72.87 

EMA 92.7 14.1 6.38 69.83 

 

Figure 13 illustrates the PR curves comparing 
various attention mechanisms at IOU = 0.5. It also 
demonstrates that the EMA attention mechanism 
outperforms other attention mechanisms in both 
Precision and Recall. 

 
Figure 13. PR curves for various feature extraction modules (IOU=0.5) 

c) Ablation Experiment: Ablation 

experiments were conducted on the Anti-Mini 

Drone dataset to test different model 

configurations, including variations in the C3F 

lightweight feature extraction module, EMA 

attention mechanism module, CARAFE 

upsampling module, and Slim-Neck module. 

Results from these experiments are summarized in 

Table 5.In the first row, the initial YOLOv5s 

model achieved a detection accuracy of 92.2%. 

By replacing the C3 module with the C3F module, 

the parameter count decreased by about 17.2%, 

while floating-point operations increased by 5.6%. 

The mAP.5 increased by 0.1 percentage points, 

and the FPS improved by 6.26, indicating that 

adopting FasterNet to enhance the C3 module 

effectively reduces model parameters while 

maintaining detection capabilities.In the third row, 

adding the EMA attention mechanism module 

increased mAP.5 by 0.4% compared to the second 

row. However, parameter count and floating-point 

operations increased by 1.1% and 2.1%, 

respectively, while FPS decreased by 5.22.In the 

fourth row, after introducing the CARAFE 

upsampling module, parameter count increased by 

about 0.8%, while floating-point operations 

increased by 0.7%. The mAP.5 increased by 0.4 

percentage points, while FPS decreased by 1.98.In 

the fifth row, embedding the Slim-Neck network 

resulted in a decrease of 18.28% in parameter 

count and 21.98% in floating-point operations 

compared to the fourth row. Despite a slight 

decrease of 0.3% in mAP.5, FPS increased by 7.5. 

Compared to the initial model in the first row, 

parameter count and floating-point operations 

decreased by 25.39% and 30.37%, respectively, 

while mAP.5 and FPS increased by 0.5% and 

6.56%, respectively. 

TABLE V.  RESULTS OF ABLATION EXPERIMENTS 

YOLOv5s C3F EMA CARFE Slim-Neck 
Params/10

6 
GFLOP/G mAP.5/% FPS 

√     7.01 15.8 92.2 68.79 

√ √    6.33 13.8 92.3 75.05 

√ √ √   6.38 14.1 92.7 69.83 

√ √ √ √  6.40 14.1 93.1 67.85 

√ √ √ √ √ 5.23 11.0 92.8 75.35 
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Figure 14. Model PR curve (IOU=0.5) 

The findings indicate improved detection 
accuracy with reduced parameter count and 
floating-point operations, confirming the 
effectiveness of the enhancement strategies. Figure 
14 displays PR curves of the target detection 
algorithm at an IOU of 0.5, showing that the 
improved algorithm outperforms the original in 
both Precision and Recall, highlighting its superior 
performance in target localization regression. 

d) Comparative Experiment on Mainstream 

Algorithms: Experimental analysis compared the 

effectiveness of the C3F, C2f, and C2f-Faster 

modules in feature extraction networks. Results in 

Table 3 show that replacing C3 with C3F 

increased mAP.5 by 0.1%, with reduced 

parameters and floating-point operations and 

increased FPS. Substituting with C2f improved 

mAP.5 by 0.9% but increased parameters and 

floating-point operations while decreasing FPS. 

Replacing with C2f-Faster resulted in a 0.3% 

decrease in mAP.5, with reduced parameters and 

floating-point operations and increased FPS. 

These results confirm the effectiveness of the C3F 

module in achieving high accuracy with minimal 

overhead, demonstrating its superiority in 

lightweight feature extraction. 

 

 

 

 

TABLE VI.  MAINSTREAM ALGORITHM COMPARATIVE EXPERIMENT 

RESULTS 

Module Params/106 GFLOP/G AP.5/% FPS 

YOLOv3 Tiny 8.66 12.9 79.1 166.67 

YOLOv5s 7.01 15.9 92.2 68.79 

YOLOv7 Tiny 6.01 13.2 88.4 63.30 

YOLOv8s 11.12 28.4 89.0 109.89 

ATD-YOLO 5.23 11.0 92.8 75.35 

 

Figure 15. PR curves of mainstream algorithms on the test set (IOU=0.5) 

Figure 15 displays PR curves for various 
algorithms on the test set at IOU = 0.5, indicating 
the improved algorithm's superiority in both 
Precision and Recall. 

E. Analysis of Comparative Experiment Results 

a) Comparative Experiment: The improved 

algorithm's detection results in various scenarios 

are intuitively and clearly demonstrated in Figure 

12, indicating its superiority over the original 

model in drone object detection across different 

scenes, primarily reflected in confidence and 

detection outcomes. Specific scenarios include 

background with buildings (Figure 16 (a)), flying 

over the sea (Figure 16 (b)), flying in 

mountainous areas (Figure 16 (c)), flying under 

uneven brightness conditions (Figure 16 (d)), 

flying in strong sunlight conditions (Figure 16 (e)), 

flying in the evening (Figure 16 (f)), flying with 

cloud backgrounds (Figure 16 (g)), and flying in 

urban backgrounds (Figure 16 (h)).In the 

background with buildings, even with interference 
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such as trees and buildings, where the background 

is complex and the drone is similar in height to 

the background, the improved algorithm can 

successfully detect the target. In other scenarios 

such as flying over the sea, in mountainous areas, 

under uneven lighting, in strong sunlight, in the 

evening, with cloud backgrounds, and in urban 

backgrounds, the improved algorithm also 

performs admirably, successfully detecting drone 

targets without missing or false detections. This 

firmly establishes the effectiveness of the 

improved algorithm in complex scenarios. 
 

       
(a)  Urban background                         (b)  Sea background                    (c) Mountainous background               (d) Uneven brightness 

       
       (e) Strong light background               (f) Evening background                     (g) Cloudy background                  (h) Urban background 

Figure 16. Object detection outcomes in diverse scenarios 

 

       
(a) Original YOLOv5s algorithm 

       
(b) ATD-YOLO algorithm 

Figure 17. Object detection outcomes in a consistent scenario 

b) Comparative Study: We compared the 

original YOLOv5s algorithm with the enhanced 

ATD-YOLO algorithm on a test dataset. In Figure 

17, green boxes show correct identifications, 

while blue boxes indicate misidentifications. The 

original algorithm sometimes misidentified 

pedestrians and debris as targets when a drone 

was on the lawn. However, the improved 

algorithm performed better, correctly identifying 

targets and avoiding mistakes like thinking 

reflections were drones or confusing a drone's tail 

with the whole drone. Overall, the improved 

algorithm is better at detecting drones, making 

fewer mistakes while still being efficient. 

IV. CONCLUSIONS 

In addressing the challenge of improving the 
simultaneous accuracy and detection efficiency of 
low-altitude UAV target detection algorithms, this 
paper presents an enhanced algorithm, ATD-YLO, 
built upon YOLOv5s. This algorithm successfully 
achieves lightweight target detection, aiming to 
maintain detection precision and efficiency in low-
altitude UAV detection tasks under limited 
hardware resource platforms. 

ATD-YOLO introduces several innovations to 
improve performance. It includes PConv, a new 
convolutional layer, and C3F, a lightweight feature 
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extraction module inspired by FasterNet. C3F 
replaces the original C3 module, reducing 
parameters and computations while maintaining 
recognition accuracy. EMA, an attention 
mechanism module, is also integrated to extract 
key information from images while ignoring 
irrelevant data, enhancing detection accuracy. 
Furthermore, the introduction of CARAFE, a 
generic upsampling module, increases the 
receptive field for feature fusion, and Slim-Neck, a 
lightweight network, further promotes network 
efficiency. 

The effectiveness of the proposed approach was 
validated by training and validating the improved 
ATD-YOLO algorithm on the Anti Mini Drone 
dataset. Experimental results revealed an accuracy 
increase from 92.2% to 92.8% compared to the 
initial algorithm. Furthermore, the improved 
algorithm reduced parameter count and floating-
point computations by 31.4% and 28.9%, 
respectively, while achieving a detection speed of 
75.35 FPS. The improved algorithm outperforms 
YOLOv3 Tiny, YOLOv7 Tiny, and YOLOv8s in 
recognition accuracy by 13.7%, 4.4%, and 3.8%, 
respectively, with model parameter counts of 
60.39%, 87.02%, and 47.03% of theirs, and 
floating-point computations of 85.27%, 83.33%, 
and 38.73% of theirs, respectively. The FPS is 
12.35 higher than that of YOLOv7 Tiny, but only 
45.21% and 68.56% of YOLOv3 Tiny and 
YOLOv8s, respectively. Therefore, ATD-YOLO 
exhibits promising performance and meets the 
lightweight detection requirements for UAVs. In 
the next phase of research, efforts will focus on 
dataset expansion to include more categories such 
as birds in flight and other airborne objects, as 
well as improving network detection speed. 
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