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Abstract—Time-Sensitive Networking (TSN) occupies a 

vital position in modern communication domains, with 

the 802.1Qbv standard being an important network 

technology designed to meet real-time requirements. 

This standard requires network traffic to be transmitted 

within strict time windows, presenting challenges in 

network planning, necessitating efficient resource 

allocation and scheduling strategies. This paper 

addresses the 802.1Qbv planning problem through the 

introduction of reinforcement learning algorithms, 

offering an automated and intelligent solution. We have 

designed a reinforcement learning agent capable of 

perceiving network status, learning optimal resource 

allocation strategies, and dynamically adjusting in real-

time environments. Through simulation and 

experimentation, we have validated the effectiveness of 

our proposed method, comparing it with traditional 

planning approaches. The contribution of this study lies 

in introducing a novel solution to the 802.1Qbv planning 

problem for time-sensitive networks, enhancing network 

resource utilization and performance. This approach 

offers strong support for the development and 

enhancement of TSN-like networks, holding significant 

importance for meeting the growing demands of real-

time applications. 

Keywords-Time-Sensitive Networking; Reinforcement 

Learning; Network Planning; IEEE 802.1Qbv 

I. INTRODUCTION 

A. Research Motivation and Significance 

Time-Sensitive Networking (TSN) plays a 
pivotal role in modern society, supporting a 
multitude of critical applications including 
industrial automation, intelligent transportation 
systems, real-time multimedia transmission in [7]. 
With the increasing demands for real-time 
performance, the planning and management of 
time-sensitive networks have become more 

complex and challenging. In particular, the 
introduction of the 802.1Qbv standard complicates 
network planning due to its requirement for 
network traffic to be transmitted within strict time 
windows, necessitating efficient resource 
allocation and scheduling strategies. 

At present, the primary strategies for solving 
the 802.1Qbv scheduling issue include 
Satisfiability Modulo Theories (SMT) and linear 
programming. However, these methods have 
issues with planning time and adaptability to 
complex requirements. 

This study introduces reinforcement learning as 
a means to enhance the adaptability of planning 
under complex conditions, optimize planning 
efficiency, and improve network performance. 

B. Research Status at Home and Abroad 

International scholars have extensively 
researched the planning and management of Time-
Sensitive Networking (TSN). The scheduling 
issues of TSN were first influentially addressed in 
2016, primarily using the Satisfiability Modulo 
Theories (SMT) method, which initially solved the 
planning problem. Reference [1] provides an 
introduction to TSN. 

Farzaneh and colleagues developed an 
automated scheduling synthesis tool for supporting 
TSN using graphical modeling in [2]. They also 
optimized the solution algorithms for planning 
based on previous studies. Reference [3] use array 
theory encoding to solve the 802.1Qbv problem. 
M. Pahlevan and others proposed a heuristic 
scheduling algorithm based on genetic algorithms 
in [4]. Gavriluţ and colleagues introduced a 
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scheduling algorithm based on Greedy 
Randomized Adaptive Search Procedures 
(GRASP) in [5]. In 2019, the TSNSCHED tool 
was introduced in [6]. It takes topology as input, 
utilizes SMT for solving, and supports stream 
planning for TSN unicast and multicast. Li C and 
colleagues proposed an integer linear 
programming based joint routing and scheduling 
method for multicast time-sensitive traffic in [13]. 
They reduced the scale of the scheduling problem 
by pruning the topology and grouping the traffic. 

Mai T L and others proposed the use of 
machine learning methods in [8], including 
supervised and unsupervised learning, to explore 
the solution space of well-constructed TSN. Zhong 
C and colleagues were the first to propose using 
deep reinforcement learning to address the 
dynamic scheduling problem of TT streams in [9]. 
Their solution can promptly recover and 
reschedule the affected TT streams when network 
topology changes occur. Jia H and others proposed 
a deep reinforcement learning scheduling 
framework in [10], for incremental scheduling of 
TT streams. Based on this, they designed a three-
step selection paradigm to mitigate the issue of a 
vast action search space. In [11], Jin X and 
colleagues proposed a method for scheduling 
large-scale data under the condition of limited 
Schedule Entries.  

In 2022, Daniel B and others introduced a 
heuristic scheduling algorithm called HERMES in 
[12], which utilizes multiple scheduling queues to 
enhance the schedule ability of time-sensitive 
traffic. 

Overall, researchers both internationally and 
domestically have recognized the importance of 
TSN and have achieved a series of results using 
different research methods and technologies. 
However, due to the complexity and real-time 
demands of TSN, this field remains challenging 
and requires further in-depth study and innovation. 
This research aims to contribute to the study of 
TSN planning issues in the domestic context by 
introducing reinforcement learning methods to 
improve network performance and resource 
utilization. 

II. DESIGN OF ALGORITHM 

Network Mathematical Model 

Time-Sensitive Networking is a network 
architecture made up of end systems (ES), 
switches (SW), and full-duplex physical links. 
This paper abstracts the time-sensitive network as 

a directed graph  ?G N L . 

N symbolizes all device nodes within TSN, 
encompassing both switches and end systems. End 
systems are responsible for sending and receiving 
traffic that carries data within the network. 
Switches comprise multiple input and output ports 
and are responsible for forwarding frames from 
input ports to the corresponding output ports based 
on the destination node. 

L denotes the set of physical connections within 
TSN, with each element signifying a 
unidirectional, simplex physical link. These links 
are the physical medium connecting the output 
ports of network nodes and are responsible for the 
actual transmission of traffic. 

Fig. 1 illustrates a basic model of TSN 
topology., including 2 switches and 4 end systems, 
interconnected by a total of 10 unidirectional links. 

 

Figure 1.  Simple TSN Network Model 

In the model, a physical link is represented as a 

unidirectional link  ? a bn n , defined by a triplet

     ,? ,? ? ,? ?a b a b a bn n speed n n count n n delay . Here, 

 ,?a bn n speed  denotes the transmission rate, 

 ,?a bn n count  indicates the number of output port 

queues connected to node    on the link, and 

 ,?a bn n delay  represents the propagation delay. 

The traffic model of TSN mainly includes 
Scheduled Traffic (ST) streams, Audio Video 
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Bridging (AVB) streams, and Best Effort (BE) 
streams in [15], with the priority decreasing in that 
order. The scheduling only considers the ST 
stream problem. The entirety of ST streams within 
the network is represented by the symbol S. For an 

ST stream  is S  originating from node 1 n  and 

destined for node 
inn , passing through 

intermediate nodes 2 1, ,
inn n  , the transmission 

path of  is  is represented as 

  1 2 1, , , ,
i ii n ns n n n n

     . The flow instance of 

is  on the link  ? ?a bn n  is represented as 
 ,?

  a bn n

is , 

and each  is  is defined by a triplet 

.len, .period, .e2ei i is s s . Here, .lenis  indicates the 

size of stream is , the quantity of data transmitted 

within each period; .periodis  denotes the period 

length of stream is ; .e2eis  represents the upper 

limit of tolerable end-to-end delay(ED) for a 

stream is . 

The hyper period of the link  ,?a bn n  is defined 

as the least common multiple of all scheduled 
stream’s periods passing through the link. The 
scheduling algorithm is only required to organize 
the streams within a single hyper period and repeat 
this schedule across multiple hyper periods. 

All traffic is transmitted in units of frames in 

[14]. 
 ,?a bn n

iF  denotes all frame instances of stream 

is  transmitted on the link  , ?a bn n , where  ,?

,
a bn n

i kf  

represents the kth frame instance in the set. Each 
frame instance is defined by a triplet      

     ,? ? ?

, , ,. , . _ , .a b a b a bn n n n n n

i k i k i kf offset f trans dur f period . 

Here, 
 ,?

, .a bn n

i kf offset  represents the offset of the 

instance's transmission time relative to the start of 
the hyper period, satisfying Equation (1): 

    ,? ?

, ,. 0, .perioda b a bn n n n

i k i kf offset f 
 

  

 ,?

, . _a bn n

i kf trans dur  represents the transmission 

delay of the instance, determined by its size and 

the link's bandwidth.  ,?

, .perioda bn n

i kf  represents the 

duration of the instance, equivalent to the stream's 
cycle. 

Scheduling Constraints 

Scheduling constraints are essential conditions 
for determining the correctness and effectiveness 
of scheduling results. The traffic scheduling 
problem in TSN can be defined as an optimization 
problem: assigning appropriate transmission slots 
to all planned streams in the network, with the 
objective of maximizing optimization indicators 
while satisfying all scheduling constraints. The 
specific constraints are as follows: 

Frame Periodicity Constraint: Planned streams 
are periodic, and it must be ensured that each 
frame completes transmission before the end of its 
period. This can be expressed as for 

     ,? ?

,, ? ? ? a b a bn n n n

i a b i i k is S n n s f F , satisfying 

Equation (2): 



 

 

   

,?

,

,?

,

,? ?

, ,

. 0,

.

. . _ .

a b

a b

a b a b

n n

i k

n n

i k

n n n n

i k i k

f offset

f offset

f period f trans dur

 







 

Link Conflict-Free Constraint: To ensure the 
isolation and correctness of the flow's transmission, 
it is necessary to guarantee that each frame 
exclusively occupies the queue of the output port 
and the corresponding physical link during the 
same transmission slot. This can be represented by 
Equation (3): 



     

   

   

   

 

   

 

,? ?

,

,? ?

,

,? ?

, ,

,? ?

, ,

,?

,

,? ?

, ,

,?

,

,? ,

, :

. .

. .

. _

. .

a b a b

a b a b

a b a b

a b a b

a b

a b a b

a b

n n n n

a b i k i

n n n n

j l j

n n n n

i k i k

n n n n

j l j l

n n

j l

n n n n

j l j l

n n

i k

n n L f F

f F i j

f offset f period

f offset f period

f trans dur

f offset f period

f







   

 

  

  



  

 

 

,?

,

,?

,

. .

. _ .

a b

a b

n n

i k

n n

i k

offset f period

f trans dur

  

 
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Frame Transmission Constraint: The 
transmission start time for a given frame on the 
subsequent link must not precede the completion 
time of its transmission on the prior link. This can 
be represented by Equation (4): 



   
       

   

   

,? ? ? ?

, ,

,? ?

, ,

,?

,

,? ? ,?

, :

. . _

,? .

a x a x x b x b

a x a x

x b

i a x x b i

n n n n n n n n

i k i i k i

n n n n

i k i k

n n

a x i k

s S n n n n s

f F f F

f offset f trans dur

n n delay f offset

  

 

 

 

 

Flow Isolation Constraint: To prevent the 
interleaving of frame order in the scheduling 
queue, restrictions are imposed on any two 
Scheduled Traffic (ST) streams arriving at the 
same switch. If a frame from one ST stream has 
already arrived at the switch, frames from another 
ST stream cannot reach the same output port until 
all frames of the first stream have been completely 
sent to the output port. This can be represented by 
Equation (5): 



     

 

 

 

 

,? ?

,?

,

,?

,1

,?

,

,?

,1

,? , , :

. .

. .

,? .

. .

. ,? .

a b a b

a b

y a

a b

x a

n n n n

a b i j

n n

i ni i

n n

j j

n n

y a j nj

n n

j i

i x a

n n L s s S i j

f offset s period

f offset s period

n n delay f offset

s period f offset

s period n n delay

 



 



 
 

   

   

  

    

   

 

 

End-to-End Delay Constraint: The total delay 
experienced by each stream from source to 
destination must not exceed its specified 
maximum allowable delay. This can be 
represented by Equation (6): 



 

,

,

,

,

,?

,1

: .

. _

. . 2

y b

y b

a x

n n

i i ni

n n

i ni

n n

i i

s S f offset

f trans dur

f offset s e e

 
 

 
 

  





 

Scheduling Optimization Indicators 

In the TSN scheduling process, it is first 
necessary to satisfy the basic scheduling 
constraints to ensure the correctness of the 
scheduling results. Subsequently, the aim is to 
provide low-latency transmission services and 
enhance network transmission performance to 
achieve higher quality scheduling results. 
Therefore, two optimization indicators will be set 
to improve the quality of scheduling from the 
perspectives of slot utilization balance and ED. 

A classic optimization goal in a TSN 
scheduling problem is the minimization of ED. To 
measure the quality of scheduling results, this 
paper establishes an optimization indicator for the 
ED of ST streams, aimed at achieving scheduling 
results that meet the scheduling constraints while 
minimizing the ED of ST streams. The ED denotes 
the duration from when the initial frame of the 
traffic begins transmission at the source node to 
the completion of the last frame's transmission. In 
conjunction with the TSN scheduling model, the 

calculation of ED for stream  is  is as Equation (7): 



 

 

1

1 1 2

,

,

, ,

, ,1

2 .

. _ .

ni n ii

n n i ii i

n n

i i ni

n n n n

i ni i

e e f offset

f trans dur f offset





 
 

 
 

 



 

Define the ED delay vector for is  as iED , 

which can be expressed as Equation (8): 


2

1
. 2

i
i

i

e e
ED

s e e
   

It can be concluded that the smaller 2 ie e  is, the 

larger iED  will be, indicating better network 

performance. This paper calculates the overall ED 
of all ST streams using the Average End-to-end 
Delay (AED) method. This approach is used to 
measure the network's end-to-end delay indicator: 


1

N
i

i

ED
AED

N

  
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Another optimization goal is the uniformity of 
time slots. More uniform time slots can reduce the 
average delay of messages other than Scheduled 
Traffic (ST) messages. As long as the delay of ST 
messages is kept within the required limits, this is 
acceptable. The planned time slots are shown in 
Fig.2 as follows: 

Figure 2. TSN time slot 

The network's slot balance indicator primarily 
assesses the balance of idle slots on each link. The 
balance of each link is abstracted into a Link 
Balance Vector (LB), which is described using the 

standard deviation method. For link  ,?a bn n , the 

calculation of the Link Balance Vector (LB) is as 
per Equation (10):  

          

 
  

 

,? 2
,?

1

,? ,?
1

n na b

a b

a b a b

n n n

ii

n n n n

slot slot
LB

n




 




In this context, 
 ,?a bn n

n  represents the number of 

idle slots on the  ,?a bn n  link. 
 ,?a bn n

islot  denotes the 

length of the i-th idle slot on  ,?a bn n . slot  is the 

average length of idle slots on the  ,?a bn n link. 

The overall Network Link Balance (NLB) for 
the network can be described by the average of all 
Link Balance Vectors across the links, as shown in 
Equation (11): 


1

N
i

i

LB
NLB

N

  

N signifies the total count of links within the 
network. 

Design of the Scheduling Algorithm  

The Algorithm introduces the concept of time 
discretization, converting the continuous time 
interval into a set of transmission moments. This 
transforms the problem of choosing transmission 
moments for traffic into a multi-treasure hunt in a 
three-dimensional space, with each planned stream 
acting as a searcher. The global link slot allocation 
in the network is designed as the environment. The 
scheduling of traffic at each hop along its 
transmission path is designed as the state space, 
where the current state fully characterizes the 
process, conforming to Markov properties. The 
action of choosing a transmission moment for the 
traffic on that link in the current state is designed 
as the action space, where the action space is the 
set of transmission moments obtained by 
discretizing the traffic's period. Regarding 
exploration strategy, this paper improves upon the 
ε-greedy strategy, adaptively adjusting the 
exploration probability ε based on iteration count, 
allowing the scheduling results to better converge 
to the optimal state. Combined with the 
optimization indicators mentioned in the previous 
section, a reward function is designed to evaluate 
scheduling actions and update the Q-table, until 
the algorithm reaches the maximum number of 
iterations, thus obtaining the final scheduling 
results. 

The task of the TSN scheduling algorithm is to 
calculate the transmission moments for frames of 
all planned streams on the transmission links. The 
TSN scheduling problem has Markov properties; 
by continuously applying a one-hop scheduling 
policy to the network, observing changes in the 
state of the network environment, and obtaining 
immediate reward values, the algorithm trains an 
adaptive traffic scheduling model. After numerous 
iterations of training, an optimal behavior strategy 
is obtained, guiding the agent to execute the 
optimal scheduling actions. The process of the 
algorithm is as follows: 

1) Parse configuration files, initialize network 
topology information, traffic collection, etc. 

2) Initialize the scheduling model, including 
the environment, Q-table collection, learning rate 
α, discount factor γ, maximum number of 
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iterations (episodes), exploration probability ε, 
state space, and action space. 

3) Use an adaptive exploration strategy to 
select transmission moments, calculate the ε 
exploration factor, randomly select from the 
action space with a probability of ε, and select the 
transmission moment with the highest Q value 
from the Q-table with a probability of 1-ε. 

4) Execute scheduling actions, move to a new 
state, and check if scheduling constraints are met. 
If not, provide negative feedback; if constraints 
are met, mark in the environment. 

5) Update the Q-table according to the action 
record, regardless of whether the scheduling is 
successful or not. 

6) If all ST streams are scheduled, indicating a 
successful scheduling, calculate the ED and NLB 
indicators of the scheduling results, put the 
weighted R value into the experience pool, and 
give positive reward feedback according to the 
reward function, indicating the end of this 
iteration round, then proceed to Step 7. If not all 
scheduling is completed and still in an 
intermediate state, go back to Step 3 and proceed 
with the scheduling process. 

7) Ascertain if the count of iterations (episodes) 
has hit its upper limit. If not, go back to Step 3 
and continue iterative training until the maximum 
number of iterations is reached, concluding the 
training. 

After the algorithm training is completed, the 
final Q-table collection is obtained. The Q value 
indicates the superiority of choosing different 
transmission moments for traffic in each state; the 
larger the Q value of a transmission moment, the 
closer it can approach the scheduling goal. 
According to the final Q-table, the optimal 
transmission slots are planned for each planned 
stream on each link, serving as the basis for 
generating the gate control list. 

The environment (Env) represents the overall 
slot allocation situation of the links in the current 
network, which can be seen as the mapping 
information between the traffic and the 
transmission moments on the transmission link. 
The definition of Env is shown in Equation (12): 

     ,?

,, .a bn n

i a b i kEnv s n n f offset    

The scheduling space is divided into three 
types of states: effective, intermediate, and failure. 
A successful scheduling state is represented by all 
planned streams having generated scheduling 
schemes that meet the scheduling constraints. An 
intermediate state occurs when all streams 
scheduled so far meet the constraints, while a 
failure state arises when the current scheduling 
includes scenarios that do not meet the constraints. 
As shown in Fig.3 below, the diagram depicts the 
scheduling of three streams, with the top showing 
a successful state, the middle an intermediate state, 
and the bottom displaying a failed state due to a 
conflict.  

Figure 3.   TSN Scheduling space status example 

Let State  represent the state space, where 

tState State  denotes the scheduling state at 

moment t. The definition of tState  is as shown in 

Equation (13): 

 , ,tState S L Env  

The action space is a set of time points 
obtained by discretizing the size of the traffic 
cycle. Let A represent the action space, and 

ta A  denote the action of the agent at moment t, 

which is the transmission time chosen for the 

traffic. Thus, the definition of ta  is as per 

Equation (14):  

    ,?

,, ,? .a bn n

t i a b i ka sche s n n f offset  



International Journal of Advanced Network, Monitoring and Controls        Volume 09, No.01, 2024 

84 

Where sche  — on the  ,?a bn n  link, the 

allocated transmission time for the frame instance 

of stream is  is  ,?

, .a bn n

i kf offset .  

During the scheduling process in TSN, agents 
need to continuously select scheduling actions 
from 

the action space for learning. This paper adopts 
an improved ε-greedy strategy for action selection, 
exploring with a probability of ε, and exploiting 
with a probability of 1-ε. 

The calculation method for the exploration 
probability ε is as per Equation (15):  


_

cos
2

cur epi

episodes




 
  

 
 

In the learning process of TSN scheduling, 
each time a scheduling action is applied to the 
environment, a new scheduling state is generated. 
The reward function can provide a corresponding 
feedback evaluation for the new scheduling state. 

When the new state 1is   does not meet the 

scheduling constraints, it indicates that 1is   cannot 

ensure that all planned streams in the current 
network can be correctly scheduled, and is 
considered a failure scheduling state. In this case, 
the reward function returns a negative reward 

value. When the new state 1is   meets the 

scheduling constraints, and all ST streams in the 
network have been scheduled, a positive reward 
value is returned. When the new scheduling state 

1is   meets the scheduling constraints, but there are 

still unscheduled planned streams in the network, 
this scheduling state is an intermediate state, and a 
reward value of 0 is returned. In summary, the 
definition of the reward is as shown in Equation 
(16): 



 

1

2

,

1

0

2
*(exp 1 1)

*(exp 1 1)

i i

MAX

R s a

failure

intermediate

e e

CC

NLB

NLB

effective








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In the Q-learning-based TSN scheduling 
algorithm, during the process of generating 
scheduling results, it is necessary to design a Q-
table to store reward values. After executing a 

scheduling action  ia  in any state  is , the reward 

function returns a reward value, denoted as 

 ,?i iQ s a . In the scheduling algorithm designed in 

this paper, each planned stream corresponds to a 
Q-table. Each Q-table is an n*m experience 
matrix, where n is the number of links that the 
traffic route passes through, and each row of the 
Q-table, from top to bottom, corresponds to each 
transmission link of the traffic in sequence; m is 
the number of time points obtained by discretizing 
the period of the traffic. The Q-table is initially set 
to all zeros and is continuously updated with 
values through learning.  

III. RESULTS 

In this paper, experiments will be conducted 
based on the optimization indicators mentioned 
earlier, to compare and analyze the Q-learning-
based TSN scheduling algorithm with the SMT 
scheduling algorithm, thereby verifying the 
advantages and disadvantages of the scheduling 
algorithms.  

The subject of the TSN scheduling algorithm is 
the planned streams. The experimental data 
mainly includes the collection of planned streams 
awaiting scheduling in the network and the 
topology information. The TSN topology used in 
the experiment is illustrated in Fig.4 below. This 
network topology comprises 16 network end 
systems, 8 TSN network switches, and 31 full-
duplex physical links. The assumption is made 
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that every network device and physical 
connection within the network shares the same 
model, with identical bandwidth, and the lengths 
of the links are equal. 

 
Figure 4.  The experimental network topology 

In the course of the experiment, the size, 
period, source, and destination of the ST streams 
are generated in random. The period of ST 
streams is chosen at random from the options of 
1ms, 2ms, 4ms, 8ms, and 16ms. If the size of an 
ST stream exceeds the MTU, it can be divided 
into a collection of frames. According to standard 
Ethernet limitations, each frame is between 64B 
and 1518B. Given that the bandwidth of all 
network links is configured to 1000Mbps, the 
transmission delay for a frame at the output port 
varies between 5.12 microseconds and 121.44 
microseconds. 

The experiment injected 80 planned streams 
into the network for scheduling, with the size, 
period, source, and destination systems of each 
stream randomly generated. Assuming that the 
transmission paths of the flows have been 
determined by a specific routing algorithm, there 
are a total of 302 hops, and the hyper period for 
scheduling is 4000 us. The parameters for the 
scheduling algorithm are configured with a 
maximum of 50,000 iterations, a learning rate of 
0.6, a discount factor of 0.9, an end-to-end delay 

index weight 1 of 0.5, and a NLB weight 2   of 

0.5. 

After obtaining the experimental results and 
analyzing the data, we listed the maximum and 
minimum values of the NLB for the scheduling 
results during the 50,000 iterations of training for 

these two scheduling algorithms, as shown in 
Fig.5:  

 
Figure 5. Comparison of NLB 

As depicted in Fig.6 below, the change curve of 
the optimal value of the NLB of the scheduling 
results is given for these two algorithms under 
successful scheduling conditions across 50,000 
iterations of training. In the graph, the horizontal 
axis denotes the algorithm's iteration count, 
whereas the vertical axis reflects the NLB value of 
the scheduling results. It can be observed that 
NLB of the scheduling results obtained by the 
SMT scheduling algorithm remains unchanged 
during the iterations. The reason is that the SMT 
solver lacks exploration capability, and the 
solution results are only related to the solution 
space of the scheduling problem. The NLB of the 
Q-learning scheduling algorithm shows a 
significant decline. During the training process, 
the algorithm continuously adjusts the scheduling 
strategy using an adaptive exploration strategy and 
gradually converges to higher-quality scheduling 
results under the guidance of the reward function. 

 

Figure 6. Optimal Value Change Curve of NLB 
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It can be deduced that the Q-learning based 
TSN network scheduling algorithm considerably 
surpasses the SMT algorithm in achieving a higher 
NLB. Moreover, the Q-learning-based approach, 
as compared to the SMT algorithm, possesses the 
capability to continuously optimize based on 
experience during iterations, converging towards 
higher-quality scheduling results in terms of the 
index. 

IV. CONCLUSION 

This paper revolves around the planning 
problem of TSN, involving mathematical analysis 
and modeling, and defines optimization indicators. 
Subsequently, a TSN planning and scheduling 
method based on Q-learning is proposed. 
Employing a discretization approach, the 
scheduling problem parameters and functions in 
Q-learning are defined and trained. Finally, 
experiments are conducted to compare the results 
of this method with traditional approaches. It is 
evident that the TSN scheduling method based on 
Q-learning shows significant superiority over 
traditional algorithms in terms of indicators such 
as NLB. 

This paper proposes a TSN scheduling method 
based on Q-learning, which also provides insights 
for subsequent TSN planning problems. For 
example, it raises questions such as whether there 
are faster training-based methods that can be 
applied to TSN planning issues, or whether it's 
possible to combine current popular approaches, 
such as large models, for planning purposes. 
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