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Abstract—The keypoint of autonomous driving technology is 

the accurate instructions maked by desicision-makers based on 

the perception information. Human plays an important role in 

the decision-makers. The cognitive load is usually used to 

quantify the impact of human-computer interaction during 

flighting.  In this paper, we proposed a innovate automatic 

landing control method based on the cognitive load theory and 
Deep Deterministic Policy Gradient. Different to the 

traditional algorithm which heavily relays on an accurate 

model, the reinforcement learning algorithm is used to design 

the control strategy in the proposed method. And an improved 

DDPG algorithm is proposed based on the impact of cognitive 

load, to improve the training efficiency of the DDPG algorithm 

and reduce the correlation between data. And construct a 

human-machine reinforcement learning model. The final 

position, mean square error of pitch angle, and standard 

deviation of the aircraft gradually decrease with the number of 

iterations and tend to 0, indicating that the aircraft is 

gradually stabilizing its landing. The experimental results 

demonstrate that the proposed model can greatly improve the 

longitudinal stability of the aircraft. 

Keywords-Component; Cognitive Load; Human 

Factors; Longitudinal Stability Control; Reinforcement 

Learning; Deep Deterministic Policy Gradient 

I. INTRODUCTION  

The research on pilot cognitive load can be 
traced back to the early 20th century [1-3]

.
 

Cognitive load refers to an individual's 
psychological resource used to solve problems or 
complete tasks within a certain period of time [4,5]. 
When a person's working memory capacity is 
overloaded with new information received directly 
or indirectly, the burden on the cognitive system 
increases, forming a cognitive load [6]. Nowadays, 
artificial intelligence technology has been widely 
applied in many fields, and its future development 
cannot be estimated. These developments will 

profoundly transform related fields. But if there is 
only a single application of artificial intelligence, 
although machines driven by AI technology and 
automation technology, such as cars, have both 
automation capabilities, that is, multiple 
mechanical/control systems that enable cars to 
travel according to instructions, and autonomous 
capabilities such as AI driven environmental 
perception and path planning, machines can 
already complete more and more tasks without 
human participation. However, as artificial 
intelligence is increasingly applied in various 
fields, especially in the field of automation control, 
human participation will become increasingly 
indispensable. The machine intelligence driven by 
AI has brought enormous imaginative space for 
automation applications in various fields and also 
requires the influence of human factors. The 
process of pilot information processing includes: 
firstly, the pilot obtains sensory and tactile 
information; Secondly, the pilot's ability to make 
decisions based on past experience when making 
plans; Finally, the level of pilot's operational 
behavior [7]. After information processing, the 
amount of cognitive resources consumed by pilots 
is called cognitive load. The autonomous 
willingness of pilots to react and operate runs 
through the process of human machine 
environment interaction, while the subjective 
driving intention of pilots is rarely considered in 
current research results. The reflection of actual 
effectiveness in flight control processes under 
different cognitive loads needs to be emphasized. 
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II. RELATED THEORIES 

A. Cognitive load theory 

Early measurement methods often relied on 
methods such as action response detection, pen 
and paper filling, form testing, and intelligence 
testing, due to limitations in experimental 
equipment and environment. The validity of 
various subjective scales has been validated and 
modified by many researchers in order to achieve 
more accurate evaluation results. Due to subjective 
evaluation methods such as paper, pen, and 
questionnaire surveys, which require participants 
to fill in based on their own perception, the results 
are often subjective. 

Objective measurement methods have been 
applied to most human-computer interaction 
studies due to the inability to directly observe and 
measure cognitive load, such as eye tracking [8-9], 
Index of Cognitive Activity (ICA) [10], and other 
technologies. In addition to objective methods, 
some scholars in the field of multimedia learning 
research use subjective tools such as the Paas 
Psychological Effort Scale [11] and the NASA-
TLX (National Aeronautics and Space 
Administration Task Load Index) scale [12] to 
evaluate cognitive load. The main methods 
currently used to measure cognitive load in 
human-computer interaction research include 
physiologytask [13] performance based [14][13] , 
and subjective self-assessment [15]. 

TABLE I.  COGNITIVE COMPLIANCE  

Types Indirect mode Specific mode 

subjective measure Subjective 

assessment scale 

NASA-TLX, WP scales, 

etc 
  

Task performance 

 

 

Dual task measurement 

objective 

measurement 

Physiological 

measurement data 

Electrocardiogram, 

oculomotor, 

electroencephalogram, etc 

Through literature analysis, it was found that in 
human-computer interaction research, objective 
methods tend to be used to obtain relatively 
reliable and effective data, and there are few 
studies that use a single subjective method to 
measure cognitive load (such as Clarke, Schuetzler, 
and Windle et al.), in order to avoid the influence 
of personal characteristics of participants on 
experimental results [16]. The stimuli experienced 

by individuals indirectly affect the changes in 
physiological data and represent the level of 
psychological processing. The hypothesis that 
human physiological changes to some extent 
reflect an individual's psychological state 
establishes a physiological method for measuring 
cognitive load [17]. Indirect objective 
measurement methods such as eye tracking 
technology[18], functional near-infrared 
spectroscopy (fNIRS) [19], skin electric response, 
electroencephalogram (EEG) [20]have been used 
to measure cognitive load in human-computer 
interaction research. 

Heart rate variability is an indicator of 
electrocardiogram signals, referring to the 
irregularity of differences between consecutive 
heart beat cycles. Physiological functions that are 
not subjectively controlled by humans, including 
heartbeat, respiration, blood pressure fluctuations, 
and digestion, are all regulated by the autonomic 
nervous system of the human body. Due to the 
influence of multiple factors such as hormones, 
staying up late, and diet, there is no optimal 
standard interval for heart rate variability. 
However, the time-frequency indicators and other 
characteristic information of heart rate variability 
can provide non-invasive and quantitative 
evaluation of the autonomic nervous system, so 
electrocardiogram signals are selected as 
measurement data for human factors. 

TABLE II.  TIME DOMAIN INDICATORS 

Name unit illustrate Formula 

MEAN ms Mean RR 

interval 1

N

ii
RR

MEAN
N




 

SDNN ms Normal RR 

interval 
standard 

deviation 

2

1

( )N
i

i

RR RR
SDNN

N


 

 

rMSD

D 

ms Root mean 

square of RR 
interval 

difference 

between 
neighbors 

2

1

1

( )N
i i

i

RR RR
rMSSD

N






 

 

50pNN  % The 

proportion of 
RR interval 

difference 

greater than 
50ms 

50
50 100%

NN
pNN

NN
   
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Time domain analysis is the simplest and most 
intuitive way to study HRV, and its analysis 
principle is based on quantitative exploration of 
statistical indicators such as MEAN and SDNN in 
RR interval sequences. HRV time-domain 
indicators commonly used in analysis. 

The area enclosed by the power spectrum curve 
and coordinates on each frequency band is 
numerically the power of the signal in that 
frequency band. Therefore, the energy 
characteristics of each frequency band are 
extracted based on the power spectrum to 
quantitatively analyze the frequency domain 

characteristics of HRV，as shown in the figure. 

 

Figure 1. Power Spectrum 

TABLE III.  MEANING OF EACH FREQUENCY 

Name Abbreviation Meaning Frequency range 

Very low 

frequency 
VLF - <0.04 Hz 

low frequency LF 

Reflecting 

sympatheti

c nervous 
activity 

0.04 0.15 Hz 

High frequency HF 

Reflecting 

parasympat
hetic nerve 

activity 

0.15 0.4 Hz 

 

 100%norm

LF
LF

TP VLF
 

  
(1) 

 
100%norm

HF
HF

TP VLF
 

  (2) 

Obtain the HRV frequency domain indicators 
on each side of the pentagonal flight through 
frequency domain analysis, (including the 

standardized low-frequency power normLF , normHF

standardized high-frequency power , and the ratio 
of low-frequency to high-frequency power result 
LF/HF.) 

B. Reinforcement Learning Theory 

Reinforcement learning consists of three parts: 
intelligent agent, reward function, and 
environment. As shown in the figure, the initial 
state of the environment is inputted to the 
intelligent agent. The intelligent agent selects 
appropriate actions based on the state, and the 
actions are inputted to the environment. The 
environment obtains the reward value generated 
by the action and the new state. The two are 
inputted to the intelligent agent. The intelligent 
agent corrects the strategy based on the reward 
value, outputs new actions based on the new state, 
and thus repeats the cycle. The goal of 
reinforcement learning is to learn a strategy 
function π (x), which is a mapping from state 
space x to action space a. Reinforcement learning 
algorithms can be divided into three categories 
structurally: actor critic (A-C) structure, value 
function based reinforcement learning, and policy 
based reinforcement learning. 

 
Figure 2. Meaning of Each Frequency 

The actor and critic represent the policy π and 
the value function V(s), respectively, and are 
approximated using a neural network. The input of 
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the actuator is the current state of the aircraft, the 
output is the changes in speed, pitch angle, and 
altitude, the input of the evaluator is the state of 
the aircraft, including the cognitive load level, and 
the output is a state value function. After inputting 
the action into the actor, a new state variable is 
obtained and the real-time reward value is 
obtained based on the reward function formula. 
The critic iteratively updates based on the 
direction that minimizes the time difference error, 
while the actor also updates based on the weighted 
gradient of the time difference error. In an iterative 

update, update the critic first and then update the 
actor. When the cumulative reward value reaches 
the target requirement or the training reaches the 
set number of times, the training stops. 

The core of DDPG is to split the actor and 
evaluator critic into two networks: the current 
network and the target network. After the actor 
generates an action for the environment, samples 

1( , , , )i i i is a s r are generated and placed in the 

experience replay pool, as shown in the figure 3. 

 

Figure 3. Schematic diagram of DDPG 

The function of the current network's critic is to 

update parameter Q  and calculate the current 

state-action value ( , )i iQ s a , while the target 

network of critic calculates the value ( , )i iQ s a . 

Afterwards, update the critical current network 
based on the loss function.   

 
21

( ( , | ))Q

i i ii
Loss y Q s a

N
   (3) 

The updated current network will periodically 

copy the weights Q

to the target network. Actor's 

current network acceptance status si , select the 

optimal action ia  based on weight  . And update 

the weights according to the gradient formula. 

 
1

( , | ) | ( | )Q

i i i ii
J a Q s a s

N

         (4) 

The target network selects the optimal action

1ia   based on the state 1is   and weight 

in the 

experience replay pool. The current network will 
periodically copy weights to the target network. 

 1 1( , ( | ) | )Q

i i i iy r s s     

 
   

 (5) 

 (1 )Q Q Q     
     (6) 

 (1 )       
     (7) 
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III. DESIGN OF DDPG MODEL IMPROVED BASED 

ON COGNITIVE LOAD THEORY 

A. Selection of Quantitative Indicators for 

Cognitive Load  

Due to the need to characterize short-term 
cognitive load, electrocardiogram time-frequency 

indicators MEAN, normLF , normHF were selected to 

calculate the cognitive load of pilots. 

 1 2 3 4
norm norm

rzfh

norm norm

lf hfmean
U c c c c

MEAN LF HF
     (8) 

MEAN , normLF  , normHF is the constant value of 

human physiological indicators in a sedentary state. 
To solve for each weight value and constant term, 

define ijd is the relative value of the thj  

electrocardiogram indicator in the thj

measurement window, based on the comparison 
between the measured value and the reference 

value. Matrix ( ) 4ij mW d  is The relative value 

matrix of the norm indicator MEAN , normLF ,

normHF , where
1 2 3 4( , , , )Tb c c c c is the vector 

composed of the corresponding weight values and 
constant terms for each indicator 

1 2 3( , , )T

rzfh rzfh rzfh rzfhmU U U U  is the cognitive 

load vector, where the total score of the NASA-
TLX scale is used as the training value. Therefore, 
the determination of weight values is transformed 
into finding the optimal solution    for the 
equation W e   , such that for all e R  , 

0W e W e       holds true. According to 

the generalized inverse matrix theorem and its 

existence conditions 1e W  , Using 20 sets of 
experimental measurements and a set of equations 
listed with 4 measurement windows in each group, 

substitute 1e W  the weight matrix of each 
electrocardiogram indicator obtained is

(73.76, 28.53,17.96, 116.44)Te    , Substitution

W e   , we obtain 

 73.76 28.53 17.96 116.44norm norm
rzfh

norm norm

lf hfmean
U

MEAN LF HF
     (9) 

Compared to calculating the average cognitive 
load using time-domain and frequency-domain 
indicators over a time period, using the above 
formula to fit short-term cognitive loads is more 
accurate and real-time This can then serve as one 
of the input data for the reinforcement learning 
model. 

B. Reinforcement Learning A-C Structure Neural 

Network Design 

The neural network structure of the critic and 
actuator is shown in the figure. The hidden layer 
size is 100, where the input layer of the critic 

inputs the aircraft's cognitive load state rzfhU and 

Aircraft status ( , , , )Tx z v  .The hidden layer 

consists of five fully connected layers and three 
ReLU activation functions. The output layer 
outputs the value of the state action function with a 
learning rate of 0.001; The input layer of the 
actuator inputs the state of the aircraft, the hidden 
layer consists of four fully connected layers and 
three relu activation functions, and the output layer 
outputs the deflection angle and acceleration of the 
controller. The learning rate of the actuator is 
0.0001, and the gradient thresholds of the actuator 
and critic are both 1. 

 
Figure 4. Critic Network Structure 

 
Figure 5. Actuator Network Structure 
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C. Reward Function Design 

Assuming that the observation input of the 
reinforcement learning agent is 4 dimensions, the 

state input of the aircraft is ( , , , )Tx z v  , the 

output of the agent is used as the control action of 
the aircraft, and the action signal is saturated 
before being used as the input of the aircraft, with 
a maximum deflection angle not exceeding 0.6 rad. 
Based on the above standards, the training 
conditions for aircraft are: 

 
0 600

1 1

z m

rad

 

  

 (10) 

When the range set is exceeded, the training is 
terminated. If the range is too small, the 
exploration space of the action during the training 
process is limited, and it takes a lot of time for the 
reward function to converge. If the range is too 
large, it does not conform to the actual operation 
situation, and it is easy to control the situation 
when the aircraft pitch angle reaches 80 °. When 
the aircraft pitch angle exceeds a certain range, it 
is impossible to adjust back to a stable state during 
actual operation, Therefore, by setting the training 
range, useless training sample data is screened out. 
The design of a reward function guides the aircraft 
to approach the expected operating state during the 
training process, and the design of the reward 
function directly affects the control accuracy and 
robustness of the final controller. Based on 
experience and experimentation, Setting the 
coefficients for the relatively direct state variables 
z and θ as 0.3 and 0.5, and the coefficients for 0.04 
and 0.03, respectively. and reward the previous 
control action with a coefficient of 0.005. Overall, 
the final reward function is: 

 
2 2 20.3 0.04 0.5 0.05 cR z v          (11) 

IV. DATA COLLECTION AND ANALYSIS 

A. Collection equipment  

The human factor wireless physiological 
acquisition platform includes experimental 
equipment such as v1.0 ArgoLAB signal 

acquisition device, laptop, high-definition camera, 
etc. The experimental equipment is located in a 
space with artificial low light and maintained at a 
comfortable temperature. The electrocardiogram 
collection device is a wireless optical capacitive 
pulse sensor with a sampling frequency of 512 Hz. 
The specific technical parameters are described in 
TableIV . Then, the v1.0 ErgoLAB wireless 
receiver is connected to a laptop to transmit the 
subject's electrocardiogram collection signal in 
real-time through a local area network, with a 
transmission frequency of 2.4 GHz. 

TABLE IV.  TECHNICAL PARAMETERS OF SIGNAL 

ACQUISITION EQUIPMENT 

Name Value range 

resolution ratio 

ECG 
measurement range 

 16Bit 

-1500 V 1500 V  

Adjustable 

magnification 

1,2,3,4,5,6,7 

 

accuracy 
0.183 V ，0.0915 V ，0.061 V ，0.046

V ，0.037 V ，0.026 V  

Number of wireless 

sensor channels 
 1 

Wireless 

transmission 

frequency 

2.4GHz 

Distance 10m 100m 

Battery 

operating time 
 4h 

B. Data collection process 

The flight simulation adopts DCS World Steam 
Edition. Conduct experiments with 8 skilled flight 
trainees and apprentices. The debugging content of 
experimental equipment mainly includes model, 

airport, weather, date, and aircraft location，as 

shown in the figure. After entering the 
experimental course software, open the instructor 
console and select "Five sided Flight" experiment 
in "Create Task", then click the start button. Enter 
the scene settings interface again, change the 
aircraft model to su-25T, set the takeoff runway to 
Senaki, select the current experimental date and 
time, and ensure suitable meteorological 
conditions.  
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Figure 6. Experimental setup map runway 

The specific experimental operation process is 
as follows: 

(1) Set the weather of the flight simulator to 
clear, with a temperature of 20 degrees Celsius 
and a cloud layer of 2500m. Set the initial position 
of the aircraft at the runway entrance, align it with 
the centerline of the runway, and the subjects 
begin to perform pre takeoff checks. 

(2) After completing the pre takeoff checklist, 
the subjects fully push the accelerator and 
maintain stable acceleration until the airspeed 
gauge shows more than 55 knots. Then, pull the 
lever to lift the wheels of the aircraft backwards 
and take off at a climbing rate of 500 feet per 
minute. 

(3) Turn right 90 ° to both sides at a turning 
landmark, with a maximum turning angle of 20 °, 
heading from 50 ° to 150 °, and maintaining a 
climbing speed of 70 knots. Then turn to the third 
side at the second turning point. 

(4) The aircraft has reached the altitude of the 
takeoff and landing route, with a stable airspeed of 
around 80 knots, maintaining the altitude heading 
airspeed. 

(5) Reduce speed in advance on the short three 
sides, perform a pre landing checklist, check that 
the throttle valve is open, check the engine 
parameter table, check the engine temperature, the 
remaining fuel level on the fuel gauge, check that 
the mixing ratio lever is in the rich oil position, 
check the effectiveness of the braking device, 
lightly retract the throttle, start descent, maintain a 
descent rate of 500 feet per minute and an airspeed 
of around 70 knots. 

(6) Turn to the fifth side at the four turning 
points, with a maximum turning angle of 30 °. 
Check that there are no obstacles on the runway, 
control the throttle as needed, release the throttle 
before touchdown, gently level the aircraft and 
wait for touchdown. After touchdown, gently 
brake to a stop. 

C. Experimental Results and Analysis 

For baseline drift and other noise mixed in 
electrocardiogram signals, a low-pass filter is set 
to remove them; Then utilize a notch filter to 
eliminate power frequency interference mixed into 
it, apply threshold method to extract features of R 
waves in the electrocardiogram waveform, and 
quantitatively analyze the time-domain indicators 
of HRV. The main idea of the threshold method is 
to utilize the characteristic of QRS characteristic 
waves being the most oscillatory band within the 
electrocardiogram waveform. By setting different 
threshold ranges, the starting point of QRS main 
waves is obtained, and then the position of the R-
wave vertex is determined using window and 
amplitude thresholds. 

1) Quantitative results of cognitive load 

The original physiological signal obtained is 
shown in the figure. The horizontal axis represents 

the number of samples, in units of 410 , and the 
vertical axis represents the amplitude, in units of

V : 

 

Figure 7. Original electrocardiogram signal map 

The image after denoising is shown in the 
figure: 

 

Figure 8. Electrocardiogram image after denoising 
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Using threshold method to extract R-waves 
from denoised electrocardiogram data, the results 
of R-wave extraction are shown in the figure: 

 
Figure 9. ECG image after R-wave extraction 

Cognitive load 
rzfhU obtained through time-

domain and frequency-domain analysis and 
processing, The curve is shown in the figure, and 
the trend of change roughly fits the subjective 
measurement, with a value range of (15,35). 

 
Figure 10. Cognitive load value 

As shown in the figure, in the Five sided Flight, 
cognitive load follows a trend of first rising and 
then falling in the image after quantification. This 
is because cognitive load is more significantly 
influenced by psychological factors during takeoff 
and landing stages. 

2) Experiment environment and parameters 

The CPU of the server used in the experiment 
is a 256 core AMD EPYC 9654 with a frequency 
of 2.4GHz, with 128GB of memory and two A800 
graphics cards. Each graphics card has 80GB of 
memory, and the operating system is Ubuntu. The 
framework is the TensorFlow platform of Python 
3.6. The number of samples per batch is set to 512, 
the number of iterations is set to 1000, the learning 
rate is set to 0.01, the delay steps are 2, the 
experience pool size is 1000, the Actor network 
learning rate is 0.0001, the Critical network 
learning rate is 0.0002, and the exploration rate is 
0.9.The closer the aircraft is to the expected state, 
the greater the reward value, Set the training 

objective to achieve an average reward greater 
than 200 over five consecutive episodes. 

In subsequent testing, it was found that due to 
the setting of the training range, the aircraft 
exceeded the training range within 1 second, 
resulting in the termination of this training set. 
However, the cumulative reward value of this set 
exceeded 200 due to the small number of samples. 
The controller obtained after terminating the 
training for 5 consecutive sets cannot complete the 
aircraft stability control task. Change the training 
completion conditions to meet the target 
requirement when the sampling reaches 400 times 
in each set and the average value of the reward 
function in 5 consecutive sets is greater than 200. 
By establishing a simulation environment for 
training, terminate the training when the reward 
function is received and meets the requirements. 
The process of obtaining a controller through 
reinforcement learning is a continuous process of 
adjustment and improvement, and there is no 
optimal result. Through the simulation results of 
this training, the reward function and training 
requirements can be further adjusted to gradually 
reach the expected state of aircraft operation. 

3) Evaluation of landing experiment results 

In Figures 11 to 14, during the initial training 
stage, the aircraft is in the exploration and learning 
experience stage, so the learning effect is not ideal. 
However, the gradual increase in training 
frequency makes the aircraft's experience more 
and more rich. After the initial trial and error 
learning, the cumulative return of the algorithm 
increases rapidly, and the reward value increases 
and stabilizes in time step, quickly reaching 
convergence. In addition, the return value 
gradually increases, with an exploration variable 
enhancement value of 0.8 and a decrease in model 
entropy below -2, indicating a good training effect 
of the model. 
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Figure 11. Reward Value Turn Curve 

  

 

Figure 12. Time Step Turn Curve 

 

Figure 13. Return Value Change Curve   Figure  

 
Figure 14. Exploring Variables and Entropy Change Curve 

In Figures 15 and 16, the velocities and angular 
velocities in all directions decrease in fluctuation, 
and the acceleration in the z-direction tends to 0. 
The angular velocities in all directions also tend to 
0, indicating that the aircraft has landed from the 
air and entered the ground sliding phase. 

 

Figure 15. Speed time curve 

 

Figure 16. Angular velocity time curve 

Figures 17 and 18 show that the final position, 
mean square error of pitch angle, and standard 
deviation of the aircraft gradually decrease with 
the number of iterations and tend to 0, indicating 
that the aircraft is gradually stabilizing its landing. 

 
Figure 17. Final position mean square deviation and standard deviation 

Figure 
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Figure 18. Final pitch angle mean square deviation and standard deviation 

V. CONCLUSION  

This article uses linear fitting method to obtain 
cognitive load curve based on time-domain and 
frequency-domain analysis data of heart rate 
specificity test, and obtains cognitive load data 
that is consistent with the frequency of flight data. 
Based on cognitive load theory, the DDPG 
algorithm has been improved by incorporating 
human factors into the closed-loop of 
reinforcement learning. By using the improved 
DDPG algorithm for training, the number of 
ineffective explorations in the early stage was 
effectively reduced, and the impact of 
physiological level changes was considered in the 
field of human-computer interaction, achieving 
good control effects. 
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