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Abstract—In order to solve the problem of large 

positioning error and incomplete mapping of SLAM 

based on two-dimensional lidar in indoor environment, a 

multi-sensor fusion SLAM algorithm for indoor robots 

was proposed. Aiming at the mismatch problem of the 

traditional ICP algorithm in the front end of the lidar 

SLAM, the algorithm adopts the PL-ICP algorithm that 

is more suitable for the indoor environment, and uses 

the extended Kalman filter to fuse the wheel odometer 

and IMU to provide the initial motion estimation value. 

Then, during the mapping phase, the pseudo 2D laser 

data converted from the 3D point cloud data obtained by 

the depth camera is fused with the data obtained from 

the 2D lidar to compensate for the lack of vertical field 

of view in the 2D lidar mapping. The final experimental 

results show that the fusion odometer data has improved 

the positioning accuracy by at least 33% compared to a 

single wheeled odometer, providing a higher initial 

iteration value for the PL-ICP algorithm. At the same 

time, fusion mapping compensates for the shortcomings 

of a single two-dimensional lidar mapping, and 

constructs an environmental map with more complete 

environmental information. 

Keywords-SLAM; Indoor Robot; Extended Kalman 

Filter; PL-ICP  

I. INTRODUCTION 

With various types of indoor mobile robots 
being widely used in human life and production, 
robot Simultaneous Localization and Mapping 
(SLAM) technology, as the basis for robots to 
complete service work, has gradually become a 

research hotspot [1]. Affected by the diversity and 
complexity of the indoor environment, the 
information that can be obtained by the 
simultaneous localization and mapping of the 
common single radar is limited, so it cannot 
construct complete three-dimensional map 
information [2]. Therefore, multi-sensor fusion has 
become a new method to solve the defects of 
indoor robot SLAM. At present, the mainstream 
sensors applied to solve SLAM problem are lidar 
and vision camera, each of which has different 
advantages [3]. Among them, two-dimensional 
lidar has the advantages of small error and high 
reliability, but it has no vertical direction 
information and is easy to cause waste of 
resources. The depth camera has the advantages of 
a wide field of view and can identify specific 
objects, but the accuracy and stability of mapping 
are poor, and the probability of deviation is high 
[4-5]. At the moment, many scholars have 
proposed many fusions SLAM schemes based on 
the complementarity of perception sensors. 

In terms of the fusion of vision and pose data 
Measurement sensors, literature [6] uses the 
coupling method to fuse the camera with the 
Inertial Measurement Unit (IMU) and the 
odometer, so as to obtain more accurate pose data. 
However, because the use is not tightly coupled, 
the vision sensor is prone to photosensitivity and 
instability. Literature [7] transfers the data 
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collected by the IMU as the initial pose to the 
vision sensor, which reduces the data pressure of 
the depth camera in the mapping to a certain extent, 
but it is prone to data disorder. If the data in the 
IMU unit is wrong, it will lead to problems in the 
vision part. In terms of wheeled odometer and 
laser sensor, literature [8] uses the Extended 
Kalman Filter (EKF) algorithm to allow the 
odometer to provide pose while fusing the point 
cloud data of lidar to make the obtained data more 
accurate and reliable. In literature [9], key frame 
data are identified by lidar and weighted and fused 
with odometer data by Iterative Closest Point (ICP) 
algorithm, so as to obtain more accurate pose 
information. However, these two algorithms will 
be too traditional due to the implementation 
method. It is easy to have problems such as low 
efficiency and poor data fusion effect. In the 
fusion of laser and attitude measurement sensor. 
Literature [10] tightly coupled the lidar and IMU 
fusion, which provided a higher frequency of real-
time pose data for the robot, but there was no way 
to eliminate the invalid data resulting in data 
redundancy. Literature [11] tries to introduce 
odometer data to assist IMU for fusion, but there 
are still some errors. In the fusion of vision and 
laser sensor, literature [12] fuses laser and camera 
to realize loop closure detection and complete 
global map construction, but the stability is not 
good. Literature [13] uses the fusion of vision and 
laser based on static scenes to improve the 
accuracy of mapping, but it cannot achieve 
dynamic real-time performance. In literature [14], 
the overall fusion data of odometry, IMU, visual 
camera and lidar were analyzed, and the feasibility 
of multi-sensor fusion SLAM was verified, but 
there were problems such as accuracy decline and 
partial map missing. 

Based on the above literature, it can be seen 
that SLAM with multi-sensor fusion can provide 
more accurate pose data, and can improve the 
accuracy of mapping and navigation. However, 
there are also many urgent problems to be solved, 
such as odometer slippage and map fusion defects. 
In this paper, a new fusion method is proposed, 
which uses two-dimensional lidar, depth camera, 
wheeled odometer and IMU unit to carry out 
multi-sensor fusion, and uses the improved Point-

to-line ICP (PL-ICP) algorithm to intercept key 
frames. To make up for the shortcomings of the 
common ICP algorithm in data interception and 
fusion. EFK algorithm is directly applied to IMU 
to ensure the simplification and effectiveness of 
data acquisition. Finally, the Bayesian method is 
used to fuse the data of vision and laser sensors, 
and the fusion two-dimensional raster map is 
constructed to make up for the shortcomings of 
single sensor mapping. This paper aims to improve 
the accuracy of indoor robot pose information, 
establish a global raster map with more complete 
information elements and more complete data, and 
prove the effectiveness of the fusion in the actual 
environment. 

II. INTER-FRAME MATCHING OF LASER POINT 

CLOUD 

The position and orientation information of the 
mobile robot can be calculated by wheeled 
odometry or inertial odometry, but the odometry 
information obtained by these two methods has 
large errors. In fact, the laser odometry calculation 
method uses multiple sub-images to complete the 
map. In fact, it is impossible to insert all the point 
clouds identified in each frame into the submap, so 
the laser odometry only selects the key frame data 
for insertion, and the unimportant frame data will 
be discarded. The data of the traditional wheel 
odometer is used as the initial iteration value for 
the laser odometer to solve the robot's position and 
orientation information. 

In the laser inter-frame matching solution, the 
Iterative Closest Point (ICP) algorithm can obtain 
a good matching effect by iterating the initial 
value without point cloud segmentation and 
feature extraction, so ICP algorithm has become 
one of the most studied and most mature 
algorithms [15]. 

A. ICP Algorithm 

The basic principle of ICP algorithm is as 
follows: 

Let the set of spatial coordinates of the two-
point cloud frames of the laser be: Starting 
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, 
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i and jd
, j are the distance and the 

corresponding angle of the environmental 
information acquired by the two frames of lidar, 

respectively. Then, by finding k  groups of 

corresponding points, the rotation R  and 

translation t  of the two laser frames can be solved. 

Finally, the error function  ,E R t
 is constructed 

and iterated continuously to make the error 
function result meet the set threshold, and the 

optimal R  and t  can be obtained. 

The error function is as follows. 
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Where nx  and  np  denote a certain set of 

corresponding points in k  groups, and then the 
mean value of the point cloud of the two frames is 

denoted by xu  and pu
 respectively: 
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For any R  in the right term above, a t  can be 
found to make the right term overall 0, so the left 
term above can be transformed into the maximum 

value of 

' '

1

k
T

n n

n

Trace Rp x



, Where 

'
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 are two point clouds respectively 
subtracting their respective point cloud geometric 
center to form a new point cloud. Decentralizing 
the point clouds is equivalent to performing a 
translation, which shortens the distance between 
two point clouds. The purpose is to approximately 
convert two point clouds that may be in different 
coordinate systems to the same coordinate system, 
and also to prevent local optima. The SVD 
decomposition yields the following. 
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1

k
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n

W p x U V
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When W has full rank: 

 TR UV  (4) 

 x pt u Ru   (5) 

In summary, each iteration of ICP algorithm 
will traverse every point in the origin set until it 
finds the closest point to the target point [16]. 
Therefore, the basic process of ICP algorithm is as 
follows: firstly, for the two laser point clouds that 
need to be matched, the nearest associated point of 
the point cloud is found. Usually, the initial 
corresponding point is obtained by using the data 
of the wheeled mileage meter. Then based on the 

corresponding points, R  and t  are further solved. 
After that, the point cloud is transformed, the 
matching error is calculated and whether the error 

meets the set threshold is judged. If it does, the R  

and t  solved are output, if not, the iteration 
continues until the error meets the set threshold. 

B. PL-ICP Algorithm 

In the ICP algorithm in the previous section, in 
the process of finding corresponding points, the 
point with the closest Euclidean distance is 
considered to be the corresponding point of the 
point cloud. However, in the actual indoor 
environment, the distance between the laser point 
and the actual environmental surface is the best 
error scale, so the standard ICP algorithm will 
cause a certain number of wrong corresponding 
points [17]. To solve this problem, many improved 
versions of ICP algorithm have been derived. The 
iterative closest point from point to line improves 
the error equation of the standard ICP algorithm, 
and uses the distance between the laser point and 
the line of the nearest two points of the laser point 
cloud in the next frame to approximate the real 
scale relationship, which is more suitable for 
indoor scenes [18]. 

Therefore, the error equation of PL-ICP 
algorithm is as follows. 
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Where ip  represents the i th  sampling point, 

1
ij

p
 is the nearest matching point of the sampling 

point under the target point cloud, in  is the normal 

vector of the two nearest matching points, 1kR  , 

1kt   represent the transformation parameters, and 
the optimal transformation parameters can be 

obtained by minimizing the objective function J . 

Therefore, the basic process of PL-ICP 
algorithm is as follows: firstly, the initial rotation 
matrix is obtained according to the wheel 
odometer data, and then the current frame laser 
data is converted to the reference coordinate 
system. Then for each point of the current laser 
frame, the two closest points in the reference 
frame are found and the error is calculated. The 
error equation is constructed by removing the 

point with too large error. Finally, R  and t  are 
solved and the error is judged. If the set threshold 

is not satisfied, the R  and t  are used to go back to 
Step1 and continue to iterate. If they are satisfied, 

the output R  and t  are used to obtain the pose of 
the robot. 

PL-ICP is an algorithm [18] with high matching 
accuracy and robustness. Compared with ICP 
algorithm, PL-ICP algorithm has higher solution 
accuracy and is more suitable for indoor 
environment [20]. Therefore, the PL-ICP 
algorithm will also be used in the laser front-end 
of this paper to solve the inter-frame matching of 
the laser. However, it is also relatively more 
sensitive to the initial value and requires a higher 
accuracy initial value. Although the wheel 
odometer has the advantages of high frequency 
and low negative environmental impact, it also has 
the problems of low test accuracy and the wheel is 
prone to deformation and slip, which leads to large 
errors in the test. If only the data of the wheel 
odometer is used as the initial value of matching, 
the algorithm is easy to fall into a local cycle due 
to the large cumulative error of the wheel 
odometer. 

III. SLAM WITH MULTI-SENSOR FUSION 

A. Extended Kalman Filter Fusing Wheeled 

Odometry and IMU 

Since the PL-ICP algorithm has higher initial 
value requirements than the ICP algorithm, and the 
wheel odometer will cause more and more 
cumulative errors with the movement of the robot 
and tire slip, if only the data of the wheel odometer 
is used as the initial value of the PL-ICP algorithm 
iteration, the PL-ICP algorithm may fall into a 
local loop. Although IMU has the problem of 
integral pose divergence, its instantaneous pose is 
accurate. Therefore, extended Kalman filter can be 
used to fuse wheel odometry and IMU to improve 
the accuracy of pose, and the fused pose data can 
be used as the initial value of PL-ICP algorithm to 
avoid falling into local circulation [21]. 

The extended Kalman filter realizes the 
linearization of the nonlinear function by 
performing the first-order Taylor expansion of the 
nonlinear function. The basic process is as follows: 

The state equation is as follows. 

  1 1 1, ,k k k kx f x u w    (7) 

The observation equation is: 

  ,k k kz h x v  (8) 

Where kx  and 1ku   are the state variable and 

the control of the system respectively, 1kw   and kv  
are the process noise and measurement noise and 

meet normal distribution, and 1 in the subscript k  

and 1k   is the time unit, indicating the sampling 
time. Because of the state equation and 
observation equation is nonlinear, so a posteriori 

state estimation on the system of 1
ˆ

kx   place for the 
first order Taylor expansion for linearization, the 
results are as follows: 
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Because of 1kw   error cannot be computed, so 

assume it is 0, the  1 1, ,0ˆ
k k kx f x u 

, in which A  
is the Jacobian of the partial derivative of the 

function f  with respect to x  , 
1 1ˆ ,|

k kx u
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x  
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 ,W  is 

the Jacobian of the partial derivative of the 

function f  with respect to w  , 
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f
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 



 ,in 

this way: 

  1 1
ˆ

k k k k kx x A x x Ww      (10) 

The observation equation is kx  linearized at, 
and the result is as follows: 

    ,k k k k k kz h x v H x x Vv     (11) 

Because kv  for error cannot be computed, 

assuming it is 0, let  ,0k kz h x
. H  is the 

Jacobian of the partial derivative of the function h  

with respect to x  , 
|

kx

h
H

x



 , V is the Jacobian of 

the partial derivative of the function h  with 

respect to v  , 
|

kx

h
V

v



 , 

   ~ 0, T
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    k k k k kz z H x x Vv     (12) 

So the prediction stage of the extended Kalman 
filter is as follows: 

1) The prior state estimate is: 

  1 1, ,0ˆ
k kk

x f x u   (13) 

2) The covariance matrix of the error is: 

 1
T T

k kP AP A WQW
   (14) 

correction stage is as follows: 

1) Kalman gain: 

 
T

k
k T T

k

P H
K

HP H VRV







 (15) 

2) Posterior state estimation results: 

   ,0k k kk k
x x K z h x    (16) 

3) Update the error covariance matrix: 

  k k kP I K H P   (17) 

Therefore, the fusion process of wheel 
odometer and IMU using extended Kalman filter 
is as follows: When the observation equation of 
the first sensor is updated, the state quantity and 
the covariance matrix of the system are obtained 
as the system predicted state quantity and the 
system predicted covariance matrix of the second 
sensor correction process, and then the updated 
system state estimation result and the covariance 
matrix are used as the fused output. And they are 
used in the prediction process for iteration at the 
next moment [22]. In order to ensure that the 
subsequent fusion experiment in the real 
environment can be carried out smoothly, the 
algorithm is first tested in the simulation software 
to verify whether the algorithm can correctly 
subscribe the information of IMU and odometer 
node and output the fused odometer data. Fig. 1 
shows the simulation fusion calculation diagram of 
the algorithm under ROS: 
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Figure 1.  Simulation fusion calculation diagram 

As can be seen from the arrow pointing in the 
Fig. 1, the fusion node robot_pose_ekf subscribing 
the odom topic and imu_data topic of the chassis 
respectively, and then publishing the fusion result 
as odom_combined topic and the tf transformation 
of the robot. Finally, the odom_ekf node converts 
the odom_combined format and publishes it as 
odom_ekf topic. The result of the final fusion is 
shown in Fig. 2: 

 

Figure 2.  Extended Kalman filter fusion results 

As can be seen from the results in Fig. 2, 
subscription is available in rviz odometry after 
successful fusion, where the white arrow 
represents the fused odometry information, and the 
red arrow represents the original chassis odometry 
information. In the simulation software, the 
movement of the simulation robot can be 
controlled by the keyboard control node, and the 
fusion node can output the fused odometry data in 
real time. The output test of odom_ekf with fused 
odometry data is shown in FIG. 3: 

 

Figure 3.  Integrating odometer data 
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The above experiments are simulation tests of 
the fusion algorithm. In order to further verify the 
effectiveness of the extended Kalman filter for the 
fusion of IMU and wheeled odometer data, the 
positioning accuracy of the robot is tested in the 
real scene as shown in Fig. 4. The starting position 
in the figure is the position where the robot is 
turned on and the origin of the world coordinate 
system. The tile size of the test scene is 
65cm×65cm. For the convenience of recording, let 
the robot move from the starting position in the 
following figure to the end position in the figure 
along the red rectangle trajectory. 

 

Figure 4.  Experimental scenario 

In order to facilitate the comparison of 
odometer data, the remaining three vertices in the 
rectangular trajectory except the starting point 
were selected as the target points during the test, 
and the odometer data was reserved for three 
decimal places, and the unit was m. The final test 
results are shown in Table 1 below: 

TABLE I.  EXPERIMENTAL RESULT 

Starting point Target point Wheel odometry Error Fusion odometry Error 

(0,0) 

(1.3,0) (1.347,0.035) (0.047,0.035) (1.324,0.029) (0.024, 0.029) 

(1.3,-3.25) (1.391,-3.373) (0.091,0.123) (1.386,-3.322) (0.086, 0.072) 

(0,-3.25) (0.152,-3.387) (0.152,0.137) (0.085,-3.316) (0.085, 0.066) 

Mean error (0.097,0.098) (0.065, 0.056) 

 

It can be seen from the test data in the table 
above that in the rectangular area trajectory of 
1.3m×3.25m, the positioning accuracy of the robot 
is improved by at least 33% compared with the 
positioning accuracy of the wheeled odometer by 
fusing the data of the wheeled odometer and IMU. 
Since the PL-ICP algorithm requires higher initial 
values than ICP, poor initial values may cause the 
iterative solution process to fall into a local cycle, 
so this paper uses the extended Kalman fusion 
wheel odometer and IMU data, and takes the 
relatively more accurate data after fusion as the 
initial value of the PL-ICP algorithm. To a certain 
extent, the problem that PL-ICP may fall into a 
local cycle is avoided. 

B. Creation of Fused Two-Dimensional Raster 

Map 

Because the simple two-dimensional laser 
SLAM mapping can only scan the information of 
installation height and lack the information of 
vertical direction, there may be missing 
information when scanning and mapping the desk, 
stool and other items in the indoor environment, 

such as: When the height of the desktop is higher 
than the installation height of the lidar, the lidar 
can only scan the information of the table leg, and 
there is no obstacle in the middle of the table leg. 
If the actual height of the robot is higher than the 
height of the table, the subsequent navigation, 
because the laser radar can not scan the table, it is 
determined that there is no obstacle to pass 
through the middle of the table leg, this situation 
may lead to damage to the robot. At present, the 
visual SLAM algorithms based on feature points 
and direct methods are established in a static 
environment for measurement, but there are many 
variables in the real scene, which lead to a serious 
decline in the positioning accuracy and robustness 
of the SLAM system, and even lead to the failure 
of mapping. And pure visual SLAM, due to the 
limitation of the sensor itself, has low accuracy, is 
greatly affected by ambient light, and the error of 
the lack of texture environment is very large. The 
traditional visual SLAM algorithm does not have 
the ability to perceive the target in real time, so it 
is not suitable for simple visual mapping for 
navigation. However, visual SLAM can scan the 
vertical information, so the local grid map 
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established by vision and the local grid map 
established by laser can be fused. On the one hand, 
it can make up for the lack of vertical information 
in laser mapping, and on the other hand, it can also 
improve the low accuracy of visual mapping. The 
schematic diagram of the scanning range of laser 
and vision is shown in Fig. 5: 

 

Figure 5.  Laser and visual scanning range 

The red dotted line in the figure above 
represents the scanning range of the two-
dimensional laser sensor installation position, 
which can only scan objects in the installation 
height plane, and the purple dotted line of the cone 
represents the scanning range of the vision sensor. 
The Xtion Pro live depth camera used in this paper 
has a vertical field of view of 45° and a horizontal 
field of view of 58°. 

Since the final established is a two-dimensional 
raster map, and the depth point cloud information 
of the depth camera is three-dimensional, it is 
necessary to project the three-dimensional depth 
information into two-dimensional pseudo-laser 
data, and then construct a two-dimensional raster 
map. Therefore, the final fusion process of the 
local raster map established by laser and vision is 
as follows: after the point cloud information is 
obtained by two-dimensional lidar, the obstacle 
information obtained by laser is transformed into 
the raster map coordinate system according to the 
solved robot pose, and the local two-dimensional 
raster map of the environment obstacles is formed. 
At the same time, the data of the depth camera is 
projected into a pseudo-two-dimensional laser data, 
which is also transformed into a raster map 
coordinate system to form a local two-dimensional 
raster map. Then, the local 2D raster maps of the 
two are fused to supplement the vertical 
environmental obstacle information that is not 
obtained by the 2D laser radar, and a global raster 
map is formed. 

For the fusion of local raster maps, according to 
the basic principle of raster maps, the Bayesian 
method is continued to be used for the fusion of 
raster maps, and the fusion formula [23]:  

 
  

0 0
0

0 0 0 01 1

s m

s m s m

P P
P

P P P P

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 (18) 

In the above equation, 
0

mP  and 
01 mP  represent 

the prior probability of occupied and unoccupied 

grid before fusion respectively, 
0

sP  represents the 
conditional probability of grid state obtained by 

distance sensor, and 
0P  represents the estimated 

value updated by distance sensor according to the 
current measurement distance after the obstacle is 
measured. In the fusion process, the fusion is 
performed according to the coordinates of the 
raster according to the rules shown in Table 2 
below. 

TABLE II.  LOCAL MAP FUSION RULES 

2D excitation 
Optical radar 

Depth camera 

Occupy empty Uncertain 

Occupied Occupy Occupy Occupy 

empty Occupy empty empty 

Uncertain Occupy empty Uncertain 

If the obtained probability of grid occupation 
0P  is greater than the initial threshold of the grid 

0T , then the probability of the current grid 

occupation is set to 1, otherwise it is still 
0P , 

where 0T  is 0.5. Then the probability value of each 
grid after the distance sensor measurement is: 

 

0

0
1,2 0 0

0

0

1 ,

,
n

P
P

TP

T

P



 
 


 (19) 

In the equation, 
0 0 0

1 2 2n nP P P    is the grid 
probability value corresponding to different 
sensors, so the probability of grid being occupied 
after fusion can be obtained by using Bayesian 
estimation: 
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IV. EXPERIMENTAL VERIFICATION AND 

ANALYSIS 

A. Simulation Environment Analysis 

The robot used in this paper is Handsfree, so 
firstly, Gazebo 3D simulation software is used to 
create a simulation robot model with the same 
sensors as Handsfree platform, as shown in Fig. 6 
after the creation is completed: 

 

Figure 6.  Robot model 

The above figure is the overall model of the 
simulated robot, in which the red boxes are the 
simulated Xtion Pro Live depth camera and 
RPLidar A1 lidar model respectively. At the same 
time, in order to ensure better follow-up 
experiments, the same sensor parameters of each 
sensor of the simulated robot and the real robot are 
set respectively. Then, a simulation experiment 
environment is established for the experimental 
effects that need to be verified by the algorithm in 
this paper. Obstacles such as four-legged desks, T-
shaped tables (the height of the desktop is higher 
than the installation height of the two-dimensional 
lidar), trucks (the height of the truck body is also 
higher than the installation height of the two-
dimensional lidar) and solid spheres for 
convenient comparison are set in the simulation 
experiment environment. The setting of the truck 
model is to better show the fusion effect on the 
final created environment map, and the final 
created simulation experiment environment is 
shown in Fig. 7: 

 

Figure 7.  Simulation experimental environment 

It can be seen from the above figure that the 
height of the table and the truck body are higher 
than the installation height of the 2D lidar, so the 
scanning point of the 2D lidar passes through the 
table and the truck. If it is a single 2D LIDAR 
SLAM, it will be considered that there are no 
obstacles here, which may lead to the collision 
between the robot and the table and the truck in 
the subsequent navigation. The effectiveness of the 
fusion is verified through the simulation 
experiment of the single two-dimensional laser 
sensor mapping and the multi-sensor fusion 
scheme in this paper, and the angular velocity and 
linear velocity of the robot motion are kept the 
same during the experiment. The results are shown 
in Fig. 8: 

 

(a) Single 2D laser mapping 

 

(b) Fusion mapping 

Figure 8.  Comparison of simulation experiments 
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Through the mapping results of the above 
figure combined with the simulation experiment 
environment, it can be seen that the two-
dimensional lidar can only scan the object with the 
installation height, and cannot scan the main body 
of the truck and the desktop with the installation 
height higher than the lidar in the simulation 
environment. For example, the blue range in the 
simulation environment in Fig. 7 is the scanning 
point of the lidar. As there is no laser information 
of the main truck and the desktop in the simulation 
environment, it will be considered that there are no 
obstacles here. The final mapping result is shown 
in Fig. 8 (a), and the complete obstacle map 
information cannot be established for the table and 
the truck in the simulation environment. For the 
fusion mapping, since the depth camera can scan 
the information of the main body of the truck and 
the table, and project these point cloud information 
into a fake two-dimensional laser data for mapping, 
it is very good to establish the complete 
information of the table and the truck on the final 
grid map, as shown in Fig.8 (b) , so as to avoid the 
risk of collision between the robot and the 
obstacles in the subsequent navigation. 

B. Experimental Verification and Analysis in Real 

Environment 

In order to further verify the effect of fusion, 
this section will test the algorithm in the real 
environment of about 70m2 as shown in Fig. 9 
below to verify the effectiveness of the algorithm 
in the actual environment. 

 

(a) Overall environment 

 

(b) Environmental front 

Figure 9.  Real experimental environment 

FIG. 9 (a) shows the overall situation of the 
experimental environment, and (b) shows the front 
part of the experimental environment. In (b), there 
is a row of conference tables on the right, and the 
height of the gap left under the table top is higher 
than the lidar installation height of the mobile 
robot. This is shown in Fig. 10: 

 

Figure 10.  Installation height of LiDAR 

The red circle in the figure above is the 
comparison between the height of the lidar and the 
gap under the conference table. Since the gap 
height of the conference table is larger than the 
installation height of the lidar, the information 
above the conference table will not be built into 
the final grid map of the environment when the 
single 2D lidar is used for mapping. 

During the experiment, keep the linear speed of 
the robot at 0.2m/s and the angular speed of the 
steering at 30° per second. Start at the position 
shown in Fig. 11, circle around the experimental 
environment clockwise and return to the origin. 
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Figure 11.  Robot departure position 

As a comparison, the Gmapping algorithm 
based on a single two-dimensional lidar and the 
fusion algorithm in this paper are used for 
mapping tests, and the motion speed of the robot is 
kept unchanged during the experiment, and the 
results are shown in Fig. 12: 

   

(a) Single 2D laser mapping            (b) Fusion mapping 

Figure 12.  Real environment mapping results 

Fig 12 (a) shows the mapping results of 
Gmapping. It can be seen that part of the 
information of the conference table is missing in 
the final raster map, and only the leg information 
of the conference table is available. In (b), the 
complete information of the conference table is 
added to the final raster map, and this information 
is obtained by fusing the local raster map 
established by the projection of the depth camera 
into a pseudo-two-dimensional laser data, so as to 
verify the effectiveness of the fusion mapping. 

In addition, in order to facilitate the recording 
of the robot's pose during operation, the timing 
control is used to release forward and turn 
commands to the mobile robot chassis to control 
the robot to reach the specified position. Five 
points at the same position in the two experiments 
were selected to analyze the accuracy of the pose, 
and the results are shown in Table 3 below. 

 

 

TABLE III.  POSITIONING RESULTS 

Actual 

location 

(m) 

Actual 

pose 

(°) 

Gmapping Vision + Laser 

Estimated 

position 

(m) 

Estimated 

pose (°) 

Root mean 

square error 

of position 

(cm) 

Attitude 

error (°) 

Estimated 

position 

(m) 

Estimated 

pose (°) 

Root Mean 

square error 

of position 

(cm) 

Pose 

Error 

(°) 

(6,0) 30 
(6.085, 

0.079) 
33.149 11.604 3.149 

(6.059, 

0.037) 
31.092 5.9 1.092 

(6,-3) 90 
(6.094, 

-3.081) 
94.634 12.408 4.634 

(6.064, 

-3.051) 
92.043 8.184 2.043 

(6,-6) 90 
(6.103, 

-6.089) 
95.005 13.612 5.005 

(6.072, 

-6.063) 
92.729 9.567 2.729 

(0,-6) 180 
(0.135, 

-6.112) 
186.024 17.541 6.024 

(0.089, 

-6.075) 
184.007 11.639 4.007 

(0,0) 0 
(0.156, 

0.127) 
7.678 20.116 7.678 

(0.091, 

0.08) 
4.96 12.117 4.96 

 

According to the results in the above table 
combined with the mapping results, the Gmapping 
algorithm based on a single two-dimensional lidar 
relies heavily on the wheeled odometer, and the 
cumulative error of the wheeled odometer 
information increases with the movement of the 
robot, so when the robot finally moves back to the 
origin, the established environment map has been 
misaligned. The root mean square error of the 
position reaches about 20cm. The fusion algorithm 

in this paper uses the laser odometer, and uses the 
extended Kalman filter to fuse the data of the 
wheel odometer and IMU as the iterative initial 
value of the laser odometer to obtain a more 
accurate robot pose, so the overall pose error is 
significantly smaller than Gmapping, and the root 
mean square error of the robot's position is about 
12cm when it returns to the origin. The positioning 
error of the robot is effectively reduced. 
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V. CONCLUSIONS 

In this paper, SLAM based on single 2D 
LiDAR is analyzed and optimized. Extended 
Kalman filter is used to fuse wheel odometer and 
IMU data to provide initial iteration values for the 
laser interframe matching algorithm PL-ICP, and 
at the same time, the fusion visual projection is 
built into a local 2D raster map of pseudo-2D laser 
data. The results show that compared with the 
single two-dimensional laser SLAM, the multi-
sensor fusion SLAM scheme in the paper can 
improve the pose accuracy of the robot and build a 
more complete global map of the environment 
details. 
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