
International Journal of Advanced Network, Monitoring and Controls        Volume 09, No.01, 2024 

DOI: 10.2478/ijanmc-2024-0001                                                          1 

A Target Recognition Method of Small Sample Based on 

RCS Data 
 

Ruocheng Ma 

Technology Center 

Beijing Qihu Technology Co., Ltd. 

Beijing, China 

E-mail: mrtn@qq.com 
 

Jun Yu 

School of Computer Science and Engineering 

Xi’an Technological University 

Xi’an, China 

E-mail: yujun@xatu.edu.cn 
 

 

Haoyang Liu 

School of Computer Science and Engineering 

Xi’an Technological University 

Xi’an, China 

E-mail: 502339341@qq.com 
 

Zhiyi Hu 

Engineering Design Institute 

Army Research Loboratory 

Beijing, China 

E-mail: 18992899862@163.com 
 

 

Abstract—During the training of target recognition 

models based on Radar Cross Section (RCS) data, a 

persistent challenge arises in sampling due to the 

inherent difficulty in acquiring a sufficient number of 

samples. This scarcity of data poses a significant 

impediment to the effective training of models, resulting 

in diminished accuracy in target recognition. To address 

this issue, this article proposes a target classification 

method based on RCS data under small sample 

conditions. The approach adopts the fundamental 

concept of Model-Agnostic Meta-Learning (MAML) to 

train the target recognition model, enhancing the 

structure of MAML model. An hourglass-shaped 

convolution layer is introduced to the input layer, with 

an additional convolution layer preceding the output 

layer, and a switch to a central loss function. To 

substantiate the efficacy of the improved MAML model, 

comprehensive comparative analyses are conducted with 

benchmark models, including MAML, ResNet 18-layers, 

Long Short-Term Memory (LSTM), among others. 

Experimental results conclusively demonstrate the 

superior performance of the refined MAML model in 

target recognition under conditions of limited samples, 

attaining an average prediction accuracy of 85.62%. 

This signifies a noteworthy 5-percentage-point 

improvement compared to the baseline model prior to 

the introduced enhancements. 

Keywords-RCS Data; Small Sample; Target Recognition; 

MAML Model 

I. INTRODUCTION 

Radar systems detect targets by capturing the 
electromagnetic waves reflected from those targets. 
The Radar Cross Section (RCS) [1] quantifies a 
target's capacity to reflect radar signals in the 
direction of radar reception [2]. RCS data finds 
extensive utility in both military and civilian 
contexts, serving to evaluate and identify distant 
targets. In military applications, RCS data finds 
relevance in tasks such as military ship type 
identification and the recognition of air-launched 
decoys. In the civilian domain, RCS data proves 
valuable for anticipating islands or reefs and 
assessing fog severity, among various other 
applications. 

Traditionally, the prevalent approach for target 
identification using RCS data involves extracting 
periodic features, size features, statistical features, 
and discrete wavelet energy features from RCS 
sequences. Subsequently, single-classifier 
algorithms like KNN, correlation matching, 
support vector machines, and random forests are 
employed for target identification. Alternatively, 
fusion algorithms amalgamate multiple single 
classifiers to create a more robust fusion classifier. 
Despite leveraging the distinct advantages of 
different classifiers, these methods often exhibit 
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limited discriminability and lower identification 
rates. The advent of neural network classifiers 
rooted in deep learning has significantly enhanced 
the accuracy of RCS target identification. Neural 
networks offer advantages such as distributed 
information storage, parallel computation, 
integrated storage and processing, rapid processing 
speed, robust fault tolerance, self-learning, self-
organization, and adaptability. The typical 
paradigm involves constructing an RCS dataset for 
targets and training a target identification model 
using deep learning methods, thereby achieving 
recognition of target objects. 

The effective deployment of deep learning for 
RCS-based target identification typically 
necessitates an extensive dataset for model 
learning and training. However, the practical 
acquisition of RCS data samples poses challenges, 
leading to a scarcity of samples that impedes the 
training of deep learning models and consequently 
results in diminished target identification accuracy. 
Although dataset expansion is a conventional 
strategy, its high associated costs render it 
impractical. 

In addressing the constraint of limited RCS data 
samples [3], our research reveals that applying the 
concept of "meta-learning" can facilitate model 
training with small samples [4, 5, 6]. Conventional 
small sample learning algorithms often encounter 
issues where models become entrapped in local 
optima, consequently, necessitating a training 
method that considers the global context. 

To overcome the limitations of existing 
methodologies, CHELSEA F et al. [7] introduced 
an enhancement to MAML algorithm by 
establishing a model initialization representation 
adaptable to multiple tasks. When confronted with 
a new task, only parameter fine-tuning is required 
to achieve satisfactory training results [8, 9, 10], 
minimizing the demand for a large sample size and 
addressing the small sample problem. However, 
the shallow layer structure of MAML's network 
model will impact recognition accuracy. 
Additionally, the model presents challenges such 
as high computational load and training instability 
during the training process. 

To address these issues, this paper proposes 
enhancements to the network model of MAML 
algorithm. Experimental results substantiate that 
the refined MAML model significantly improves 
target recognition accuracy for RCS data in 
scenarios with limited samples. 

II. THE BASIC IDEA OF MAML ALGORITHM 

MAML, as a model-agnostic meta-learning 
algorithm distinct from a deep learning model, 
functions as a method for training practical 
mathematical models. The primary objective is to 
cultivate models capable of transcending 
dependence on extensive data volumes, thereby 
facilitating swift adaptation to new tasks. MAML 
distinguishes itself by exhibiting notable 
proficiency in the context of novel tasks, owing to 
its provision of substantial prior knowledge. 

A. The core idea of MAML 

MAML algorithm operates as a meta-learning 
framework, distinguished by its role as a facilitator 
for the training of mathematical models rather than 
constituting a deep learning model per se. Its 
primary objective is to cultivate models that can 
transcend reliance on extensive data volumes, 
demonstrating a capacity for rapid adaptation to 
novel tasks. 

The foundational concept of MAML algorithm 
involves training a meta-learning model, denoted 
as M, on tasks of similar nature. Subsequently, 
through fine-tuning on a limited dataset specific to 
a new task, a distinct mathematical model, denoted 
as m, is derived—effectively adapted to the 
nuances of the novel task. The loss function, 

denoted as TiL , in the context of MAML is 

articulated in Formula (1). In this expression,   
signifies the initial parameter of the network 

model, i   represents the parameter acquired 

through learning for the i-th sub-task based on the 

initial parameter of the network model, and TiL  

denotes the loss function characterizing the sub-

task, parameterized by i  . 

  
1

( )
N

Ti i

i

L L  
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  (1) 
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MAML diverges from the conventional 
approach of traditional pre-training. In the 

traditional paradigm, the same parameter   
undergoes updates across various sub-tasks, 

resulting in an initialization parameter   
optimized to minimize the cumulative losses 
across all sub-tasks. However, such an approach 
does not ensure the attainment of a global optimal 
solution for each individual sub-task. In contrast, 
MAML algorithm adapts the initialization 

parameter   based on the parameter i   associated 

with each sub-task. At this stage, the model shifts 
its focus from the losses of individual sub-tasks, 
prioritizing the maximization of its overall 
learning capability. With minimal training on new 
tasks, it exhibits a rapid convergence towards a 
global optimal solution. 

B. The network model of MAML 

The fundamental architecture of the deep neural 
network model employed in MAML algorithm 
plays a pivotal role in the training process. As 
depicted in Figure 1, the network structure adheres 
to a specific configuration, encompassing a total of 
five layers distinguished by different colors. A 
notable characteristic of this structure is the 
composition of the initial four layers, which 
consist of convolutional layers and batch 
normalization layers. In contrast, the final layer is 
exclusively comprised of fully connected layers. 
This design choice results in a shallow network 
configuration, characterized by a reduced 
parameter count, expeditious convergence, and 
commendable fitting performance. 

However, the inherent nature of shallow 
networks imposes certain constraints, notably in 
terms of their limited feature extraction 
capabilities and a deficiency in establishing 
correlations between data points. These limitations, 
intrinsic to shallow networks, consequently impact 
the recognition accuracy of MAML model. 
Addressing these constraints is imperative for 
enhancing the overall performance and efficacy of 
the algorithm. 
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Figure 1.  The general form of MAML model 

III. IMPROVEMENT OF MAML ALGORITHM AND 

IMPLEMENTATION STEPS 

A. Improvements to the network model 
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Figure 2.  Improved MAML model 
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To enhance the precision of target recognition 
within MAML model, a series of structural 
refinements have been implemented, as illustrated 
in Figure 2. The key enhancements are outlined as 
follows: 

1) Addition of hourglass-shaped convolutional 
layer in the input layer: 

    A distinctive hourglass-shaped convolutional 
layer has been incorporated into the input layer to 
augment the feature extraction capability specific 
to target data. This augmentation aims to capture 
more representative feature parameters, thereby 
enhancing the model's ability to discern critical 
patterns. 

2) Additional convolutional layer in the layer 
preceding the output layer: 

    An supplementary convolutional layer has 
been introduced just before the output layer to 
fortify the inter-neuronal correlations, facilitating 
the network's descent along the global optimum 
gradient. This augmentation is designed to 
improve the model's ability to capture nuanced 
relationships and intricacies in the data. 

3) Modification of loss function to central loss 
function: 

    The original loss function has been revamped 
to incorporate a central loss function, designed to 
gauge the proximity between instances belonging 
to the same class. This modification contributes 
significantly to elevating target recognition 
accuracy by emphasizing the inherent similarities 
within classes. 

B. Implementation of improvement algorithm 

The refined MAML algorithm necessitates 
specific configurations within the training dataset. 
The pre-training dataset is meticulously organized 
on a task-by-task basis. To initiate training, the 
model requires a task distribution, and 
concurrently, two hyperparameters must be 
specified. 

The enhancement algorithm is implemented 
through the following specific steps: 

1) Randomly initialize the model parameters. 

2) Set the number of epochs for a training 
round. 

3) Sample multiple tasks to form a batch. 

4) Calculate the loss TiL  on the support set of a 
task using Formula (2):  

   

   

         jjj

Tyx

j

Ti xfyxfyfL

i
jj

   1log1log
~,

 (2) 

where f  represents the model, x is the input 
training sample, y is the label of the training 
sample. 

5) Calculate the parameter i   after a gradient 
update using Formula (3): 

 )(-  fLTii   (3) 

6) Iterate through Steps 4 to 5 until all tasks in 
the current batch are traversed, completing the 
first gradient update. 

7) Upon acquiring parameters from the initial 
gradient update, a subsequent gradient update is 
executed via a procedure commonly referred to as 
"gradient by gradient." The gradients for the 
complete batch are computed by employing the 
query set from each task. Subsequently, these 
gradients are directly employed in modifying the 
original model through the application of 
Stochastic Gradient Descent (SGD), thereby 
updating the parameter   in accordance with 
Formula (4): 

 )(-
)(~ ii

fL
TpT Ti    (4) 

8) Continue sampling the next batch and iterate 
through Steps 3 to 7 until all batches are traversed.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to ascertain the efficacy of the 
improved MAML algorithm, a horizontal 
comparison was executed among four distinct 
models: the original MAML model, the improved 
MAML model denoted as MAML-New, ResNet 
18-layers model, and Long Short-Term Memory 
(LSTM) model. Comprehensive analyses, 
encompassing both qualitative and quantitative 
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assessments, were conducted on the experimental 
results to validate the advancements introduced by 
MAML-New model. 

The comprehensive procedural steps of the 
experimental investigation are outlined as follows: 

1) Preparation of experimental datasets: 

This phase involves the meticulous preparation 
of Radar Cross Section (RCS) data for four 
distinct models: MAML, MAML-New, ResNet 
18-layers [11], and LSTM [12]. This encompasses 
the curation of both training and testing datasets 
specifically tailored for MAML model. 

2) Model Training: 

Initial preprocessing of the experimental dataset, 
encompassing critical tasks such as dataset 
classification, data filling, normalization, and data 
standardization. 

The dataset is partitioned on a per-task basis, 
serving as input for the respective models. 

Subsequently, the models undergo 
comprehensive training. 

3) Experimental results and comparative 
analysis: 

Execution of experiments to elicit results that 
reflect the models' performance. 

Rigorous comparative analysis is conducted to 
assess and contrast the efficacy of MAML, 
MAML-New, ResNet 18-layers, and LSTM 
models. 

A. Preparation of experimental data 

The raw RCS dataset was generated using the 
FEKO software simulation method [13]. To 
facilitate computation, the dataset was stratified 
into 12 categories, delineated by unique external 
features of the targets and labeled as category 1 to 
category 12. Notably, category 1 to category 4 
constituted the experimental test dataset, while 
category 5 to category 12 comprised the pre-

training dataset. Figure 3 and 4 provide simplified 
models representing the 12 different categories. 
The RCS data for these models were exported 
utilizing the FEKO software, with each category 
containing 200 models of varied sizes. As depicted 
in Figure 5 and 6, the cumulative incident angles 
for a single model resembled a hemisphere. 
Drawing an analogy to Earth's longitude and 
latitude, the longitude spanned from 0° to 360°, 
and the latitude ranged from 0° to 90°. Each 
degree of latitude corresponded to 360 incident 
angles, resulting in a model encompassing 90 × 
360 incident angles. Each incident angle correlated 
with a specific RCS value, yielding RCS data for 
each model sized at 90 × 360. Consequently, the 
12 categories contributed to a total of 12 × 200 
RCS datasets. Figure 7 illustrates an instance of 
RCS data for a category 3 model in Cartesian 
coordinates with a size of 85 cm. 

 

 

 

 

Figure 3.  Category 1 - 4, the experimental test dataset 
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Figure 4.  Category 5 - 12, the pre-training dataset 

 

Figure 5.  All incident angles of a model 

 

Figure 6.  Schematic diagram of incidence angle 

 

Figure 7.  RCS data of 85CM category 3 model in Cartesian coordinate system 
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TABLE I.  PARTIAL NETWORK PARAMETER VALUES FOR MAML AND MAML-NEW 

Parameter Value Meaning 

epoch 600 Training epochs 

k 4 Number of sample categories 

k_spt 20 Number of support set samples 

k_qry 30 Number of query set samples 

imgsz 

imgc 

task_num (batch_size) 

meta_lr 

update_lr 

180 

1 

16 

1e-3 

0.01 

Dimension of input data 

Number of channels for input data 

Training batch of samples 

First gradient update learning rate 

Second gradient update learning rate 

 

B. Training of MAML model 

The training procedures for both MAML and 
MAML-New model can be delineated as follows: 

1) Preliminary to the training process, employ 
preprocessing techniques such as data padding, 
normalization, and data standardization on the 
pre-training dataset I  and the test dataset J . 

2) Define key parameters: n_way signifies the 
number of sample categories in each task, k_spt 
represents the number of support set samples, 
k_qry denotes the number of query set samples, 
and task_numtask_num stands for the number of 
training batches of samples. Randomly select 
n_way (n_way < 8) categories from the pre-
training dataset I . For each category, randomly 
choose k_spt + k_qry (k_spt + k_qry ≤ 200) 
labeled samples, thereby constituting a task iT  
with n_way × (k_spt + k_qry) samples. From each 
category's k_spt + k_qry samples in the current 
task, designate k_spt samples as the support set 

isT  and k_qry samples as the query set iqT . Each 
task is tantamount to a data point in training. 
Randomly extract task_num such tasks to form a 
batch. Concurrently specify the hyperparameters 
meta_lr and update_lr, where meta_lr and 
update_lr denote the learning rates for the two-
stage gradient iterations. 

Table I enumerates certain network parameter 
values pertinent to training the model using 
MAML method. 

3) Employ the same procedure as delineated in 
step (2) to partition the test dataset J  into tasks, 
selecting sJ  and qJ  as the support set and query 
set, respectively, for all tasks in the test dataset. 

4) Following the steps outlined in MAML 

algorithm's section III.B, train the meta-learning 

model metaM  using the pre-training dataset I . 

5) Fine-tune the trained meta-learning model 

metaM  on the support set sJ  of the test data, 

thereby obtaining the target recognition model M  

adapted to the current task. 

6) Input the query set qJ  into the well-trained 
target recognition model M  and ultimately obtain 
a prediction result R . 

At this juncture, the training of MAML model 
concludes. 

C. Experimental results and comparative analysis 

Figure 8 through 11 individually delineate the 
training progression of ResNet 18-layers, LSTM, 
MAML, and MAML-New models. These 
subfigures present their respective prediction 
accuracy and loss, with blue curves representing 
accuracy and yellow curves representing loss rates. 
The horizontal axis denotes training batches, while 
the vertical axis spans ratio values from 0 to 1. 
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Figure 8.  ResNet 18-layers 

 

Figure 9.  LSTM 

 

Figure 10.  MAML 

 

Figure 11.  MAML-New 

Certainly, the observations suggest that the 
accuracy of ResNet 18-layers and LSTM remains 
below 0.8, whereas the accuracy of both MAML 
and MAML-New exceeds 0.8. Additionally, 

MAML-New exhibits a slightly higher accuracy 
than MAML. Noteworthy is the observation that 
MAML-New experiences lower training losses in 
comparison to MAML. 

TABLE II.  COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT MODELS 

Accuracy 

 

Model 

Category 1 

Accuracy 

Category 2 

Accuracy 

Category 3 

Accuracy 

Category 4 

Accuracy 
Average accuracy 

MAML 82.16% 72.45% 81.3% 85.97% 80.47% 

MAML-New 86.42% 79.70% 87.17% 89.19% 85.62% 

ResNet 18-layers 81.7% 62.1% 82.4% 90.1% 73.45% 

LSTM 81.1% 68.0% 80.8% 80.3% 77.55% 
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The recognition accuracy for the four models 
corresponding to the four categories in the test 
dataset, as illustrated in Figure 3, has been 
computed and is presented in Table II. 

Table II reveals that the average recognition 
accuracy for MAML model, ResNet 18-layers 
model, and LSTM model is 80.47%, 73.45%, and 
77.55%, respectively—substantially lower than the 
recognition accuracy achieved by MAML-New 
model at 85.62%. The recognition accuracy 
hierarchy, from highest to lowest, is as follows: 
MAML-New > MAML > ResNet 18-layers > 
LSTM. In scenarios with limited samples, MAML 
model demonstrates superior recognition 
capability compared to conventional deep neural 
networks such as ResNet 18-layers and LSTM 
models. Furthermore, MAML-New model exhibits 
an average improvement of 5-percentage-point in 
recognition accuracy over MAML model. 

V. CONCLUSIONS 

To address the challenge of a small sample size 
in training a target recognition model based on 
RCS data, MAML algorithm was employed. 
Structural modifications to the network included 
the incorporation of an hourglass-shaped 
architecture and the addition of convolutional 
operations at the output layer. Simultaneously, 
adjustments were applied to the loss function, and 
experiments were systematically conducted on the 
RCS dataset. The resulting model effectively 
recognizes targets using RCS data, with empirical 
results indicating a notable improvement in 
recognition performance, particularly in scenarios 
characterized by a small sample size. 
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