
International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

DOI: 10.2478/ijanmc-2023-0078 66

GreatFree as a Generic Distributed Programming

Language and the Foundation of the Cloud-Side Operating

System

Bing Li

GreatFree Research Lab

Jiangsu, China

E-mail: bing.li@asu.edu

Abstract—GreatFree is a generic distributed

programming language to develop various distributed

systems over the Internet-oriented computing

environment. The fundamental characters of GreatFree

are shaped by three essential techniques, including the

message-passing, the physical-machine-visible, and the

thread-visible. More important, GreatFree is equipped

with three additional distinguished mechanisms, i.e., the

distributed primitives, the distributed common patterns,

and the distributed threads on the application level,

which are sufficient to turn GreatFree into a generic

distributed programming technology. To the best of our

knowledge, compared with any others, GreatFree is the

first one to achieve the goal. Thereafter, GreatFree is

capable of exploiting distributed computing resources

flexibly to adapt to any heterogeneous environments

with a uniform solution. It indicates that GreatFree

represents the common principles existed in various

complicated computing circumstances over the Internet.

That inspires that GreatFree is a proper technology to

build a new concept of cloud computing environment,

i.e., the cloud-side operating system, which dominates

diverse distributed computing resources upon the

common principles of GreatFree. Such a system is a

generic development and running environment for any

distributed systems. Without doubt, within the

environment, GreatFree is the unique choice to program

any distributed systems in a scalable manner.

Keywords- Cloud-side Operating System; Generic

Distributed Programming Languag; Distributed Primitives;

Application-level Threading on Messaging; the Distributed

Common Patterns

I. INTRODUCTION

GreatFree is a generic distributed programming
language for the Internet-oriented computing
environment. It has the three necessary characters
to become such a technique, i.e., the message-

passing between threads, the threading
programmable, and the physical distributed node
programmable. More important, three additional
distinguished characters are sufficient to support
GreatFree to become a generic and rapid
distributed programming paradigm. Those
characters consist of the distributed primitives, the
distributed common patterns, and the application-
level threading on messaging. With the emergence
of GreatFree, it inspires the generation of the new
concept of distributed development and running
environment, i.e., the cloud-side operating system.

GreatFree is a generic programming paradigm
for the Internet-oriented computing environment.
Three technologies, i.e., the Distributed Primitives
(DP), the Application-level Threading on
Messaging (ATM), and the Distributed Common
Patterns (DCP), are proposed to form the
distinguished characters of GreatFree. The DP
consists of a series of the distributed primitive
application programming interfaces. Any
distributed components and systems are originated
from the DP through self-derivation without the
support of any third-party distributed techniques.
The ATM is the distributed, application-level, and
asynchronous message-passing threading, which
aims to implement the most fine-grained
distributed concurrent systems to leverage
computing resources in various distributed
environments conveniently. The DCP unveils that
the code of any heterogeneous distributed systems
is constructed with a limited number of the
common code-level design patterns through self-
derivation. With the support of those techniques,

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

67

GreatFree not only becomes a generic and rapid
paradigm of distributed programming but also
establishes the basis of the first distributed
programming language for the Internet-oriented
computing environment.

The DP represents the most fundamental
programming components for the development of
various distributed systems. As one of the
foundations of GreatFree, the DP is the basis of
general-purpose techniques for distributed systems
development. It shapes GreatFree to become a full
coverage and rapid development technique in a
sense that it not only hides tedious details but also
exposes indispensable elements. The DP is
equivalent to the most basic and mandatory
distributed computing resources and mechanisms
to construct any distributed systems. If any
element of the DP is missed, it definitely results in
the failure of programming with GreatFree to
implement any systems. On the other hand, if any
of the ones encapsulated by the DP is exposed, it
raises the programming efforts and lowers the
quality of developed systems obviously.

Different from other concurrent mechanisms
[1~15] for distributed programming, the ATM
threads are visible to developers, i.e., the threads
can be manipulated by passing application-
dependent messages without worrying any native
characters of threads. Because of the complexity
of the Internet-oriented computing environment, it
is impossible to predefine an omni-potent
concurrency instrument, which not only conceals
every detail of threads for rapid programming but
also adapts to sophisticated cases. Hence, it is
required to allow developers themselves to create,
monitor, reuse, and collect threads directly on the
application level. Thus, the support of visible
threads is necessary for a generic distributed
programming paradigm. In addition, to isolate
developers from the tedious synchronization
workload of threading, the ATM is founded on the
basis of the message-passing rather than that of the
memory-sharing in traditional methodologies
[16~22]. Using the ATM, developers are able to
handle any number of remote threads on arbitrary
distributed nodes to process intricate distributed
tasks concurrently through message-passing only.
Consequently, a single ATM thread is equivalent

to a distributed node accomplishing scheduled
tasks in a serial way such that developers can
program with the ATM threads in the same way as
distributed nodes to construct various complicated
distributed systems in a higher quality. As a novel
distributed concurrency technique, the ATM is
another crucial foundation of GreatFree to become
a generic distributed programming paradigm.

The DCP is a phenomenon existing natively in
any distributed system instead of a contrived
technique. It is evident that the DCP exists
pervasively in all the code of distributed programs.
With respect to the large amount of distributed
programming experiences in various environments,
it discovers that the code of heterogeneous
distributed systems abides by a limited number of
the homogeneous code-level design patterns.
Although it is always necessary to derive diverse
DAAs to raise the rapidness of programming
complicated distributed systems, the types of code-
level design patterns do not change with the new
proposed APIs. Only the DCP is sufficient to adapt
to any scenarios since the patterns for DAA are
always the straightforward aggregations of the
DCP and nothing else needs to be invented for
DAA. Thus, when programming with DAA, the
same code structures originated from the DCP are
reusable for distinct distributed systems. The
phenomenon reveals the truth that the code
structures of a distributed system are independent
of its distributed natures.

II. RELATED WORK

Distributed programming is an evergreen topic
such that it contains plentiful solutions. According
to their originally target computing environments
by default, all of them are classified as the
Sequential and Standalone Paradigm (SSP), the
Distributed Frameworks Paradigm (DFP), and the
Distributed Programming Paradigm (DPP). The
DPP, the primary methodology GreatFree
competes with, contains a variety of mutations
aiming to become general-purpose solutions.

A. The Sequential and Standalone Paradigm

The SSP specifies the programming
methodologies that implement a system running in
the sequential and standalone manner by default.
Most traditional high-level programming

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

68

languages [23~34] belong to the category. When
the SSP was invented, the primary effort was
focused on replacing the machine-dependent code
with the nature-language-like syntax and
semantics. They do not take into account the issues
of the concurrency and distribution. With the rapid
development of computing technologies, it is
required to program concurrent and distributed
systems using those sequential and standalone
languages. For that, the techniques of threading
and networking are proposed to support the SSP
programs to be executed concurrently in a network
environment. When programming with those
techniques, developers are required to transform
the sequential and standalone instructions to the
concurrent and distributed ones with those
attached techniques. The procedure is notoriously
difficult such that even proficient developers
usually avoid doing that if alternative solutions are
available.

Figure 1. Sequential and Standalone Paradigm

Simply put, to program a server, i.e., one single
physical distributed node, with the SSP, the effort
is intolerable although such a server is the simplest
component within various distributed systems. The
programming efforts for the server include
networking, serialization, message-passing,
message scheduling, threading management,
threading synchronization, threading scheduling,
resource management and so forth. Additionally,
the solutions to those issues always change for
specific applications, such as lightweight or
heavyweight, streaming or messaging, idle or busy,
centralized or decentralized, stable or unstable,
heterogeneous or homogeneous, machined or
socialized, and so forth. Even though all the issues
are resolved, it is still tough to extend them to
implement a scalable large-scale system since the
workload is always raised exponentially. Besides,

the incompatible code structures also reflect the
difficulty of programming distributed systems with
the traditional languages. Even the same developer
programs the same server with different code
patterns if lacking for experiences and references.
It brings forth the difficulty to manage, reuse and
debug for further development and collaboration.

B. The Distributed Frameworks Paradigm

Since it is tough to implement distributed
systems with the SSP, as the semi-constructed
systems, the distributed frameworks are employed
to simplify the development in most cases.
Because the DFP resolves all the distributed issues
and make them invisible in one specific domain,
developers are able to work within a virtualized
computing environment in which no concurrent
and distributed issues need to be considered. Then,
they are concentrated on programming upper level
applications in a sequential and standalone manner.
This approach is the most rapid such that it
becomes popular nowadays.

However, the DFP is never a generic solution
for the complexity of distributed computing
environments. Instead, all the DFP solutions
[35~60] are application-specific such that it hides
developers from all the distributed issues for one
particular scenario in the enterprise-level
distributed computing environment. The current
existing distributed frameworks cover the issues
such as the distributed objects environment, the
remote procedure call, the map/reduce
concurrency, the clustering, the infrastructure for
the enterprise environment, the data management,
the streaming, the high-level scripting, and the
customized applications. Unfortunately, it is
impossible to establish a framework to make all
the distributed issues transparent in the Internet-
oriented computing environment. If one particular
application is suitable to one of those distributed
frameworks luckily, it results in low development
efforts. If not, there is no way to make changes on
those frameworks to adapt to specific requirements.
A common case is that a bunch of distributed
frameworks have to be accumulated in one
specific application to fulfill respective scenarios.
Such a system is always cumbersome in terms of
management and resources consuming. Therefore,
the DFP is far from perfect since the software

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

69

development is degenerated from straightforward
programming with a single full-fledged language

to patching, scripting, configuring, or integrating
multiple heterogeneous frameworks.

Figure 2. Distributed Frameworks Paradigm

C. The Distributed Programming Paradigm

The Distributed Programming Paradigm (DPP)
[61~82] is defined as the methodology that aims to
develop the systems in the computing environment
in which multiple computers are connected
through networking.

For the complexity of distributed computing
environments, there are numerous mutations in the
DPP. As any computing systems perform
behaviors to manipulate data, it is appropriate to
identify them upon their approaches of accessing
and exchanging distributed data among distributed
threads and processes. According to that, the DPP
is categorized into the Memory-Sharing Paradigm
(MSP) and the Message-Passing Paradigm (MPP).
The MSP attempts to create a virtualized uniform
memory space for a distributed computing
environment. Hence, network locations are
invisible, and data is retained in a unique memory
space from a programmer’s point of view. Because
of that, a distributed computing environment is
transformed to a standalone one. With the support
of the MSP, it is unnecessary to take care of any
distributed techniques to implement distributed
systems. On the other hand, the MPP believes it is
feasible for simple scenarios to construct such a

homogeneous memory space. For complicated
cases, it is impossible. Even though for those
simple ones, it causes additional problems, such as
heavy synchronization, low performance, and low
scalability. Therefore, the MPP claims that
multiple independent memory spaces are the
foundation to process distributed data. To establish
asynchronous, high performance, and scalable
distributed systems, instead of sharing, data is
passed as messages among distributed entities,
including threads and processes, within isolated
memory spaces.

In addition, as one of the most important
components to program distributed systems, the
concurrency implementation is another proper
indicator to differentiate various paradigms. In
accordance with the visibility of threading, the
DPP is divided into the Threading Invisible
Paradigm (TIP) and the Threading Visible
Paradigm (TVP). Because of the difficulty to
program with traditional threading, all the existing
paradigms encounter the dilemma, i.e., they have
to make a single choice between the adaptability to
various scenarios and the rapidness of
programming. Each of them either loses the
adaptability to gain the rapidness or abandons the

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

70

rapidness to obtain the adaptability. None of them
wins both of them. The TIP hides threading to
lower the difficulty to concurrency programming
for distributed systems. That is the choice of most
paradigms such that it proves the toughness of
threading further. To do that, a concurrency
pooling mechanism needs to be predefined to
manage threads running asynchronously. Different
from the TIP, the TVP exposes threading to adapt
to various scenarios since it is impossible to create
an omnipotent thread management mechanism to
deal with unpredictable cases. For complicated
systems, it is required for programmers to design
the specific pooling for threading based on the
certain domain knowledge. Therefore, the TVP
declares that visible threading is a mandatory
condition to accommodate to various contexts.

Finally, any distributed systems are constructed
upon multiple computing devices. Thus, it is
necessary to convert such a standalone device to a
distributed node, which is able to interact with
others. The technique of conversion is called the
distributed modeling. To speed up the
development of distributed systems, many variants
of the DPP hide the modeling from programmers.
They intend to create an abstract object to replace
the physical heterogeneous distributed node.
Programming with the logical entities instead of
physical nodes, the tedious details of distributed
environments are filtered out such that the efforts
are focused on composing those homogeneous
components. Then, the programming rapidness is
raised obviously. Such a paradigm is called the
Modeling Invisible Paradigm (MIP). However,
because of the complexity of distributed
computing environments, hiding physical
distributed nodes results in the fact that
programmers lose the possibility to access
locations of distributed nodes, organize distributed
nodes into one particular topology, and establish
effective interactions among distributed nodes.
Those issues are critical for a complicated
distributed system and it is impossible to predefine
them without taking into account requirements in
one specific circumstance founded on those
distributed nodes. For that, another approach, the
Modeling Visible Paradigm (MVP) is proposed to
overcome the drawbacks of the MIP.

On the other hand, all the paradigms can be
classified roughly into the high-level one and the
low-level one as well. The high-level paradigm
strives to construct a logical prototype that is as
independent of the physical distributed computing
environments as possible to raise the rapidness of
distributed programming. On the contrary, the
low-level one aims to be closed to the physical
distributed computing environments such that it is
possible to guarantee the generality of distributed
programming. With respect to the principle, the
high-level one consists of the MSP, the TIP, and
the MIP whereas the low-level one includes the
MPP, the TVP, and the MVP. Moreover, among
those approaches, data accessing determines others
to a large extent since the functions of a computing
system can be summarized as reading or writing
data. For that, the DPP is mainly classified as the
MSP and the MPP, which are the high-level and
the low-level respectively. It is unreasonable to
introduce the TVP and the MVP, which are low-
level techniques compared with the TIP and the
MIP, into the MSP since the paradigm conceals all
the distributed details. Different from the MSP, as
a low-level paradigm, the MPP is open enough to
play the role of technical basis such that high-level
ones are allowed to be established on it and low-
level ones are employed to raise its generality.

TABLE I. THE CATEGORIZATIONS OF THE PPP INSTANCES

ID Technique MSP MPP TIP TVP Year of Birth

1 Id Y N Y N 1975
2 Sisal Y N N Y 1983
3 Occam N Y N Y 1983
4 Multilisp Y N Y N 1985
5 Newsqueak N Y N Y 1985
6 ParLog Y N Y N 1987
7 C* Y N Y N 1987
8 Joyce N Y N Y 1987
9 SequenceL Y N Y N 1989
10 Charm++ N Y Y N 1989
11 Lustre Y N Y N 1991
12 HPF Y N Y N 1991
13 Alef N Y N Y 1992
14 ZPL Y N Y N 1993
15 SuperPascal N Y N Y 1993
16 OpenMP Y N Y N 1997
17 Titanium Y N Y N 1998
18 UPC Y N Y N 1999
19 BMDFM Y N Y N 2002
20 CnC Y N Y N 2004
21 XC N Y N Y 2005
22 Fortress Y N N Y 2006
23 Sequoia++ Y N Y N 2006
24 Preesm N Y Y N 2008
25 Chapel Y N Y N 2009
26 C++AMP Y N Y N 2011

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

71

In addition to those classic ones, as one subset
of the DPP, the Parallel Programming Paradigm
(PPP) can be regarded as an early version to a
special distributed computing environment. The
PPP provides an abstract prototype for concurrent
executions to attain high performance on a single
standalone physical computer equipped with
multiprocessors. Similar to the DPP, the PPP
consists of the MSP, the MPP, the TIP, and the
TVP as well. Neither MIP nor the MVP is
associated with the PPP because the PPP supports
the standalone computing device only. Compared
with others of the DPP, the computing
environment of the PPP is highly homogeneous
since those multiprocessors within a computer are
identical and each of them has an equivalent
assignment of computer resources and capabilities
such that there are no differences among those
processors when exploiting them to accomplish
multiple tasks concurrently. Therefore, it is easy to
design highly abstract programming components
to conceal low-level details. Because of that, most
variants of the PPP are classified as the MSP and
the TIP.

TABLE II. THE SUMMARY OF THE PPP

Paradigm
Proportion

26(100%) 1970s 1980s 1990s 2000s

MSP 18(69%) 1(4%) 5(19%) 6(23%) 6(23%)

MPP 8(31%) 0(0%) 4(15%) 2(8%) 2(8%)

TIP 18(69%) 1(4%) 5(19%) 6(23%) 6(23%)

TVP 8(31%) 0(0%) 4(15%) 2(8%) 2(8%)

MSP & TIP 16(62%) 1(4%) 4(15%) 6(23%) 5(19%)

MSP & TVP 2(8%) 0(0%) 1(4%) 0(0%) 1(4%)

MPP & TIP 2(8%) 0(0%) 1(4%) 0(0%) 1(4%)

MPP & TVP 6(23%) 0(0%) 3(12%) 2(8%) 1(4%)

According to the above discussions, as a typical
methodology of the DPP, GreatFree is categorized
into the MPP, the TVP, and the MVP. Aiming to
be a generic paradigm, for the issues of data
accessing, threading, and modeling, GreatFree
always chooses the low-level solution rather than
the high-level one. In other words, GreatFree has
to propose distinct resolutions to avoid the
inefficiency of programming. To break out the
dilemma, GreatFree possesses the two
distinguished characters, including the DP as the
primitive distributed programming components

and the DCP as the common homogeneous
distributed code structures, to programming
distributed systems rapidly. Moreover, it puts
forward the distinct solution, the ATM, to the
tough issue of threading. Therefore, GreatFree not
only simplifies distributed programming
mechanisms in the way to conceal those intricate
techniques but also abstracts distributed resources
and technical details to a degree to sustain the
sufficient adaptability to various distributed
computing environments.

III. GREATFREE AS A GENERIC DISTRIBUTED

PROGRAMMING LANGUAGE

GreatFree is a generic distributed programming
paradigm in the Internet-oriented computing
environment. The three fundamental techniques,
i.e., the Distributed Primitives (DP), the
Application-level Threading on Messaging (ATM),
and the Distributed Common Patterns (DCP), are
proposed to achieve the goal to be a generic
paradigm in the highly heterogeneous distributed
computing circumstance.

The DP is the most fundamental elements that
are sufficient and necessary to program any
distributed systems. The ATM is a distributed
concurrency programming technique distinguished
from others by the mechanisms of the message-
passing and the visible-threading on the
application level. The DCP is a rapid distributed
programming solution on condition that any
heterogeneous distributed systems can be
constructed with the common homogeneous code-
level design patterns.

In general, GreatFree is the paradigm of the
MPP, the TVP, and the MVP in the domain of
distributed programming. Moreover, GreatFree is
distinct from any others in the discoveries of the
rudimentary and universal programming
components, the application-level fine-grained
concurrency model, and the homogeneous code
structures. Thus, GreatFree becomes a new
paradigm in the fashion of being individual-
respected, messaging-oriented, threading-visible,
and self-derivable such that it becomes unique as a
generic distributed programming methodology in
the heterogeneous computing environment of the
Internet.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

72

TABLE III. THE CATEGORIZATIONS OF THE MSP AND MPP INSTANCES

ID Technique MSP MPP TIP TVP Year of Birth

1 CSP N Y N Y 1978
2 Ada Y N Y N 1980
3 Emerald Y N Y N 1985
4 Linda Y N Y N 1986
5 Erlang N Y Y N 1986
6 LabVIEW N Y Y N 1986
7 Hermes N Y N Y 1986
8 SR Y N Y N 1988
9 Concurrent

Smalltalk-90
N Y Y N 1989

10 Haskell Y N Y N 1990
11 Janus N Y Y N 1990
12 CORBA Y N Y N 1991
13 MPI N Y Y N 1991
14 Oz N Y N Y 1991
15 SHMEM Y N Y N 1993
16 CML N Y N Y 1993
17 Glenda Y N Y N 1994
18 Limbo N Y Y N 1995
19 Millepede Y N Y N 1996
20 Joule N Y Y N 1996
21 E Y N Y N 1997
22 MPJ N Y N Y 1999
23 MPD Y N Y N 2000
24 SALSA N Y Y N 2001
25 CAL N Y Y N 2001
26 D N Y N Y 2001
27 X10 Y N Y N 2004
28 JoCaml N Y N Y 2004
29 JCSP N Y N Y 2005
30 PyCSP N Y N Y 2006
31 Akka N Y Y N 2009
32 Go N Y Y N 2009
33 Axum N Y Y N 2009
34 Bloom Y N Y N 2010
35 Rust N Y N Y 2010
36 Ateji PX N Y Y N 2010
37 Elixir N Y Y N 2011
38 Julia N Y N Y 2012
39 Akka.NET N Y Y N 2013

TABLE IV. THE SUMMARY OF THE MSP AND THE MPP

Paradigm
Proportion

39(100%) 1970s 1980s 1990s 2000s

MSP 13(33%) 0(0%) 4(10%) 6(15%) 3(8%)

MPP 26(67%) 1(3%) 4(10%) 7(18%) 14(36%)

TIP 28(72%) 0(0%) 7(18%) 26(23%) 11(28%)

TVP 11(28%) 1(3%) 1(3%) 3(8%) 6(15%)

MSP & TIP 13(33%) 0(0%) 4(10%) 6(15%) 3(8%)

MSP & TVP 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)

MPP & TIP 15(39%) 0(0%) 4(10%) 3(8%) 8(21%)

MPP & TVP 11(28%) 1(3%) 1(3%) 3(8%) 6(15%)

Figure 3. GreatFree Paradigm - DP

Figure 4. GreatFree Paradigm - AMTL

Figure 5. GreatFree Paradigm – AMTL for Map/Reduce

Figure 6. GreatFree Paradigm - SPRA

A. The DP

The DP represents the most fundamental
distributed elements, which are sufficient and
necessary to program any distributed systems in
the Internet-oriented computing environment. The
DP is the foundation of GreatFree to be a generic
programming paradigm. The DP is made up of a
series of the distributed primitive APIs.
Programming with the DP only, it is rapid to
create various distributed systems, such as the
simplest ones, the distributed advanced APIs, and
the distributed frameworks, in any environments.
Even the most complicated one, the global scale
socialized heterogeneous information system over
the Internet, can be programmed with the DP. It
demonstrates that the DP is also the basis of
GreatFree as the self-derivable programming
paradigm.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

73

1) The Distributed APIs

The DP is the most elementary application
programming interfaces to accomplish the intrinsic
distributed functionalities. It consists of the three
subsets, i.e., the distributed modeling, the
distributed messaging, and the distributed
dispatching. The distributed modeling transforms a
single standalone physical computing device to
one physical distributed node, i.e., one physical
client or one physical server, such that the device
can interact with any others within the Internet
environment. The distributed messaging describes
the interactions of requesting or eventing via the
messages in the plain object-oriented form
transmitted over the Internet. The distributed
dispatching processes incoming messages
concurrently in a scaling-up manner on a
distributed node. As the most complicated
component in the DP, the distributed dispatching
includes the message dispatcher, the messaging
thread pools, and the messaging threads. After a
long-term experimenting, all of them are polished
carefully to keep the balance between
encapsulating underlying tedious technical details
to lower programming efforts and exposing
indispensable distributed components. The DP
enables GreatFree to be adaptable enough to
various distributed computing environments.

2) Programming the Simplest Systems

Programming with the DP directly, it is
sufficient and necessary to build the most
rudimentary distributed system, the Two-Node
Client/Server (TNCS) one, which contains two
physical distributed nodes and conforms to the
interaction principle of the client/server model
upon lightweight messaging. Furthermore, it is
straightforward to increment the scale of the
clients up to the capacity of the server. Then, a
more complicated system, which contains multiple
clients and a single server, is created. As the
counterpart of the TNCS, it is called the Multiple-
Node Client/Server (MNCS) system. It proves that
the generality of GreatFree because of the axiom
that any distributed systems are the aggregation of
the TNCS or the MNCS.

3) Programming Distributed Advanced APIs

Based on the generality of GreatFree, besides
programming the simplest distributed systems,
another primary goal of the DP is used to program
the Distributed Advanced APIs (DAA). Although
the primitive APIs are generic, it is still expected
to create powerful APIs, i.e., the DAA, to raise the
programming productivity through further
encapsulation. Any DAA is the direct or indirect
encapsulation of the DP using the object-oriented
technique. Additionally, the procedure is recursive,
i.e., any new DAA is built upon programming
with the DP or the existing DAA recursively.

As a general-purpose distributed programming
paradigm, besides the DP, GreatFree provides
additional two categories of DAA, including the
distributed clustering and the distributed caching.
The distributed clustering is the important
programming component to construct scalable
distributed systems. The distributed caching
provides a large-scale high-performance storage
mechanism in the interfaces of common data
structures, such as the map, the list, the stack, the
queue and so on. Similarly, all of them are derived
through programming with the DP and existing
DAA recursively.

4) Programming Distributed Frameworks

The motivation to create the DAA aims to
program more complicated distributed frameworks
rapidly through keeping on hiding low-level
details that are unnecessary for one particular
distributed context. Once if the DAA is available,
it is more efficient to build sophisticated ones.

GreatFree is not an application-level
programming paradigm such that it is focused on
the establishment of distributed frameworks,
which emphasize the semi-constructed distributed
systems and ignore the implementation of upper-
level applications. Working on a mature
framework is currently the primary approach to
develop distributed applications. For the
complexity of the Internet-oriented computing
environment, distributed frameworks have
numerous mutations, such as the Peer-to-Peer
(P2P), the 3-Tier, the n-Tier, the Map/Reduce, the
streaming, the storage, the enterprise cluster, the
cloud, and so forth. GreatFree-based frameworks

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

74

have one more advantage. Different from the
dedicated ones that can hardly be revised, the
frameworks of GreatFree can be programmed
further conveniently to accommodate to specific
requirements on functions as well as performance
with the support of the DP and the existing DAA.
Over those frameworks, it is easy to establish a
great many distributed applications such as
chatting, file transmissions, e-commerce systems,
gaming, financing, block-chains, and so forth to
fulfill various circumstances.

In addition to the common frameworks,
GreatFree can be used to program some important
distributed frameworks for specific applications,
such as the enterprise container, the search engine,
the video streaming, distributed file systems, and
the distributed data centers. Similarly, those
frameworks are programmable further rather than
the fixed or configurable ones only. The most
complicated distributed systems are the ones
dominated by human capital as well as social
capital. Such systems emerge with the progresses
of the Internet. One example is the World Wide
Web (WWW), which is the global scale socialized
heterogeneous information system over the
Internet. Such a system conforms to the principles
of human interactions in addition to those of
machines. Thus, the system is highly
heterogeneous with potentially infinite users and
tremendously high workload. It is impossible to
employ any existing techniques to implement it
conveniently. Fortunately, because of the natures
of the DP, it has already been utilized successfully
in the project of the New World Wide Web (N3W).
As a highly heterogeneous system, the N3W is one
upgraded instance of the global scale socialized
distributed system to resolve the drawbacks of the
traditional WWW.

B. The ATM

The ATM is a novel concurrency mechanism
for distributed programming. There is no way to
establish a generic programming paradigm without
properly designed threading. To achieve the goal,
the ATM is distinct from others in its unique
characters, including the visibility, the application-
level, the distribution ability, the messaging
orientation, and the programmability.

1) The Visible Threading

Threads are the major resource for any
distributed programming paradigms since
distributed systems are concurrent in nature. It
becomes infeasible to conceal or degenerate
threads for rapid programming when distributed
computing environments become complicated.
The characters of the Internet-oriented distributed
computing environments result in utilizing
resources concurrently in the most fine-grained
granularity. Thus, it is required to control threads
directly to implement high-quality concurrent
algorithms rather than any other management
mechanisms. The primary operations on threads
include creating, task-assigning, interacting,
monitoring, reusing, collecting, and so forth. Only
if those functions are available to programmers, it
is possible to program sufficiently fine-grained
distributed concurrent algorithms to accommodate
to the heterogeneity of various distributed
circumstances. Following the principle, the ATM
provides programmers with the full governance in
terms of controlling a single thread in its entire
lifecycle.

2) The Application-Level Threading

The application-level threading is defined as a
concurrent programming mechanism that provides
developers with the independently running threads,
which abide by application-level instructions to
change their behaviors rather than any system-
level commands isolated from upper level
scenarios. The application-level threading of the
ATM alleviates the difficulty of programming
with the system-level threads directly. Through the
approach, the ATM threads are programmed via
the simplified directives dependent on application
progressing statuses rather than taking care of the
raw characters of threads. From a programmer’s
point of view, an instance of the ATM threads is
dominated to accomplish various tasks for an
application by messages of requesting or eventing
until it is overloaded. In accordance with the
dynamics of a specific application, programmers
are offered the privilege to monitor their current
states, evaluate the workload to be assigned to
them, and even consider specific scenarios to
administrate the thread reasonably. Luckily, all the
efforts are focused on the concurrent strategies as

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

75

well as the distributed solutions on the upper level
instead of the management of the native threading
on the lower level. In brief, the ATM is totally
different from the system-level approaches that are
independent of application scenarios in the SSP.

3) The Distributed Threading

As a large-scale distributed concurrent
programming mechanism, the ATM is usually
sustained by a scalable distributed cluster made up
with multiple slave nodes, which are the ATM
thread providers responsible for supplying
sufficient ATM threads to fulfill one particular
concurrent task. The cluster is accessed by any
number of masters, who play the role of an ATM
thread consumer. The count of the slaves depends
on the computing requirements of specific
distributed scenarios such that the scale of the
cluster can be enlarged arbitrarily upon workload.
To assign concurrent tasks, the master distributes
its requirements via asynchronous messaging to
the cluster such that the ATM threads originated
from the slaves are created, reused, and composed
together to accomplish all the subtasks. During the
procedure to work on the subtasks, those ATM
threads are still able to interact with each other
following the commands from the master to deal
with additional missions if needed. After one
particular task is finished, the final result is
gathered from all the ATM threads on the slaves to
the master. In brief, rather than a naked thread
running asynchronously on a physical standalone
computing device in the SSP, an ATM thread is
equivalent to a logical distributed node executing
scheduled tasks independently in a serial fashion
such that it can be exploited with others using
various distributed strategies.

4) The Threading on Messaging

The ATM adopts the popular approach,
asynchronous messaging, of the MPP to build
loosely coupled distributed systems in the
heterogeneous distributed computing
environments. To guarantee the adaptability, the
TVP is another character of the ATM. However,
different from other TVP paradigms, with which
threads can hardly be manipulated arbitrarily, the
ATM is an approach that allows programmers to
dominate threads fully on the application level. On

the other hand, when programming with the ATM,
the visible threading is absolutely not identical to
that of the SSP, in which threads are naked for
programming such that programmers are required
to worry about each detail of threading on the
system level. Rather, the ATM is in essence a
concurrent mechanism that converts the system-
level memory-sharing threading on a physically
standalone computer to the application-level
message-passing threading over a large-scale
distributed computing environment. Programming
with the ATM, developers are allowed to create,
monitor, reuse and collect the threads from
distributed nodes through asynchronous messaging.
The messages contain the application-dependent
instructions, tasks and states from a thread
consumer to thread providers rather than any
system-level directives that probably disrupt the
upper-level distributed activities.

5) The Programmable Threading

The same as other complicated systems, the
ATM is a distributed concurrent programming
mechanism that is constructed completely through
programming with the DP and the relevant DAA
as well. That is another evidence that GreatFree is
a generic distributed programming paradigm. In
fact, the ATM is an instance of the distributed
system implemented with GreatFree. A regular
implementation of the ATM is established with a
tree-structured cluster, which contains one single
collaborator and a lot of children. It is possible that
the cluster is overloaded in practice because of
heavy tasks. If so, it is convenient to employ an
auto-scaling-out cluster to tolerate the potentially
high burden on the fly. It is also feasible to update
the topology of the cluster for large volume
accessing in a wide area. An extreme case is that
each node of the cluster is turned from one
physical computer to a logical cluster for heavy
pressure workload using the DCP of GreatFree.
Whatever the implementation is, only GreatFree
techniques are sufficient and necessary. As a
matter of fact, what can be seen from the
perspective of programmers is always a vast
number of the ATM threads for them to govern.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

76

C. The DCP

As a discovery in the domain of distributed
programming, the DCP reveals that the code
structures are steady whatever the heterogeneity is
in any specific distributed computing
environments. In other words, various
heterogeneous distributed systems can be
programmed with a limited number of
homogeneous code-level design patterns. In
particular, no matter how complicated a distributed
system, it can be programmed in the homogeneous
code structures using the DCP. In GreatFree, any
distributed systems, distributed APIs, or
distributed frameworks are programmed with the
DCP in essence.

1) The Contributions of the DCP

The DCP is a rapid programming approach as it
unveils the magic code structures for distributed
systems development. It is made up with a limited
number of code-level design patterns, which are
the steady code structures to compose the DP, the
DAA, and distributed frameworks. Each of the
patterns plays the role of one particular member of
those final systems only. As the DCP represents
the fixed code structures, distributed programming
with its support is simplified as the procedure to
follow the limited number of predefined patterns
to assembly distributed APIs. It is no doubt that
the solution speeds up distributed systems
development.

At first, the DCP discloses that GreatFree is a
rapid distributed programming paradigm that
provides sufficient and necessary building block.
For the homogeneity of the DCP, the
programming effort is lowed obviously. In other
words, GreatFree is the craftily simplified solution
to sustain the balance between the ease of
distributed programming with the DCP and the
coverage of distributed computing environments.
GreatFree does not intend to conceal all the
distributed techniques because of the complexity
of the Internet-oriented computing environments.

In addition, the DCP reveals that a generic
solution is achievable since the variety of
heterogeneous distributed systems adhere to the
common principle that they are homogeneous in
terms of the distributed code structures. If the

principle is luckily founded, the solution is
certainly invented. GreatFree is no doubt such a
generic programming paradigm. More important,
the DCP demonstrates that it is practical to
propose a generic and rapid distributed
programming language which relies on GreatFree.
For the sake of popularity, one choice is the
object-oriented script although it is not the unique
choice. Although it is impossible to conceal all the
technical details of the Internet-oriented
computing environment, it is feasible to abstract
them in the same forms with the common code
structures.

2) The Internal and External Patterns

Using GreatFree, after one distributed
algorithm for one particular domain is investigated
clearly, the approach to specify it is
straightforward since the unique task left is to
assemble the primitive distributed programming
components. The procedure is equivalent to the
one to construct a new DAA or a distributed
framework, i.e., programming distributed
algorithms with GreatFree results in high-level
models. In other words, either a new DAA or a
new distributed framework is created through
aggregating the DP as well as existing DAAs upon
the DCP with respect to the corresponding
distributed algorithms. During the procedure, the
DCP is the unique series of components to
aggregate various distributed resources and
mechanisms. In brief, the internals of any DAA
and distributed frameworks in GreatFree are
implemented through programming with the DCP.

In contrast, any newly created DAA has its own
code-level design pattern, i.e., the idiom that
encloses the API for rapid programming.
Compared with those internal ones to form the
new DAA, the pattern is called the external one
since it is employed for the implementation that
weaves itself outside with other distributed
programming components to construct more
complicated ones. Each DAA is similar as each
DAA is implemented by low-level components in
the DCP. Therefore, each DAA either keeps one of
the DCPs as its external pattern or reconstructs a
new pattern which is a straightforward aggregation
of some of the DCP. No any new code-level
design patterns are invented for any new DAAs no

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

77

matter how complicated a DAA is. That proves
that external patterns for DAAs conform to the
principle of DCP as well. In other words, the DCP
is a self-similar system. For a newly created
distributed framework, it does not make sense to
discuss about its patterns since it is a semi-
constructed system in which no additional
distributed programming efforts left except
specifying applications and reusing the DCP
before a distributed system is established.
However, it is feasible to extract the core of one
distributed framework to create a new DAA.

IV. THE CLOUD-SIDE OPERATING SYSTEM

The cloud-side operating system is inspired by
GreatFree. Since GreatFree is a generic distributed
programming language which represents the
common principles of any distributed systems over
the Internet, it indicates that it is feasible to build a
new cloud system that is a generic development
and running environment for any distributed
systems. On the other hand, as a new operating
system, similar to traditional ones, it is necessary
to have a proper language to support applications
developments on it. Without doubt, GreatFree
exhibits the proper choice to be competent to play
the role.

A. The Relationships Between Programming

Languages and Operating Systems

The relationships between programming
languages and operating systems are concluded as
follows. At first, a operating system needs to be
implemented with a programming language.
Additionally, after the operating system is
constructed, the same programming language is
required to be the technique to develop upper-level
applications on it. In other words, without an
appropriate programming language, any operating
system can hardly be established, and the
operating system is useless since it is only a
development and running environment without
any applications which end users can access.

A programming language is a series of
common representations to describe and manage
computing resources in one particular computing
environment. It is highly recommended that the
representations are written in the format that is as
human-readable as possible such that developers

can program with them conveniently. An
operating system is a development and running
environment that fits the computing circumstance
exactly. Therefore, the system can be implemented
rapidly with the language only. Any other low-
level languages must bring heavy workloads for
sure and any other high-level ones can never
support the establishment of such a system.

Once if the operating system is constructed, it
speeds up applications development in the same
environment. Usually, many semi-constructed
frameworks created by the language are
preinstalled on the operating system such that they
lower the efforts of application programmers
extraordinarily. In most cases, developers focus on
application level specifications only when working
with those tools. However, it is possible that those
tools cannot provide some complicated
developments with sufficient supports. Then, the
programming language is the last choice to
overcome the potential barriers in those cases.
Although the development efforts are higher than
using those frameworks, it is still a feasible
solution compared with those languages that are
not focused specially on the particular computing
environment. In practice, if the difficult cases are
used frequently, new frameworks are created upon
the programming language such that other
programmers enjoy the convenience of the new
frameworks.

The combination of UNIX/C is the most well-
known example to present the relationships
between a programming language and the
operating system. Initially, C is a system
programming language to specify algorithms that
fit the standalone and sequential computing
environment. Most code of UNIX is written in C,
and it is tough to implement such a complicated
system with earlier generation languages, such as
assembly ones. After UNIX is constructed, it is a
common sense that many function libraries are
available over the platform for particular
applications developments. Furthermore, during
the procedure of UNIX’s popularization, a huge
bunches of function libraries were implemented
with C to ease applications developments over
UNIX.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

78

B. The Problems of Traditional Programming

Languages and Operating Systems

With the development of Internet technology,
most applications are required to run in the
concurrent and distributed manner rather than the
standalone and sequential one. Unfortunately,
because no proper programming languages were
available in the past days, the standalone and
sequential languages played the major role to
program various distributed systems with the
support of networking and threading. The
procedure is notoriously difficult because
developers are forced to make every effort to
convert the standalone and sequential programs to
the distributed and concurrent ones.

Even though many distributed frameworks are
created to lower the workload of distributed
systems development, there is no way to modify
them to adapt to new environments conveniently.
To build a distributed system with low costs,
instead of programming with a single language, a
couple of third-party heterogeneous frameworks
are put together roughly with inefficient protocols,
such as HTTP/JSON, without knowing internals of
each of them. If the system to be implemented is a
large scale one, a lot of heterogeneous frameworks
have to be pieced together. That is the nightmare
of developers. In fact, because of the native
drawbacks of traditional languages, it is a tough
job for each developer to implement the simplest
distributed system. Although frameworks help,
because of the complexity of the Internet-oriented
computing environment, it is impossible to
program any distributed systems from scratch in
most cases. However, piecing heterogeneous
frameworks together always results in poor
adaptability, low performance, high costs and
maintenance difficulties.

The above problems also unveil that the current
operating systems are not the proper development
and running environment for distributed systems
over the Internet-oriented computing environment.
Since those operating systems are implemented
with standalone and sequential languages, they do
not provide distributed and concurrent systems
with sufficient supports. That is the primary reason
that almost each distributed application needs to be
developed and run over frameworks rather than

those operating systems directly. Because of that,
those heterogeneous distributed frameworks are
called the middleware layer between applications
and the operating systems. The larger the scale of
a distributed system, the more complicated the
middle layer. It is not difficult to imagine the
heavy overhead of computing resources
consumption and the chaotic architectures.

In brief, at present, the fundamental software in
terms of operating systems as well as
programming languages is not well established for
distributed systems’ development and running.

C. The Concept of Cloud-Side Operating System

and GreatFree

The cloud-side operating system is a generic
development and running environment for
distributed systems over the Internet-oriented
computing circumstance. At this moment, such a
system is still not available. When talking about
the term of operating systems, it always represents
the traditional ones, such as UNIX and Windows,
which are viewed as the development and running
platforms for standalone and sequential
applications. Because of their native drawbacks,
they are improper choices to support distributed
systems development and running.

As a counterpart of traditional ones, the idea of
the cloud-side operating system is originated from
the generic programming language, GreatFree. At
present, GreatFree is becoming more and more
mature in the domain of distributed programming
over the Internet. For that, it inspires the
establishment of the cloud-side operating system.
With its distinct characters for distributed
programming, GreatFree is not only the correct
technique to implement the cloud-side operating
system but also the right choice to program upper
level applications over the same platform.

V. CONCLUSIONS

By now, we have completed a complete
delivery room procedure. This process is the core
work of implementing the server using the
distributed elements of GreatFree. You can see
that all the programs involved are written
according to the design patterns provided by
GreatFree. As a beginner, there must be a process

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

79

of adaptation to these patterns. But at least the
process is straightforward. With traditional
languages, accomplishing this task is uncertain and
unwieldy, and even the most sophisticated
programmers don't want to tread lightly. Lonely
Chatter is just the simplest distributed system, but
it gets harder in more complex distributed
scenarios. In contrast, GreatFree has provided a set
of design methods with consistent ideas, clear
steps and stable forms. More importantly, it can be
used for any distributed problem. No matter what
system, these patterns are used repeatedly from
simple to complex. This reflects the unique point
of GreatFree technology.

REFERENCE

[1] J. V. Guttag, “Introduction to Computation and
Programming Using Python”, the MIT Press, ISBN:
978-0-262-52500-8, 2013.

[2] A. Gupta, “Java EE 7 Essentials”, O’Reilly Media,
ISBN: 978-1-449-37017-6, 2013.

[3] A. Goncalves, “Beginning Java EE 7”, Apress, ISBN-
10: 143024626X, ISBN-13: 978-1430246268, 2013.

[4] S. Newman, “Building Microservices - Designing Fine-
Grained Systems”, O’Reilly, ISBN: 978-1491950357

[5] C. Richardson, “Microservice Patterns”, Manning
Publications, ISBN-10: 1617294543, ISBN-13: 978-
1617294549, 2018.

[6] Apache Whisk, https://openwhisk.apache.org

[7] AWS Lambda, https://aws.amazon.com/lambda

[8] IBM Cloud Functions,

https://www.ibm.com/cloud/functions

[9] Google Cloud Functions,

https://cloud.google.com/functions

[10] Microsoft Azure Functions,

https://azure.microsoft.com/services/functions

[11] Oracle Fn Functions, https://fnproject.io

[12] Service-Oriented Architecture Standards – The Open
Group, https://www.opengroup.org/forum/service-
oriented-architecture-soa

[13] M. Bell, “Introduction to Service-Oriented Modeling,
Service-Oriented Modeling: Service Analysis, Design,
and Architecture”, Wiley & Sons, ISBN: 978-0-470-
14111-3

[14] T. White, “Hadoop: The Definite Guide”, the Third
Edition, O’Reilly, ISBN: 978-1-449-32891-7, 2012.

[15] S. Ghemawat, H. Gobioff, S. T. Leung, “The Google
File System”, Proceedings of the 19th ACM SOSP,
Pages: 29-43, 2003.

[16] V. Jason, “Pro Hadoop”, Apress, ISBN: 978-1-4302-
1942-2, 2009.

[17] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I.
Stoica, “Spark: Cluster Computing with Working Sets”,
Technical Report UCB/EECS-2010-53, EECS
Department, University of California, Berkeley, 2010.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. Franklin, S. Shenker, I. Stoica,

“Resilient Distributed Datasets: A Fault-Tolerant
Abstractions for In-Memory Cluster Computing”,
Technical Report UCB/EECS-2011-82, EECS
Department, University of California, Berkeley, 2011.

[19] M. Luksa, “Kubernetes in Action”, Manning, ISBN-13:
978-1617293726, ISBN-10: 9781617293726, 2018.

[20] J. D. Moore, “Kubernetes: The Complete Guide To
Master Kubernetes”, Independently Published, ISBN-
10: 1096165775, ISBN-13: 978-1096165774, 2019 (not
downloaded yet. 05/20/2019, LB).

[21] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler,
T. Campbell, “OpenStack: Building a Cloud
Environment”, Packt Publishing, ISBN-10:
1787123189, ISBN-13: 978-1787123182, 2016.

[22] B. Silverman, M. Solberg, “OpenStack for
Architectures: Design Production-Ready Private Could
Infrastructure”, the Second Edition, Packt Publishing,
ISBN-10: 1788624513, ISBN-13: 978-1788624510,
2018.

[23] D. R. Butenhof, “Programming with POSIX Threads”,
Addison-Wesley, ISBN: 0-201-63392-2, 1997.

[24] B. Nichols, D. Buttlar, J. Farrell, “Pthreads
Programming”, O’Reilly, ISBN: 1-5692-115-1, 1996.

[25] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
D. Lea, “Java Concurrency In Practice”, Addison-
Wesley Professional, ISBN-10: 0-321-34960-1, ISBN-
13: 978-0-321-34960-6, 2006.

[26] D. Lea, “Concurrent Programming in Java, Design
Principles and Patterns”, the Second Edition, Addison-
Wesley, ISBN: 0-201-31009-0, 1999.

[27] S. Cleary, “Concurrency in C# Cookbook,
Asynchronous, Parallel, and Multithreaded
Programming”, O’Reilly, ISBN: 978-1-449-36756-5,
2014.

[28] C. Hughes, T. Hughes, “Parallel and Distributed
Programming Using C++”, Addison-Wesley, ISBN: 0-
13-101376-9, 2003.

[29] R. Terrell, “Concurrency in .NET, Modern Patterns of
Concurrent and Parallel Programming”, Manning,
ISBN: 978-1-617-29299-6, 2018.

[30] H. Okamura, M. Tokoro, “The Design and
Implementation of ConcurrentSmalltalk”, Proceedings
of the First ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
Pages: 331-340, 1986.

[31] Y. Yasuhiko, “The Design and Implementation of
ConcurrentSmalltalk”, Proceedings of Conferences on
Object-Oriented Programming Systems, Languages and
Applications, Pages: 331-340, 1986.

[32] H. Okamura, M. Tokoro, “ConcurrentSmalltalk-90”,
Proceedings of TOOLS Pacific’90, 1990.

[33] I. Balbaert, “Rust Essentials”, Packt Publishing, ISBN:
978-1-78528-576-9, 2015

[34] G. Zaccone, “Python Parallel Programming Cookbook”,
Packt Publishing, ISBN: 978-1-78528-958-3, 2015.

[35] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler,
T. Campbell, “OpenStack: Building a Cloud
Environment”, Packt Publishing, ISBN-10:
1787123189, ISBN-13: 978-1787123182, 2016.

[36] B. Silverman, M. Solberg, “OpenStack for
Architectures: Design Production-Ready Private Could
Infrastructure”, the Second Edition, Packt Publishing,
ISBN-10: 1788624513, ISBN-13: 978-1788624510,
2018.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

80

[37] K. Jackson, C. Bunch, E. Sigler, J. Denton, “OpenStack
Cloud Computing Cookbook”, Packt Publishing, ISBN-
10: 1788398769, ISBN-13: 978-1788398763, 2018.

[38] J. Rutherglen, D. Wampler, E. Capriolo, “Programming
Hive”, O’Reilly, ISBN: 978-1-449-31933-5, 2012.

[39] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
M. Zaharia, “Spark SQL: Relational Data Processing in
Spark”, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
Pages: 1383-1394, 2015.

[40] A. Sarkar, “Learning Spark SQL: Architect Streaming
Analytics and Machine Learning Solution”, Packt
Publishing, ISBN-10: 1785888358, ISBN-13: 978-
1785888359, 2017.

[41] F. Chang, et. al., “Bigtable: A Distributed Storage
System for Structured Data”, Journal of ACM
Transaction on Computer Systems (TOCS), Volume 26,
Issue 2, Article No. 4, Pages: 4:2-4:26, 2008.

[42] N. Dimiduk, A. Khurana, “HBase In Action”, Manning
Publications, ISBN: 978-1617290527, 2012.

[43] L. Georgo, “HBase: The Definitive Guide”, O’Reilly
Media, ISBN: 978-1-449-39610-7, 2011.

[44] S. Akhtar, R. Magham, “Pro Apache Phoenix: An SQL
Driver for HBase”, the First Edition, Apress, ISBN-10:
9781484223697, ISBN-13: 978-1484223697, 2016.

[45] M. Kornacker, et. al., “Impala: A Modern, Open-Source
SQL Engine for Hadoop”, Proceedings of the 7th
Biennial Conference on Innovative Data Systems
Research (CIDR’15), 2015.

[46] J. Russell, “Getting Started with Impala”, ISBN-10:
1491905778, ISBN-13: 978-1491905777, O’Reilly
Media, 2015.

[47] A. Katsifodimos, S. Schelter, “Apache Flink: Stream
Analytics at Scale”, Proceedings of 2016 IEEE
International Conference on Cloud Engineering
Workshop (IC2EW), Pages: 193-193.

[48] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S.
Haridi, K. Tzoumas, “Apache Flink: Stream and Batch
Processing in a Single Engine”, Bulletin of the IEEE
Computer Society Technical Committee on Data
Engineering, Volume 36, No. 4, Pages: 17-29, 2015.

[49] F. Hueske, V. Kalavri, “Stream Processing with Apache
Flink”, O’Reilly Media, ISBN-10: 149197429X, ISBN-
13: 978-1491974292, 2019.

[50] K. M. M. Thein, “Apache Kafka: Next Generation
Distributed Messaging System”, International Journal
of Scientific Engineering and Technology Research,
ISSN: 2319-8885, Volume: 03, Issue: 47, Pages: 9478-
9483, 2014.

[51] N. Garg, “Apache Kafka”, Packt Publishing, ISBN:
978-1-78216-793-8, 2013

[52] S. T. Allen, M. Jankowskl, P. Pathirana, “Storm
Applied: Strategies for Real-Time Event Processing”,
Manning Publications, ISBN-10: 1617291897, ISBN-
13: 978-1617291890, 2015.

[53] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T.
Graves, M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil,
B. J. Peng, P. Poulosky, “Benchmarking Streaming
Computation Engines: Storm, Flink and Spark
Streaming”, Proceedings of 2016 IEEE International
Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Pages: 1789-1792 (not
downloaded yet, 06/24/2019, LB).

[54] C. Olston, B. Reed, U. Srivastava, R. Kumar, A.
Tomkins, “Pig-Latin: A Not-So-Foreign Language for
Data Processing”, Proceedings of ACM SIGMOD

International Conference on Management of Data,
Pages: 1099-1110, 2008.

[55] A. Gates, D. Dal, “Programming Pig: Dataflow
Scripting with Hadoop”, O’Reilly Media, ISBN-10:
9781491937099, ISBN-13: 978-14919337099, 2016.

[56] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S.
Srinivasan, C. Peters, A. Neumann, A. Abdeinur,
“Oozie: Towards a Scalable Workflow Management
System for Hadoop”, Proceedings of the 1st ACM
SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, Pages: 4-13, 2012.

[57] M. K. Islam, A. Srinivasan, “Apache Oozie: The
Workflow Scheduler for Hadoop”, ISBN-10:
1449369928, ISBN-13: 978-1449369927, 2015.

[58] D. Smiley, E. Pugh, K. Parisa, M. Mitchell, “Apache
Solr Enterprise Search Server”, the 3rd Edition, Packt
Publishing, ISBN: 978-1-78216-136-3, 2015.

[59] A. Serafini, “Apache Solr: Beginner’s Guide”, Packt
Publishing, ISBN: 978-1-78216-252-0, 2013.

[60] J. Brittain, I. F. Darwin, “Tomcat: The Definitive
Guide”, the 2nd Edition, O’Reilly Media, ISBN-10: 0-
596-10106-6, ISBN-13: 978-0596-10106-0, 2007.

[61] D. Thomas, “Programming Elixir >= 1.6: Functional |>
Concurrent |> Pragmatic |> Fun”, Pragmatic Bookshelf,
ISBN-10: 1680502999, ISBN-13: 978-1680502992,
2018.

[62] S. Juri, “Elixir In Action”, the 2nd Edition, Manning
Publications, ISBN-10: 1617295027, ISBN-13: 978-
1617295027, 2019.

[63] J. Armstrong, “A History of Erlang”, Proceedings of
the Third ACM SIGPLAN Conferences on History of
Programming Languages, Pages: 6-1 – 6-26, 2007.

[64] J. Armstrong, “The Development of Erlang”,
Proceedings of the 2nd ACM SIGPLAN International
Conference on Functional Programming, Pages: 196-
203, 1997.

[65] J. Armstrong, “Making Reliable Distributed Systems in
the Presence of Software Errors”, PhD Dissertation,
Royal Institute of Technology, 2003.

[66] J. Armstrong, “Erlang”, Communications of the ACM,
Volume: 53, No. 9, Pages: 68-75, 2010

[67] J. Armstrong, R. Virding, C. Wikstrom, M. Williams,
“Concurrent Programming in Erlang”, the 2nd Edition,
Prentice Hall, ISBN-10: 013508301X, ISBN-13: 978-
0135083017, 1996.

[68] J. Armstrong, “Programming Erlang: Software for a
Concurrent World”, the 2nd Edition, Pragmatic
Bookshelf, ISBN-13: 978-1-937785-53-6, 2013.

[69] F. Cesarini, S. Thompson, “Erlang Programming: A
Concurrent Approach to Software Development”,
O’Reilly Media, ISBN-10: 0596518188, ISBN-13: 978-
0596518189, 2009.

[70] V. A. Sarawart, K. Kahn, J. Levy, “Janus: A Step
Towards Distributed Constraint Programming”,
Proceedings of the 1990 North American Conference
on Logic Programming, Pages: 431-446, 1990.

[71] V. A. Saraswat, M. Rinard, P. Panangaden, “The
Semantic Foundations of Concurrent Constraint
Programming”, Proceedings of Ninth ACM Symposium
on Principles of Programming Languages, Pages: 333-
352, 1991.

[72] D. Gudeman, S. K. Debray, K. DeBosschere, “jc: an
Efficient and Portable Sequential Implementation of
Janus”, Proceedings of the International Conference
and Symposium on Logic Programming, Pages: 399-
416, 1992.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

81

[73] Red Programming Language, https://www.red-lang.org

[74] C. Varela, G. Agha, “Programming Dynamically
Reconfigurable Open Systems with SALSA”,
Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Pages: 20-34, 2001

[75] B. Nobakht, F. S. de Boer, “Programming with Actors
in Java 8”, Proceedings of Leveraging Applications of
Formal Methods, Verification and Validation,
Specialized Techniques and Applications, Pages: 37-53,
2014

[76] Akka, https://akka.io

[77] M. K. Gupta, “Akka Essentials”, Packt Publishing,
ISBN-10: 1849518289, ISBN-13: 978-1849518284,
2012

[78] D. Wyatt, “Akka Concurrency”, Artima Inc., ISBN-10:
0981531660, ISBN-13: 978-0981531663, 2012

[79] R. Roestenburg, R. Bakker, R. Williams, “Akka in
Action”, Manning Publications, ISBN-10: 1617291013,
ISBN-13: 978-1617291012, 2016

[80] V. Vernon, “Reactive Messaging Patterns with the
Actor Model: Applications and Integration in Scala and
Akka”, Addison-Wesley Professional, ISBN-10:
0133846830, ISBN-13: 978-0133846836, 2015

[81] P. Haller, F. Sommers, “Actors in Scala”, Artima Inc.,
ISBN-10: 0981531652, ISBN-13: 978-0981531656,
2012

[82] N. Raychaudhuri, C. Fowler, “Scala in Action”,
Manning Publications, ISBN-10: 1935182757, ISBN-
13: 978-1935182757, 2013

