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Abstract—When the target localization algorithm based 

on reinforcement learning is trained on few-sample data 

sets, the accuracy of target localization is low due to the 

low degree of fitting. Therefore, on the basis of deep 

reinforcement learning target localization algorithm, 

this paper proposes a target localization algorithm based 

on meta-reinforcement learning. Firstly, during the 

initial training of the model, the meta-parameters were 

classified and stored according to the similarity of the 

training tasks. Then, for the new target location task, the 

task feature extraction was carried out and the meta 

parameters with the highest similarity were matched as 

the initial parameters of the model training. The model 

dynamically updated the meta parameter pool to ensure 

that the optimal meta parameters of multiple different 

types of features were saved in the meta parameter pool, 

so as to improve the generalization ability and 

recognition accuracy of multiple types of target location 

tasks. Experimental results show that in a variety of 

single target localization tasks, compared with the 

original reinforcement learning target localization 

algorithm, under the same data set size, the model 

converges under a small number of training steps with 

the meta-parameters in the matching meta-parameter 

pool as the initial training parameters. Moreover, the 

training speed of the meta-reinforcement learning 

method based on MAML-RL is increased by 28.2% for 

random initial parameters, and that of the meta-

reinforcement learning method based on this paper is 

increased by 34.9%, indicating that the proposed 

algorithm effectively improves the training speed, 

generalization performance and localization accuracy of 

object detection. 

Keywords-Meta-reinforcement Learning; Meta-

Parameter; Target; Generalization Ability; Deep 

Reinforcement Learning 

I. INTRODUCTION 

Humans can quickly find a new object in the 
field of vision without too much complicated 
process, because humans have mastered the ability 
to learn quickly. This is very difficult for 
computers, especially for the object localization 
process, which often requires a large number of 
datasets and computational costs for training new 
tasks. This leads to a low degree of model fit and 
accuracy of target localization for real-world few-
sample data. It is particularly important to improve 
the convergence speed of the model for new tasks 
by storing and learning the model's historical 
experience. 

With the introduction of reinforcement learning, 
the accuracy of target positioning has been 
improved to a certain extent [1], and the typical 
algorithms are RAM [2] and UR-DRQN 
positioning models [3]. This kind of algorithm 
regards the process of target localization as the 
process of Agent constantly interacting with the 
task environment, getting positive and negative 
rewards to update the model parameters, and 
finally locating the target. Such algorithms need to 
train agents according to different task objectives 
and require a large amount of labeled data, so they 
will have the problems of low fitting degree and 
slow convergence speed when facing few-sample 
tasks [4]. 

Meta reinforcement learning is an important 
field of machine learning research. It is a method 
that enables agents to learn and converge quickly 
when facing new tasks by training a global optimal 
parameter as the initial parameters of model 
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retraining. Among them, MAML-RL [5] is the 
most classical method in meta-reinforcement 
learning. Its core idea is to optimize the model 
through multiple kinds of tasks to train an initial 
parameter, so that the model can quickly converge 
on a new task with only a small number of 
samples or a few gradient updates. The existing 
target localization algorithms based on meta-
reinforcement learning improve the generalization 
ability of the model by training the optimal 
parameters of the task, but with the improvement 
of the task type, its learning ability will decrease. 
In view of this, this paper sets up a memory 
storage module to save the training parameters of 
historical tasks according to similarity, and 
conducts meta-learning operations on them. It can 
significantly improve the convergence speed of the 
model for new tasks and alleviate the problem of 
reduced learning ability of the model. 

II. RELATE WORKS 

Meta-reinforcement learning has achieved great 
success on many complex and high-dimensional 
tasks [6]. Although reinforcement learning 
provides a new solution for object localization 
algorithms, it mainly focuses on the localization 
efficiency under a certain task, rather than 
generalization in multiple scenarios and rapid 
adaptation to few-shot tasks. The meta-
reinforcement learning method effectively learns 
new tasks through agent learning in reinforcement 
learning environment t [7-8]. Existing meta-
reinforcement learning methods mainly focus on 
model-free methods [9-10]. These algorithms tend 
to have more complex training pipelines than non-
meta reinforcement learning methods, making it 
difficult to apply to real-world applications. 
Moreover, the existing model-free methods [11] 
tend to ignore the attenuation of learning ability 
for new tasks, which reduces their training 
efficiency when the types of tasks increase. 

Some meta-reinforcement learning designers 
improve the learning ability of the model by 
designing the architecture of the model or 
designing new optimization algorithms and update 
rules. The typical meta-reinforcement learning 
algorithm MAML-RL [5] obtains a set of initial 
parameters of the model through training, so that 
the model can maximize the performance of a new 

task by only one or a few gradient updates on a 
small number of samples. On this basis, a storage 
and replay memory pool is designed to classify 
and update the meta-reinforcement learning 
parameters according to tasks, so that the 
parameters in the memory pool have the maximum 
generalization performance within the range of 
task types. In addition, our method allows the 
model to match the appropriate historical memory 
according to the new task, and allows the model to 
automatically adapt to the leap of task types with 
large differences, thereby reducing the amount of 
data required for the model to learn new tasks. 

III. MODEL 

In the target localization algorithm of 
reinforcement learning, a large number of data sets 
are usually required for training. However, in real 
life, there are many kinds of tasks with few 
samples, for which the bottleneck of localization 
accuracy is easy to be reached [12]. In object 
localization algorithms based on meta-
reinforcement learning, a set of initial parameters 
that can converge quickly on new tasks is trained 
by learning the commonality of task types. This 
paper combines meta-reinforcement learning on 
the target localization framework based on 
reinforcement learning, and learns the optimal 
parameters of tasks with high similarity by setting 
a storage mechanism.  

Figure 1 shows the framework diagram of the 
proposed algorithm model, which is mainly 
composed of three parts: the target localization 
module, the feature mapping module and the meta-
parameter pool module. In the feature mapping 
module, the improved VGG-16 [13] network 
extracts the features of the task, and classifies and 
maps them into the corresponding feature space. 
The model first uses the Training Data set to train 
in the reinforcement learning target localization 
model, records the convergence parameters and 
loss gradient of each task type, and updates the 
gradient of the meta-parameters after the training 
of each task type. The updated model parameters 
are stored in the meta-parameter pool module 
according to the mapping area of the feature 
mapping module. The parameters in the meta-
parameter pool are updated by using the meta-
parameter update function, and the updated 
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parameter a Meati

  shows the global optimum in 

the feature region i. 

The purpose of meta-reinforcement learning is 
to make the model learn the commonality under 
multiple task types, and then master a learning 
ability to quickly converge under new tasks. For 
few-shot data in reality, the proposed model uses 

the feature mapping module to match the meta-
parameters in the meta-parameter pool as the 
initial training parameters. The meta-parameters 
preserve the historical exploration experience of 
the model, and the gradient correction of the few 
sample data can have better positioning accuracy 
for the new target. 
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Figure 1.  Process of target localization in meta-reinforcement learning 

A. Target positioning module  

As shown in Figure 2, this paper uses the 
reinforcement learning target localization model 
with joint action network and regression network 
as the task training model of the model. It mainly 
consists of three parts: feature extraction network, 
action network and regression network. The 
feature extraction network is the improved GAP-
VGG16 network. The model matches the task to 
the feature space corresponding to the meta-
parameter pool according to the feature values 
extracted by the feature extraction network, and 
stores the updated parameters after completing a 
batch of training. At the same time, the feature 
vector extracted by the feature is fused with the 
memory vector and sent to the action network. The 
action network is responsible for taking 
adjustment actions according to the current 
environment state, until the stop action is 
generated, the regression network is used for 
regression operation, and the final positioning 
result is output. 
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Figure 2.  Object localization model 

For the few-shot object localization task, the 
model extracts a few samples from the task for 
feature extraction, and matches the meta 
parameters with the largest similarity from the 
meta parameter pool according to the feature value 
type extracted by the task as the initial parameters 
of the few-shot object localization task for 
retraining. The parameters of the retrained model 
are updated in the corresponding meta-parameter 
pool to retain the newly learned task memory. 
Through the method of this paper, the model has a 
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certain ability to learn the task at the beginning, 
avoiding the agent to explore in a completely 
unfamiliar environment. The model regards each 
image input as a reinforcement learning 
environment, and selects the exploration action 
according to the fusion state of the input and 
historical exploration. The model gives feedback 
according to the pre-designed reward function to 
judge the quality of the model action selection, and 
updates the network parameters of the model 
through the process of circulation to improve the 
accuracy of target localization. The detailed design 
of the model states, actions, and rewards is as 
follows. 

B. State  

The process of human searching for the target 
is not only related to the current visual field, but 
also involves the memory of the past historical 
exploration in the brain. Human beings realize the 
accurate recognition of the target by combining the 
brain memory with the current visual field. The 
state S of this paper is the procedural simulation of 
this process, which is represented by a tuple

t ts (o ,h )t  related to time t, which represents the 

fusion information of to and ht , and the agent 

makes the next action selection according to this 

fusion state ts . 

C. Actions  

The action taken by the Agent acts on the 
adjustment of the candidate box, which is divided 
into horizontal movement (left and right), vertical 
movement (up and down), scale transformation 
(horizontal expansion, horizontal reduction, 
vertical expansion, vertical reduction), and stop 
action). Each action is adjusted discretized 
according to the multiple of. Among them, the 
output termination action indicates that the target 
is in the field of view of the agent. The specific 
classification of actions is shown in Figure 3. 

Vertical movement

Terminate actionSize transformation

Horizontal movement

 

Figure 3.  Action diagram 

The model selects the actions of the agent 

through the DQN network, and uses greedy 

[15] strategy to make the agent explore new 
actions [16], so as to ensure that the agent takes 
the optimal action under long-term exploration.

greedy  strategy is shown in (1). 
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Where s is the current state the Agent is in, 
and a is the action taken by the Agent based on the 
current state. A(s) is the set of actions that the 
Agent can choose at states, and |A(s)| denotes the 

number of actions that can be chosen. [0,1]  Is 

the exploration factor, and ( | )a s is a policy, 
which represents the probability distribution of 
possible actions taken by the agent at a given state 
s. For the state at a given time in the policy, the 
agent selects the action corresponding to the 
output with the maximum probability to adjust the 
attention field. 

D. Rewards 

The good or bad of the action taken by the 
agent can be intuitively seen through the reward 
function, and in this paper, the reward function is 
set by the IOU change of the attention field after 
the state change s after the agent takes the action. 
As shown in (2), where b is denoted as the visible 
area of the Agent and g is the real labeled area of 
the target object. 
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area(b g)

IOU(b,g)
area(b g)





 (2) 

At each time step, after taking an action, the 
agent will obtain a new visual area. By calculating 
IOU between this area and the real area, the 
reward value of the agent's state change after 
taking an action can be obtained, which is defined 
by the reward function shown in (3). 

 R ( , ') ( ( ', ) ( , ))a a s s sign IOU b g IOU b g    (3) 

This function indicates that after the agent's 
state has changed. If the value of IOU increases 
upward, it means that the agent has obtained 
positive feedback, and the model will store this 

state and action tuple ( ,a, , ', , )s r s b g as experience 

in the experience pool, which is used as a 
reference for the agent to explore the target 
position. On the contrary, if the IOU decreases 
after the state change, it indicates that the action is 
poor and negative feedback is obtained. For the 
determination of stop action, when the IOU value 
rises above 0.6 after the agent makes an action, it 
is determined that the target is in the field of view 
of the agent, and the stop action is taken, and the 
regression network is selected to take a smaller 
step to fine-tune the field of view frame. The 
reward function for the stop action is given in (4). 

 
( , )
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if IOU b g
s s

otherwise

 



 
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
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In order to ensure the training efficiency, when 
the IOU of agent reaches 40 steps, it is determined 
that the exploration fails, and the regression 
network is not used for fine-tuning. (7) is used to 
update the parameters of the two networks. 

E. Action Network Structure 

The action network consists of two parallel 
fully connected networks with the same structure 
and different parameters. One produces the 
"predicted value" and the other produces the 
"target value". In the training phase, the "target 
value" is calculated to assist the learning of 
network parameters. In the testing phase, the 
"target value" is not calculated, but when the 
fusion information ht is received, a random action 

is selected with the help of the -greedy  strategy 

with probability , as shown in Figure 4: 

 
Figure 4.  Structure of the location network 

F. Regression network structure 

The regression network is a fully connected 

network (128*128*4)fc . When the termination 

action is generated during the learning of an epoch, 
and the IoU between the visible area and the real 
marked area is greater than 0.6, the network will 
fine-tune the coordinates of the current visible area 
to obtain the offset that needs to be adjusted in the 
corresponding direction of the bounding box
( X, Y, , )W H    , as shown in Figure 5: 

 

Figure 5.  Structure of the regression network 

G. Feature space mapping 

The tasks of the training set are mapped to 
different positions in the feature space by means of 
feature mapping for the generation of meta-
parameters. Due to the problem of parameter 
redundancy and computational complexity in the 
original VGG-16 network, in this paper, the 
original fully connected layer is replaced by the 
global average pooling layer, and GAP-VGG16 is 
constructed as the feature extraction network, as 
shown in Figure 6. The feature types of each task 
can be obtained through feature extraction, and the 
number of feature types is controlled by specifying 
the range of mapping (set to 10 in this paper), and 
each feature range corresponds to the storage 
space in a meta-parameter pool. 
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Figure 6.  Feature network structure 

The feature mapping result of few-shot task is 

vector form ai . For each meta-parameter Meta

obtained by training, there is a feature vector bi  

corresponding to it, and the corresponding meta-

parameter Meta  is matched by measuring the 

difference ( )i id a ,b  between vectors ai and bi  .In 

this paper, the Euclidean distance between two 
vectors is used to judge the mapping space region, 
as well as the degree of similarity between tasks. 
The calculation formula is given in (5). 

 
1

n

i i i i

i

d(a ,b ) (a b )


    (5) 

In this paper, the feature vector corresponding 
to the task of the first meta-parameter of model 
training is used as the benchmark vector, as the 
label of 1 meta-parameter stored in the meta-
parameter pool position, the difference value   is 
set, and the multiple of the difference value   is 
set to select the meta-parameters in the model 
meta-parameter pool, that is, the feature extraction 
of a few-sample training task is carried out. The 
similarity between the extracted feature vector and 
the feature vector label corresponding to the first 
position of the meta-parameter pool is calculated, 
and the matched meta-parameter position is 
obtained by dividing it with   and adding 1. As 
shown in (6). 

 
i

1( , )
eta 1id a b

m 


   (6) 

Here, θiMeta represents the initial meta-

parameters matched during retraining of the ith 

few-shot dataset, and 1b represents the feature 

vector corresponding to the meta-parameter at the 
first position of the meta-parameter pool. 

In order to avoid forgetting the historical tasks 
of the meta-parameters, this paper uses (7) to 
update the meta-parameters, and retains the 
previous memory at each update of the meta-
parameters. As shown in (7). 

 n n 1 2Meta (1 ) ( .... )iMeta n            (7) 

IV. MODEL TRAINING 

The whole training process of the model 

includes the training of the parameters t  of the 

inner recurrent network in the meta-reinforcement 
learning process, and the update of the meta-

parameter Meta  in the meta-parameter pool. In 

the outer loop, the model updates the meta-
parameter pool according to the feature mapping 
region of the task. The same network architecture 
is used to update the action network and the 
regression network in the inner loop. 

A. Meta-parameter pool training 

The meta-parameter pool O stores the meta-
parameters of N kinds of tasks and updates them. 
For the new training task, the region Oi in the 
meta-parameter pool is matched according to the 
way of feature mapping, and the corresponding 
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meta-parameters Meta  are selected as the initial 

parameters for retraining. The retrained meta-
parameters allow the retention of the previous 
memory, and the trained meta-parameter pool 
maintains the optimal loss value for tasks of the 
same task type. The update process of the meta-
parameter pool is shown in Figure 7. 

1Task

1
Meta Update 

2
Meta Update 

2
Meta

nMeta

2Task

3Task

4Task

nTask

1
Meta

Feature 
mapping

Feature 
mapping

Feature 
mapping

Feature 
mapping

Feature 
mapping  

Figure 7.  Training process of meta-parameter pooling 

The meta-parameters in the meta-parameter 
pool are updated by continuous learning, and (7) is 
used to preserve the historical memory when the 

agent is updated. Where i  represents the meta-

parameter after the ith update and represents the 
learning coefficient, which is used to prevent the 
model distortion caused by too large parameter 
changes. 

B. Training of target localization parameters 

The parameters of the target localization model 
include the parameters of the action network and 

the regression network, namely ),( a g  . The 

historical experience of the action network is 

represented by the tuple ),,',,a,( gbsrs , as shown 

in Figure 3. There are multiple exploration tasks in 
the same environment, and each exploration task 
will generate an MDP sequence. Expressed as the 
strategy of the agent, the loss function of each task 
Ti is shown in (8). 

 i ( )TiL f       (8) 

C. Loss function 

The comprehensive loss of the target 
localization model includes the loss of the action 
network and the loss of the regression network and 

(7) is the loss function. The weighted sum of the 
losses of the action network and the regression 
network is used as the comprehensive loss of the 
target localization model. The mean square error 
loss function is used for the action network and the 

1smoothL  loss function is used for the regression 

network. The overall loss function is defined as in 
(9) - (11). 

 (s, , ) action regL a t L L   (9) 

Among them, 

 
2

action i

action

1
[( ( , ; )) ]iL y Q s a

N
   (10) 

 
*

reg

1
( )i i

reg

L S t t
N

   (11) 

Where actionN and Nreg are the number of 

execution steps of the action network and the 
number of execution steps of the regression 
network, and their losses are averaged as the loss 
of the exploration action and the regression action. 

( , ; )iQ s a   is the predicted value derived from the 

"prediction branch" of the action network, and yi  

is the target value derived from the "target branch" 
of the action network. In the regression network 

loss regL , t { , , , }j x y h wt t t t denotes a vector of 

dimension size 4. Here, ( )TiL f  and yt are the 

center coordinates obtained by the regression 

network, respectively, and ht , wt  are their 

corresponding heights and widths.  and  are 

the center coordinates of the true labeled regions 

of the regression network, respectively, and ht

, wt



are the corresponding heights and widths. Where S 

is the 1smoothL function, see (12). 

 

2

1

0.5 , | | 1

| 0.5,

x if x
soomthL (x)

x oterwise

 
 


 (12) 

a is the loss balance coefficient, which is used 
to balance the loss of the action network and the 
regression network, and s stands for the regression 
loss. 



xt


yt
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D. Meta-reinforcement Learning parameter 

training 

Each RL goal localization task iT contains an 

initial state distribution L
iT and transition 

distribution 1( )i t t tq x | x ,a , and the loss 
iTL  

corresponds to the negative reward function R. In 
this paper, we treat each object localization task as 
a Markov Decision Process (MDP) with an initial 
state S0, which allows the agent to retrace 
historical exploration trajectories and perform 

learning across tasks iT  the model is defined with 

respect to task iT and loss ( )TiL f  as shown in (13). 

 
Ti, ~

1

( ) [ R ( , )]
t t

H

Ti x a f q i i t

t

L f E x a




  ，  (13) 

For each of the k tasks Task1-k in the meta-

parameter pool Oi , the model generates H 

exploration actions (x1,a1,... xH,aH) and the 

corresponding loss L ( )Ti f , K accumulated losses 

)(  fLTi  generated for the model are used for 

the meta-parameter 1-kMeat (T )  corresponding to 

the task type in the meta-parameter pool iO  region, 

see (14). 

 '
1T ~ ( )Meta - ( )

k i i
p T TL f  

 


    (14) 

Using meta-parameters when training on a new 
task leads to convergence in fewer exploration 
steps. In this paper, meta-reinforcement learning 

includes two parts InnerLoop and outerLoop , and 

the agent uses network random parameters as 
initialization parameters in each task pair. In
InnerLoop , the agent continuously explores the 

target to generate an MDP -sequence, which 

converges to 
*

i  through multiple training gradient 

updates. The outer loop of s is classified according 
to the feature types of the training tasks, and the 
corresponding meta-gradients of s are 
cumulatively updated to obtain the meta-
parameters of multiple task types, that is, the meta-

parameter 
iMeta  maximizes the sum reward of 

multiple task rewards. The trained meta-parameter 
iMeta  is stored in the meta-parameter pool 

module, waiting for matching and updating during 
retraining. Figure 8 shows the parameter training 
process of meta-reinforcement learning. 
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Figure 8.  Parameter training process of meta-reinforcement learning 
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V. EXPERIMENT AND RESULT ANALYSIS  

A. Experimental platform and parameter setting  

In this paper, Torch deep learning platform is 
used to train model parameters with each kind of 
reinforcement learning object recognition task in 
the joint data set of VOC2007 +VOC 2012 as a 
task type, and the training of the object 
localization model is tested with the Test data set 
of VOC2007. In order to test the generalization 
performance and convergence efficiency of the 
proposed model for new tasks, six samples of 
different task types in VOC 2007+VOC 2012 
dataset are selected for retraining. For the other 14 
kinds of task datasets used for training update 
model meta-parameter pool. The experiment 
measured the convergence speed of the target 
localization model with different initial parameters, 
the localization precision (ap), the return rate 
(recall) of the trained model, and the number of 
required positioning steps. 

B. Meta reinforcement learning Loss comparison 

plot 

In this section, the random initial parameter 

random , the MAML-RL based meta-parameter 

maml  and the adaptive meta-parameter 
meta  of this 

paper are compared in the convergence speed of 
retraining with few samples on VOC 2007+VOC 
2012 datasets, respectively. In this paper, only one 
type of target is located in the target location part. 
As shown in Figure 9, the Loss value of the model 

with random parameter 
random  is 2.8583 in the 

initial training, and converges to 0.2 after 2000 

training times. Using the meta-parameter 
maml  

based on MAML-RL, the Loss value of the initial 
training of the model is 2.0525, indicating that the 
model has a certain learning ability, and converges 
to around 0.2 after 1000 training times. For the 
method in this paper, the model uses adaptive 
meta-parameters to have a low Loss value (1.3347) 
for few sample data in the initial case, indicating 
that the model automatically matches meta-
parameters adapted to the new task as initial 
parameters, and the model reaches convergence in 
a few steps (500). In addition, with the same 
number of training steps, the few-shot task overall 
fits more than r and m through retraining. It shows 
that the proposed method has good generalization 
and learning ability for few-shot data training. 

C. Results of target positioning  

In this paper, six categories cat, bicycle, 
aeroplane, cow, tvmonitor and DOGin VOC 
2007+VOC 2012 dataset are selected for testing 
with the meta-parameters based on the proposed 
method as initial parameters. By testing the test 
samples after the same training batch, it is found 
that the proposed method can make the target 
localization model have better recognition 
accuracy for the target in a few steps, and part of 
the samples can capture the target position in one 
action step. Figure 10 shows the test results of the 
test sample, where Iteration represents the number 
of steps explored by the model, and the blue 
wireframe represents the prediction of the model 
on the target field of view. 

 

Figure 9.  Comparison of training loss functions 
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(a)cat                                     (b)bicycle 

       

(c)aeroplane                          (d)cow        

     

(e)tvmonitor                                    (f)dog 

Figure 10.  Results of ta 

Figure 11 shows the precision rate (Ap) and 
Recall rate (Recall) of the model under the test 
data set and the proposed method under the VOC 
2007 test set for the new tasks bird, motorbike, 
diningtable and train categories. The initial 
discount rate of the model is set to 0.5 and 
decreases to 0.1 in steps of 0.1, which shows the 
probability that the agent chooses the optimal 
action according to the model. It can be seen from 
Figure a and Figure b that the accuracy and recall 
of the model decrease when the learning rate 
increases from 0.1 to 0.5, and the accuracy and 
recall of the model for different tasks reach the 
highest when the learning rate is 0.1. 

 

(a) Accuracy Ap 

 

(b) Recall Rate 

Figure 11.  Comparison of precision and recall 

VI. CONCLUSIONS 

In order to overcome the shortcomings of low 
generalization ability caused by insufficient data in 
few-sample data sets and forgetting of meta-
reinforcement learning, this paper proposes a 
meta-reinforcement learning target localization 
algorithm based on meta-reinforcement learning 
parameter playback. Firstly, the model uses 
MAML method to train various tasks to obtain 
local optimal parameters. Then, a meta-parameter 
pooling method is used to store and playback the 
task meta-parameters, and the optimal parameters 
for few-sample data training are retrained by 
feature matching to improve the generalization 
ability, training speed and target positioning 
accuracy of the model.  

In the model training phase, the positioning 
model and meta-parameter pool are trained in 
stages to improve the positioning accuracy of the 
model, and the data utilization efficiency is 
improved by sharing the data in the meta-
parameter pool. The experimental results show 
that the number of samples required for model 
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training and the computational cost are effectively 
reduced by using the memory and replay method 
of the meta-parameter pool. The experiments on 
the target positioning data set verify the 
effectiveness and generalization of the method for 
practical problems. However, the test results in the 
process of multi-type object detection are not ideal, 
and there is a large room for improvement. For 
multi-target detection, target detection is realized 
by using yuan reinforcement learning way and the 
transfer between multiple targets is in-depth study 
in this part. 
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