
International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

DOI: 10.2478/ijanmc-2023-0077 55

Object Localization Algorithm Based on Meta-

Reinforcement Learning

Han Yan

Xi'an Technological University

School of Computer Science & Engineering

Xi'an, China

E-mail: 18713877573@163.com

Hong Jiang

Xi'an Technological University

School of Computer Science & Engineering

 Xi'an, China

E-mail: 249479898@qq.com

Abstract—When the target localization algorithm based

on reinforcement learning is trained on few-sample data

sets, the accuracy of target localization is low due to the

low degree of fitting. Therefore, on the basis of deep

reinforcement learning target localization algorithm,

this paper proposes a target localization algorithm based

on meta-reinforcement learning. Firstly, during the

initial training of the model, the meta-parameters were

classified and stored according to the similarity of the

training tasks. Then, for the new target location task, the

task feature extraction was carried out and the meta

parameters with the highest similarity were matched as

the initial parameters of the model training. The model

dynamically updated the meta parameter pool to ensure

that the optimal meta parameters of multiple different

types of features were saved in the meta parameter pool,

so as to improve the generalization ability and

recognition accuracy of multiple types of target location

tasks. Experimental results show that in a variety of

single target localization tasks, compared with the

original reinforcement learning target localization

algorithm, under the same data set size, the model

converges under a small number of training steps with

the meta-parameters in the matching meta-parameter

pool as the initial training parameters. Moreover, the

training speed of the meta-reinforcement learning

method based on MAML-RL is increased by 28.2% for

random initial parameters, and that of the meta-

reinforcement learning method based on this paper is

increased by 34.9%, indicating that the proposed

algorithm effectively improves the training speed,

generalization performance and localization accuracy of

object detection.

Keywords-Meta-reinforcement Learning; Meta-

Parameter; Target; Generalization Ability; Deep

Reinforcement Learning

I. INTRODUCTION

Humans can quickly find a new object in the
field of vision without too much complicated
process, because humans have mastered the ability
to learn quickly. This is very difficult for
computers, especially for the object localization
process, which often requires a large number of
datasets and computational costs for training new
tasks. This leads to a low degree of model fit and
accuracy of target localization for real-world few-
sample data. It is particularly important to improve
the convergence speed of the model for new tasks
by storing and learning the model's historical
experience.

With the introduction of reinforcement learning,
the accuracy of target positioning has been
improved to a certain extent [1], and the typical
algorithms are RAM [2] and UR-DRQN
positioning models [3]. This kind of algorithm
regards the process of target localization as the
process of Agent constantly interacting with the
task environment, getting positive and negative
rewards to update the model parameters, and
finally locating the target. Such algorithms need to
train agents according to different task objectives
and require a large amount of labeled data, so they
will have the problems of low fitting degree and
slow convergence speed when facing few-sample
tasks [4].

Meta reinforcement learning is an important
field of machine learning research. It is a method
that enables agents to learn and converge quickly
when facing new tasks by training a global optimal
parameter as the initial parameters of model

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

56

retraining. Among them, MAML-RL [5] is the
most classical method in meta-reinforcement
learning. Its core idea is to optimize the model
through multiple kinds of tasks to train an initial
parameter, so that the model can quickly converge
on a new task with only a small number of
samples or a few gradient updates. The existing
target localization algorithms based on meta-
reinforcement learning improve the generalization
ability of the model by training the optimal
parameters of the task, but with the improvement
of the task type, its learning ability will decrease.
In view of this, this paper sets up a memory
storage module to save the training parameters of
historical tasks according to similarity, and
conducts meta-learning operations on them. It can
significantly improve the convergence speed of the
model for new tasks and alleviate the problem of
reduced learning ability of the model.

II. RELATE WORKS

Meta-reinforcement learning has achieved great
success on many complex and high-dimensional
tasks [6]. Although reinforcement learning
provides a new solution for object localization
algorithms, it mainly focuses on the localization
efficiency under a certain task, rather than
generalization in multiple scenarios and rapid
adaptation to few-shot tasks. The meta-
reinforcement learning method effectively learns
new tasks through agent learning in reinforcement
learning environment t [7-8]. Existing meta-
reinforcement learning methods mainly focus on
model-free methods [9-10]. These algorithms tend
to have more complex training pipelines than non-
meta reinforcement learning methods, making it
difficult to apply to real-world applications.
Moreover, the existing model-free methods [11]
tend to ignore the attenuation of learning ability
for new tasks, which reduces their training
efficiency when the types of tasks increase.

Some meta-reinforcement learning designers
improve the learning ability of the model by
designing the architecture of the model or
designing new optimization algorithms and update
rules. The typical meta-reinforcement learning
algorithm MAML-RL [5] obtains a set of initial
parameters of the model through training, so that
the model can maximize the performance of a new

task by only one or a few gradient updates on a
small number of samples. On this basis, a storage
and replay memory pool is designed to classify
and update the meta-reinforcement learning
parameters according to tasks, so that the
parameters in the memory pool have the maximum
generalization performance within the range of
task types. In addition, our method allows the
model to match the appropriate historical memory
according to the new task, and allows the model to
automatically adapt to the leap of task types with
large differences, thereby reducing the amount of
data required for the model to learn new tasks.

III. MODEL

In the target localization algorithm of
reinforcement learning, a large number of data sets
are usually required for training. However, in real
life, there are many kinds of tasks with few
samples, for which the bottleneck of localization
accuracy is easy to be reached [12]. In object
localization algorithms based on meta-
reinforcement learning, a set of initial parameters
that can converge quickly on new tasks is trained
by learning the commonality of task types. This
paper combines meta-reinforcement learning on
the target localization framework based on
reinforcement learning, and learns the optimal
parameters of tasks with high similarity by setting
a storage mechanism.

Figure 1 shows the framework diagram of the
proposed algorithm model, which is mainly
composed of three parts: the target localization
module, the feature mapping module and the meta-
parameter pool module. In the feature mapping
module, the improved VGG-16 [13] network
extracts the features of the task, and classifies and
maps them into the corresponding feature space.
The model first uses the Training Data set to train
in the reinforcement learning target localization
model, records the convergence parameters and
loss gradient of each task type, and updates the
gradient of the meta-parameters after the training
of each task type. The updated model parameters
are stored in the meta-parameter pool module
according to the mapping area of the feature
mapping module. The parameters in the meta-
parameter pool are updated by using the meta-
parameter update function, and the updated

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

57

parameter a Meati

 shows the global optimum in

the feature region i.

The purpose of meta-reinforcement learning is
to make the model learn the commonality under
multiple task types, and then master a learning
ability to quickly converge under new tasks. For
few-shot data in reality, the proposed model uses

the feature mapping module to match the meta-
parameters in the meta-parameter pool as the
initial training parameters. The meta-parameters
preserve the historical exploration experience of
the model, and the gradient correction of the few
sample data can have better positioning accuracy
for the new target.

Meta
parameter

Target location
module

Object
detection

model

Meta
parameter

Task
parameters

Meta
parameter
update
function

Meta-parameter pooling
module Meta-parameter

pooling

Feature mapping
module

Few-shot
training data

Feature extraction

Feature mapping

Figure 1. Process of target localization in meta-reinforcement learning

A. Target positioning module

As shown in Figure 2, this paper uses the
reinforcement learning target localization model
with joint action network and regression network
as the task training model of the model. It mainly
consists of three parts: feature extraction network,
action network and regression network. The
feature extraction network is the improved GAP-
VGG16 network. The model matches the task to
the feature space corresponding to the meta-
parameter pool according to the feature values
extracted by the feature extraction network, and
stores the updated parameters after completing a
batch of training. At the same time, the feature
vector extracted by the feature is fused with the
memory vector and sent to the action network. The
action network is responsible for taking
adjustment actions according to the current
environment state, until the stop action is
generated, the regression network is used for
regression operation, and the final positioning
result is output.

Action
network

Regression
network

Feature
inputtx

Feature
extraction

Input

Network
parameters

Update

Meta-parameter
pooling
Update

Figure 2. Object localization model

For the few-shot object localization task, the
model extracts a few samples from the task for
feature extraction, and matches the meta
parameters with the largest similarity from the
meta parameter pool according to the feature value
type extracted by the task as the initial parameters
of the few-shot object localization task for
retraining. The parameters of the retrained model
are updated in the corresponding meta-parameter
pool to retain the newly learned task memory.
Through the method of this paper, the model has a

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

58

certain ability to learn the task at the beginning,
avoiding the agent to explore in a completely
unfamiliar environment. The model regards each
image input as a reinforcement learning
environment, and selects the exploration action
according to the fusion state of the input and
historical exploration. The model gives feedback
according to the pre-designed reward function to
judge the quality of the model action selection, and
updates the network parameters of the model
through the process of circulation to improve the
accuracy of target localization. The detailed design
of the model states, actions, and rewards is as
follows.

B. State

The process of human searching for the target
is not only related to the current visual field, but
also involves the memory of the past historical
exploration in the brain. Human beings realize the
accurate recognition of the target by combining the
brain memory with the current visual field. The
state S of this paper is the procedural simulation of
this process, which is represented by a tuple

t ts (o ,h)t related to time t, which represents the

fusion information of to and ht , and the agent

makes the next action selection according to this

fusion state ts .

C. Actions

The action taken by the Agent acts on the
adjustment of the candidate box, which is divided
into horizontal movement (left and right), vertical
movement (up and down), scale transformation
(horizontal expansion, horizontal reduction,
vertical expansion, vertical reduction), and stop
action). Each action is adjusted discretized
according to the multiple of. Among them, the
output termination action indicates that the target
is in the field of view of the agent. The specific
classification of actions is shown in Figure 3.

Vertical movement

Terminate actionSize transformation

Horizontal movement

Figure 3. Action diagram

The model selects the actions of the agent

through the DQN network, and uses greedy

[15] strategy to make the agent explore new
actions [16], so as to ensure that the agent takes
the optimal action under long-term exploration.

greedy strategy is shown in (1).

1- + , arg max (,)
|A() |

a

, arg max (,)
| () |

a

a

if Q s a
s

if Q s a
A s

（ |s） (1)

Where s is the current state the Agent is in,
and a is the action taken by the Agent based on the
current state. A(s) is the set of actions that the
Agent can choose at states, and |A(s)| denotes the

number of actions that can be chosen. [0,1] Is

the exploration factor, and (|)a s is a policy,
which represents the probability distribution of
possible actions taken by the agent at a given state
s. For the state at a given time in the policy, the
agent selects the action corresponding to the
output with the maximum probability to adjust the
attention field.

D. Rewards

The good or bad of the action taken by the
agent can be intuitively seen through the reward
function, and in this paper, the reward function is
set by the IOU change of the attention field after
the state change s after the agent takes the action.
As shown in (2), where b is denoted as the visible
area of the Agent and g is the real labeled area of
the target object.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

59

area(b g)

IOU(b,g)
area(b g)

 (2)

At each time step, after taking an action, the
agent will obtain a new visual area. By calculating
IOU between this area and the real area, the
reward value of the agent's state change after
taking an action can be obtained, which is defined
by the reward function shown in (3).

 R (, ') ((',) (,))a a s s sign IOU b g IOU b g (3)

This function indicates that after the agent's
state has changed. If the value of IOU increases
upward, it means that the agent has obtained
positive feedback, and the model will store this

state and action tuple (,a, , ', ,)s r s b g as experience

in the experience pool, which is used as a
reference for the agent to explore the target
position. On the contrary, if the IOU decreases
after the state change, it indicates that the action is
poor and negative feedback is obtained. For the
determination of stop action, when the IOU value
rises above 0.6 after the agent makes an action, it
is determined that the target is in the field of view
of the agent, and the stop action is taken, and the
regression network is selected to take a smaller
step to fine-tune the field of view frame. The
reward function for the stop action is given in (4).

(,)

R (')t

if IOU b g
s s

otherwise

 (4)

In order to ensure the training efficiency, when
the IOU of agent reaches 40 steps, it is determined
that the exploration fails, and the regression
network is not used for fine-tuning. (7) is used to
update the parameters of the two networks.

E. Action Network Structure

The action network consists of two parallel
fully connected networks with the same structure
and different parameters. One produces the
"predicted value" and the other produces the
"target value". In the training phase, the "target
value" is calculated to assist the learning of
network parameters. In the testing phase, the
"target value" is not calculated, but when the
fusion information ht is received, a random action

is selected with the help of the -greedy strategy

with probability , as shown in Figure 4:

Figure 4. Structure of the location network

F. Regression network structure

The regression network is a fully connected

network (128*128*4)fc . When the termination

action is generated during the learning of an epoch,
and the IoU between the visible area and the real
marked area is greater than 0.6, the network will
fine-tune the coordinates of the current visible area
to obtain the offset that needs to be adjusted in the
corresponding direction of the bounding box
(X, Y, ,)W H , as shown in Figure 5:

Figure 5. Structure of the regression network

G. Feature space mapping

The tasks of the training set are mapped to
different positions in the feature space by means of
feature mapping for the generation of meta-
parameters. Due to the problem of parameter
redundancy and computational complexity in the
original VGG-16 network, in this paper, the
original fully connected layer is replaced by the
global average pooling layer, and GAP-VGG16 is
constructed as the feature extraction network, as
shown in Figure 6. The feature types of each task
can be obtained through feature extraction, and the
number of feature types is controlled by specifying
the range of mapping (set to 10 in this paper), and
each feature range corresponds to the storage
space in a meta-parameter pool.

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

60

Figure 6. Feature network structure

The feature mapping result of few-shot task is

vector form ai . For each meta-parameter Meta

obtained by training, there is a feature vector bi

corresponding to it, and the corresponding meta-

parameter Meta is matched by measuring the

difference ()i id a ,b between vectors ai and bi .In

this paper, the Euclidean distance between two
vectors is used to judge the mapping space region,
as well as the degree of similarity between tasks.
The calculation formula is given in (5).

1

n

i i i i

i

d(a ,b) (a b)

 (5)

In this paper, the feature vector corresponding
to the task of the first meta-parameter of model
training is used as the benchmark vector, as the
label of 1 meta-parameter stored in the meta-
parameter pool position, the difference value is
set, and the multiple of the difference value is
set to select the meta-parameters in the model
meta-parameter pool, that is, the feature extraction
of a few-sample training task is carried out. The
similarity between the extracted feature vector and
the feature vector label corresponding to the first
position of the meta-parameter pool is calculated,
and the matched meta-parameter position is
obtained by dividing it with and adding 1. As
shown in (6).

i

1(,)
eta 1id a b

m

 (6)

Here, θ iMeta represents the initial meta-

parameters matched during retraining of the ith

few-shot dataset, and 1b represents the feature

vector corresponding to the meta-parameter at the
first position of the meta-parameter pool.

In order to avoid forgetting the historical tasks
of the meta-parameters, this paper uses (7) to
update the meta-parameters, and retains the
previous memory at each update of the meta-
parameters. As shown in (7).

 n n 1 2Meta (1) (....)iMeta n (7)

IV. MODEL TRAINING

The whole training process of the model

includes the training of the parameters t of the

inner recurrent network in the meta-reinforcement
learning process, and the update of the meta-

parameter Meta in the meta-parameter pool. In

the outer loop, the model updates the meta-
parameter pool according to the feature mapping
region of the task. The same network architecture
is used to update the action network and the
regression network in the inner loop.

A. Meta-parameter pool training

The meta-parameter pool O stores the meta-
parameters of N kinds of tasks and updates them.
For the new training task, the region Oi in the
meta-parameter pool is matched according to the
way of feature mapping, and the corresponding

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

61

meta-parameters Meta are selected as the initial

parameters for retraining. The retrained meta-
parameters allow the retention of the previous
memory, and the trained meta-parameter pool
maintains the optimal loss value for tasks of the
same task type. The update process of the meta-
parameter pool is shown in Figure 7.

1Task

1
Meta Update

2
Meta Update

2
Meta

nMeta

2Task

3Task

4Task

nTask

1
Meta

Feature
mapping

Feature
mapping

Feature
mapping

Feature
mapping

Feature
mapping

Figure 7. Training process of meta-parameter pooling

The meta-parameters in the meta-parameter
pool are updated by continuous learning, and (7) is
used to preserve the historical memory when the

agent is updated. Where i represents the meta-

parameter after the ith update and represents the
learning coefficient, which is used to prevent the
model distortion caused by too large parameter
changes.

B. Training of target localization parameters

The parameters of the target localization model
include the parameters of the action network and

the regression network, namely),(a g . The

historical experience of the action network is

represented by the tuple),,',,a,(gbsrs , as shown

in Figure 3. There are multiple exploration tasks in
the same environment, and each exploration task
will generate an MDP sequence. Expressed as the
strategy of the agent, the loss function of each task
Ti is shown in (8).

 i ()TiL f (8)

C. Loss function

The comprehensive loss of the target
localization model includes the loss of the action
network and the loss of the regression network and

(7) is the loss function. The weighted sum of the
losses of the action network and the regression
network is used as the comprehensive loss of the
target localization model. The mean square error
loss function is used for the action network and the

1smoothL loss function is used for the regression

network. The overall loss function is defined as in
(9) - (11).

 (s, ,) action regL a t L L (9)

Among them,

2

action i

action

1
[((, ;))]iL y Q s a

N
 (10)

*

reg

1
()i i

reg

L S t t
N

 (11)

Where actionN and Nreg are the number of

execution steps of the action network and the
number of execution steps of the regression
network, and their losses are averaged as the loss
of the exploration action and the regression action.

(, ;)iQ s a is the predicted value derived from the

"prediction branch" of the action network, and yi

is the target value derived from the "target branch"
of the action network. In the regression network

loss regL , t { , , , }j x y h wt t t t denotes a vector of

dimension size 4. Here, ()TiL f and yt are the

center coordinates obtained by the regression

network, respectively, and ht , wt are their

corresponding heights and widths. and are

the center coordinates of the true labeled regions

of the regression network, respectively, and ht

, wt

are the corresponding heights and widths. Where S

is the 1smoothL function, see (12).

2

1

0.5 , | | 1

| 0.5,

x if x
soomthL (x)

x oterwise

 (12)

a is the loss balance coefficient, which is used
to balance the loss of the action network and the
regression network, and s stands for the regression
loss.

xt

yt

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

62

D. Meta-reinforcement Learning parameter

training

Each RL goal localization task iT contains an

initial state distribution L
iT and transition

distribution 1()i t t tq x | x ,a , and the loss
iTL

corresponds to the negative reward function R. In
this paper, we treat each object localization task as
a Markov Decision Process (MDP) with an initial
state S0, which allows the agent to retrace
historical exploration trajectories and perform

learning across tasks iT the model is defined with

respect to task iT and loss ()TiL f as shown in (13).

Ti, ~

1

() [R (,)]
t t

H

Ti x a f q i i t

t

L f E x a

 ， (13)

For each of the k tasks Task1-k in the meta-

parameter pool Oi , the model generates H

exploration actions (x1,a1,... xH,aH) and the

corresponding loss L ()Ti f , K accumulated losses

)(fLTi generated for the model are used for

the meta-parameter 1-kMeat (T) corresponding to

the task type in the meta-parameter pool iO region,

see (14).

 '
1T ~ ()Meta - ()

k i i
p T TL f

 (14)

Using meta-parameters when training on a new
task leads to convergence in fewer exploration
steps. In this paper, meta-reinforcement learning

includes two parts InnerLoop and outerLoop , and

the agent uses network random parameters as
initialization parameters in each task pair. In
InnerLoop , the agent continuously explores the

target to generate an MDP -sequence, which

converges to
*

i through multiple training gradient

updates. The outer loop of s is classified according
to the feature types of the training tasks, and the
corresponding meta-gradients of s are
cumulatively updated to obtain the meta-
parameters of multiple task types, that is, the meta-

parameter
iMeta maximizes the sum reward of

multiple task rewards. The trained meta-parameter
iMeta is stored in the meta-parameter pool

module, waiting for matching and updating during
retraining. Figure 8 shows the parameter training
process of meta-reinforcement learning.

MDP11 MDP12 MDP13 MDP1n Loss

MDP21 MDP22 MDP23 MDP2n

MDP31 MDP32 MDP33 MDP3n Loss

MDPn1 MDPn2 MDPn3 MDPnn Loss

Loss

ΣLOSS

Network
Structure

Init

*

*

1

*

2

*

3

*

4

1Meta

2Meta

3Meta
nMeta

...

Environment 1

Environment 2

Environment 3

Environment n

Meta-parameter pooling

Figure 8. Parameter training process of meta-reinforcement learning

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

63

V. EXPERIMENT AND RESULT ANALYSIS

A. Experimental platform and parameter setting

In this paper, Torch deep learning platform is
used to train model parameters with each kind of
reinforcement learning object recognition task in
the joint data set of VOC2007 +VOC 2012 as a
task type, and the training of the object
localization model is tested with the Test data set
of VOC2007. In order to test the generalization
performance and convergence efficiency of the
proposed model for new tasks, six samples of
different task types in VOC 2007+VOC 2012
dataset are selected for retraining. For the other 14
kinds of task datasets used for training update
model meta-parameter pool. The experiment
measured the convergence speed of the target
localization model with different initial parameters,
the localization precision (ap), the return rate
(recall) of the trained model, and the number of
required positioning steps.

B. Meta reinforcement learning Loss comparison

plot

In this section, the random initial parameter

random , the MAML-RL based meta-parameter

maml and the adaptive meta-parameter
meta of this

paper are compared in the convergence speed of
retraining with few samples on VOC 2007+VOC
2012 datasets, respectively. In this paper, only one
type of target is located in the target location part.
As shown in Figure 9, the Loss value of the model

with random parameter
random is 2.8583 in the

initial training, and converges to 0.2 after 2000

training times. Using the meta-parameter
maml

based on MAML-RL, the Loss value of the initial
training of the model is 2.0525, indicating that the
model has a certain learning ability, and converges
to around 0.2 after 1000 training times. For the
method in this paper, the model uses adaptive
meta-parameters to have a low Loss value (1.3347)
for few sample data in the initial case, indicating
that the model automatically matches meta-
parameters adapted to the new task as initial
parameters, and the model reaches convergence in
a few steps (500). In addition, with the same
number of training steps, the few-shot task overall
fits more than r and m through retraining. It shows
that the proposed method has good generalization
and learning ability for few-shot data training.

C. Results of target positioning

In this paper, six categories cat, bicycle,
aeroplane, cow, tvmonitor and DOGin VOC
2007+VOC 2012 dataset are selected for testing
with the meta-parameters based on the proposed
method as initial parameters. By testing the test
samples after the same training batch, it is found
that the proposed method can make the target
localization model have better recognition
accuracy for the target in a few steps, and part of
the samples can capture the target position in one
action step. Figure 10 shows the test results of the
test sample, where Iteration represents the number
of steps explored by the model, and the blue
wireframe represents the prediction of the model
on the target field of view.

Figure 9. Comparison of training loss functions

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

64

(a)cat (b)bicycle

(c)aeroplane (d)cow

(e)tvmonitor (f)dog

Figure 10. Results of ta

Figure 11 shows the precision rate (Ap) and
Recall rate (Recall) of the model under the test
data set and the proposed method under the VOC
2007 test set for the new tasks bird, motorbike,
diningtable and train categories. The initial
discount rate of the model is set to 0.5 and
decreases to 0.1 in steps of 0.1, which shows the
probability that the agent chooses the optimal
action according to the model. It can be seen from
Figure a and Figure b that the accuracy and recall
of the model decrease when the learning rate
increases from 0.1 to 0.5, and the accuracy and
recall of the model for different tasks reach the
highest when the learning rate is 0.1.

(a) Accuracy Ap

(b) Recall Rate

Figure 11. Comparison of precision and recall

VI. CONCLUSIONS

In order to overcome the shortcomings of low
generalization ability caused by insufficient data in
few-sample data sets and forgetting of meta-
reinforcement learning, this paper proposes a
meta-reinforcement learning target localization
algorithm based on meta-reinforcement learning
parameter playback. Firstly, the model uses
MAML method to train various tasks to obtain
local optimal parameters. Then, a meta-parameter
pooling method is used to store and playback the
task meta-parameters, and the optimal parameters
for few-sample data training are retrained by
feature matching to improve the generalization
ability, training speed and target positioning
accuracy of the model.

In the model training phase, the positioning
model and meta-parameter pool are trained in
stages to improve the positioning accuracy of the
model, and the data utilization efficiency is
improved by sharing the data in the meta-
parameter pool. The experimental results show
that the number of samples required for model

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

65

training and the computational cost are effectively
reduced by using the memory and replay method
of the meta-parameter pool. The experiments on
the target positioning data set verify the
effectiveness and generalization of the method for
practical problems. However, the test results in the
process of multi-type object detection are not ideal,
and there is a large room for improvement. For
multi-target detection, target detection is realized
by using yuan reinforcement learning way and the
transfer between multiple targets is in-depth study
in this part.

REFERENCES

[1] Mathe S, Pirinen A, Sminchisescu C. Reinforcement
learning for visual object detection[C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016: 2894-2902.

[2] Zhou W, Lai J, Liao Y, et al. Meta-reinforcement
learning based few-shot speech reconstruction for non-
intrusive speech quality assessment [J]. Applied
Intelligence, 2023, 53(11):14146-14161.

[3] Yao Hongge, Zhang Wei, Yang Haoqi et al. Joint return
target depth of intensive study [J]. Journal of
automation, 2023, 49 (5):1089-1098. The DOI:
10.16383 / j.a as c200045.

[4] Snell J, Swersky K, Zemel R. Prototypical networks for
few-shot learning [J]. Advances in neural information
processing systems, 2017, 30.

[5] Finn C, Abbeel P, Levine S. Model-agnostic meta-
learning for fast adaptation of deep networks
[C]//International conference on machine learning.
PMLR, 2017:1126-1135.

[6] Gupta A, Mendonca R, Liu Y X, et al. Meta-
reinforcement learning of structured exploration
strategies [J]. Advances in neural information
processing systems, 2018, 31.

[7] Thrun S, Pratt L. Learning to learn: Introduction and
overview [M]//Learning to learn. Boston, MA: Springer
US, 1998:3-17.

[8] Ajay, Anurag, et al. "Distributionally adaptive meta
reinforcement learning." Advances in Neural
Information Processing Systems 35 (2022):25856-
25869.

[9] Duan Y, Schulman J, Chen X, et al. Rl $^ 2$: Fast
reinforcement learning via slow reinforcement learning
[J]. arXiv preprint arXiv:1611.02779, 2016.

[10] Al-Shedivat M, Bansal T, Burda Y, et al. Continuous
adaptation via meta-learning in nonstationary and
competitive environments [J]. arXiv preprint
arXiv:1710.03641, 2017.

[11] Fakoor R, Chaudhari P, Soatto S, et al. Meta-q-learning
[J]. arXiv preprint arXiv:1910.00125, 2019.

[12] Wang Y, Yao Q, Kwok J T, et al. Generalizing from a
few examples: A survey on few-shot learning [J]. ACM
computing surveys (csur), 2020, 53(3):1-34.

[13] Schoettler G, Nair A, Ojea J A, et al. Meta-
reinforcement learning for robotic industrial insertion
tasks [C]//2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020:
9728-9735.

[14] Garcia F, Thomas P S. A meta-MDP approach to
exploration for lifelong reinforcement learning [J].
Advances in Neural Information Processing Systems,
2019, 32.

[15] Sutton R S, Barto A G. Reinforcement learning: An
introduction [M]. MIT press, 2018.

[16] Yu T, Quillen D, He Z, et al. Meta-world: A benchmark
and evaluation for multi-task and meta reinforcement
learning [C]//Conference on robot learning. PMLR,
2020:1094-1100.

