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Abstract—With the continuous improvement of various 

radio system performance indicators, the research work 

on antenna has become particularly important. 

According to different scenarios and requirements, 

practical projects also need the corresponding antennas 

to produce different radiation patterns. By reasonably 

setting the parameters of the array antenna, the target 

radiation pattern can be obtained to meet real life 

applications. When the array antenna has a large 

number of basic units and the expected far-field pattern 

is complicated, the design of the array antenna becomes 

a complicated optimization problem. To solve this 

problem, Whale Optimization Algorithm (WOA) is 

proposed. WOA is not only simple and fast, but can also 

get the global optimal solution. Therefore, WOA has 

developed rapidly in recent years. However, the 

application of this algorithm in the field of antenna 

design is still relatively rare, thus using WOA to solve 

the optimization problem of array antenna design is very 

valuable. 

Keywords-Multi-source Data Fusion; ICP Algorithm; 

IMU; Three-dimensional Reconstruction  

  

I. INTRODUCTION 

The field of antenna design is still relatively 
rare. There With the continuous improvement of 
various radio system performance indicators, the 
research work on antenna has become particularly 
important. According to different scenarios and 

requirements, practical projects also need the 
corresponding antennas to produce different 
radiation patterns. By reasonably setting the 
parameters of an array antenna, the target radiation 
pattern can be obtained to meet real life 
applications. 

In the early stage, analytical methods and 
traditional engineering optimization methods were 
used to solve such problems. However, these 
solutions not only suffer from long calculation 
time and lack of precision, but were also unable to 
solve the synthesis of high dimensional complex 
demand radiation pattern. 

With the emergence and rapid development of 
various intelligent optimization algorithms, array 
antenna researchers found intelligent optimization 
algorithms very suitable for solving such complex 
optimization problems, and started using various 
intelligent optimization algorithms to solve array 
antenna optimization problems. As a new 
intelligent optimization algorithm, WOA has not 
been widely studied. This paper will study the 
characteristics of WOA and apply it to the 
optimization problem of an array antenna. The 
algorithm mimics the three steps of hunting 
behavior: encircling prey, spiral bubble-net attacks 
and searching prey respectively. The three steps of 
WOA achieve the following functions: first, 
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"encircling prey" enables the whales to swim to 
the nearest location, which improves the search 
ability; second, "spiral bubble-net attacks" can 
improve the convergence speed and local search in 
a spiral way, which improves the search efficiency 
of whales; third, "searching prey " is the behavior 
that whales search for the prey randomly 
according to the position of each other so as to 
enhance the global search ability. Since WOA 
searches globally for optimal solutions, it is 
considered an effective global optimizer [8]. As a 
result, WOA has developed rapidly in recent years. 
However, the application of this algorithm in 
before, using WOA to solve the optimization 
problem of array antenna design can be very 
valuable. 

II. BASIC PRINCIPLES OF WOA 

A. Encircling Prey 

Whales need to determine the target location 
first, and then surround and hunt. Whale 
optimization algorithm assumes the current 
optimal or near-optimal position as the target 
position. After the optimal candidate solution is 
established, the positions of other whale 
individuals are iteratively updated to gradually 
approach the optimal search for local search. The 
specific process can be shown in the following 
formulas (1) and (2): 

    D C X t X t    (1) 

    1X t X t A D     (2) 

Update the positions of the other searches as 
shown in Equations (3) (4) (5) below: 

 2A r     (3) 

 2C r  (4) 

 2 1
maxt

t


 
  

 
 (5) 

 The above equations are commonly used 

where maxt  is the maximum number of 

iterations and  is an important variable of WOA. 
As shown in the equations, the change in 

convergence factor  will affect the value of the 
coefficient vector A and indirectly control the 
activity of the whale. The shrinking encircling 
mechanism is achieved through changing the value 
of convergence factor  .1Fig is a schematic 

describing the mechanism of encircling prey. 

 

Figure 1.  Schematic of encircling prey 

B. Spiral Bubble-net Attack 

The shrinking encirclement mechanism is that 
the whale's encirclement of food will gradually 
shrink in the process of hunting. Whales, while 
contracting and encircling the food, also swim 
spirally to the food, which is the spiral position 
update. 

The implementation of the shrinking encircling 
mechanism mainly depends on changing the value 
of convergence factor  . When the value of 
convergence factor  is small, the value of the 
coefficient vector A  will also become smaller, 
and the value of the coefficient vector A  will 
affect the search ability of search agents. By 
increasing the value of A , the search range of 
search agents will grow to a larger range, so that 
the global search range of the group will be 
expanded. The global search ability will be 
enhanced and less likely to be trapped by a local 
optimum. When the value of A   decreases, the 
search area of search agents will be smaller, hence 
increasing the local search ability of the group as 
well as the search speed. Over the course of the 
entire iteration,  decays linearly from 2 to 0, 

making A  changes within the interval   ， . 

When the value of A  is set between  1,1 , it 

means that the positions of search agents in the 
next iteration may be anywhere between the 
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current position and the current optimal position. 
Therefore, search agents are still active in the 
shrinking bubble-net. When random vector r is 

between  0,1 , the entire process of the shrinking 

encircling mechanism can be represented by the 
model shown in .2Fig : 

 

Figure 2.  Spiral bubble-net attack of prey 

The mechanism of spiral updating position can 
be represented by the following equation (6): 

      1 cos 2blX t D e l X t      (6) 

Where    D X t X t   and represents the 

distance between the optimal location and the 
current search agent, b is a constant used to define 
the shape of spiral movement and l is a random 

variable ranging between  11 ， . When l  

reaches 1, it indicates that the current whale is the 
farthest away from the optimal position. When the 
value of l is -1, it indicates that the current agent 
is the closest to the optimal position. The symbol 
"∙" is element-by-element multiplication and e  
represents the base of the natural logarithm. 

As can be seen from the figure above, the 
distance between the current agent and the optimal 
target position needs to be calculated before the 
spiral position is updated. The figure above is the 
mathematical model of motion obtained by 
simulating the spiral updating position mechanism 
of humpback whales.  

When humpback whales shrink and encircle 
prey, they also update their spiral positions. It is 
necessary to assume that each behavior has a 
certain probability if we were to use a 
mathematical model to describe these 
simultaneous behaviors.  

The mathematical model is as follows (7): 

    
 

   

                          0.5
1

cos 2          0.5bl

X t A D P
X t f x

D e l X t P

  
   

   
 (7) 

C. Searching Prey (global exploration) 

In the actual hunting process of humpback 
whales, the current searched fish school may not 
be the optimal fish school in the hunting space. 
Therefore, humpback whales will also change their 
positions according to the positions of other 
whales. As shown in .3Fig , global random search 

is performed for the best fish school in the space. 
This random search mechanism is simulated by 
random variables A . In the algorithm, when 
0 | | 1A  , the whale launches an attack on the 

prey. When | | 1A  ， the whales will carry out a 

global random search for prey, where each 
humpback whale updates its position according to 
a search agent randomly selected in the global 
space. This mechanism increases the population 
diversity of the algorithm and significantly 
improves the global search ability of WOA. In the 
equations below, D  is the distance between the 
position of the current whale and the position of 

any random search agent,  randX t is the position 

of a random agent in the population. The specific 
mathematical model is shown in Equations (8) and 
(9) below: 

    randD C X t X t    (8) 

    1 randX t X t A D     (9) 

 

Figure 3.  Schematic of searching prey (global exploration) 
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III. IMPROVING WOA 

In the aspect of global search, the WOA 
algorithm performs global search through the 
current point and the current optimal point. 

A. Logistic Mapping 

At present, there are usually many random 
variables in algorithms based on crowd behavior 
research. These random variables are generally 
adjusted through probability. However, these 
parameters obtained by probability are too random, 
which are likely to slow the convergence speed of 
the algorithm and affect the accuracy of the 
solution. Many researchers now use logistic 
mapping instead of random probability to solve 
this problem. Logistic mapping is a typical model 
for studying the behavior of complex systems such 
as dynamic systems with discrete time, chaotic and 
fractal dimensions [4]. It is a nonlinear iterative 
equation described as follows: 

      1 1 ,   0,4 ,   0,1n n n nx x x x       (10) 

In this equation, n  represents the number of 

iterations, 
nx  represents the insect-population in 

the 
thn generation and  1 nx  represents the 

influence of environmental factors. is a system 

bifurcation control parameter closely related to the 
dynamic characteristics of chaotic logistic 
mapping system. Different values of   will have 

different effects on the system. When 1  , this 

suggests the insect-population decreases and, 
when 1  , it means the insect-population 

increases. The impact of   on the distribution of 

logistic mapping is described in .4Fig : 

where, 

a) When 0 1  , no matter the initial value of 

the system and the number of iterations, the 
final system trajectory will converge to 0;  

b) When 1 3  , there will be two 

steady-state solutions: 0 and 
1

1


 , and after 

a number of iterations, the result will 
converge to either one of them; 

c) When 3 4  , the system will start to 

exhibit some periodic trajectories; 

d) When 3.569945972 4  , the system is in 

a chaotic state, where, the result generated by 
iterations has pseudo-randomness, as well as a 
strong sensitivity towards the state of the 
initial value; 

e) When 4  , the distribution of x  becomes 

uneven. A U-shaped relationship is observed 
with highest frequency at the two extremes. 

.4Fig shows the distribution of logistic 

mapping with different values of  . It can be 

seen that as  is closer to 4, the system becomes 

more evenly distributed. While when 4  , the 

distribution of x  is more frequent at the two 
extremes and less frequent in the middle. This 
suggests the closer the value of   is to 4, the 

better the outcome. Therefore, in this paper, we 
establish the logistic mapping using 3.99  . 

.5Fig  is the logistic mapping based on 3.99  , 

where T  is the number of iterations, the 
Y axis  represents the value of x . 

 

Figure 4.  The distribution of logistic mapping with different values of   

 

Figure 5.  The distribution of logistic mapping when   3    
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B. Inertia Weight 

Inertia weight is a concept first appeared in 
Particle Swarm Optimization (PSO), where the 
changes of particle coordinates are related to the 
inertia weight in the iterations of PSO. When the 
value of inertia weight is large, the step size for the 
search becomes relatively large, which improves 
the global search ability of the algorithm. When 
the value of inertia weight is small, the local 
search ability of PSO will be better, and the 
accuracy of the optimal solution will also improve, 
but the search may be trapped by a local optimum. 
In this section, we introduce inertia weight into 
WOA, and applies inertia weight to the two steps: 
encircling prey and spiral bubble-net attack. 
Weight is added to the global optimal candidate 
solution, and the next group of whales will search 
according to the historical optimal information 
with added weight [5][8]. This process is updated 
as equations (11) and (12). 

      t 1x t x t A D       (11) 

        1 cos 2blx t D e l x t t        (12) 

Where  t is the inertia weight, which adjusts 

the step size of the search. According to its 
characteristics, this paper chooses equation (13) as 
the iterative update of the inertia weight, where

max_t t  , 
max 0.9  , and 

min 0.4  . 

      2

max max min 2 1t sqrt            (13) 

.6Fig Shows the relationship between the 

inertia weight and the number of iterations 

 1000t  . Because of the fast convergence speed 

of WOA, it is easy to fall into the local optimum, 
and it is basically stable at 700 iterations. At this 
time, the inertia weight increases rapidly, and the 
step size is expanded again to carry out the global 
search, and finally the optimal solution is 
determined. Hence, by introducing the inertia 
weight, we can better balance the global search 
and local search ability of WOA. 

 

Figure 6.  The relationship between the inertia weight and the no. of 

iterations 

IV. CHEBYSHEV PATTERN SYNTHESIS 

If the array antenna has a high sidelobe, the 
strong scattering points at the sidelobe will 
produce strong reflection of energy. This may 
cause the radar to mistakenly believe that there is a 
target in the main lobe direction of the antenna and 
may miss the target in the main lobe, making the 
radar to fail to work properly. Therefore, low 
sidelobe array antennas can not only help radars to 
perform normal target detection function, but can 
also improve the battlefield survivability of radars. 
According to the fundamental theory of antenna 
array, applying appropriate excitation amplitude 
on all the basic antenna units will help us obtain 
lower sidelobe levels. Chebyshev pattern synthesis 
and Taylor synthesis are methods commonly used 
in the synthesis of low sidelobe array antenna 
patterns [1][2][6]. Antenna pattern synthesis is the 
inverse process of pattern analysis. Pattern 
synthesis is to calculate the number, position, 
excitation current amplitude and phase of antenna 
array elements according to the given pattern 
conditions (sidelobe level, beam width, pattern 
shape, etc.). In this section, we will introduce the 
analytical method used to solve the optimal pattern 
synthesis of linear array antennas, namely, the 
Chebyshev pattern synthesis technique. This 
method solves the contradiction between low side 
lobe and narrow main lobe of an array antenna. 
The definition of Chebyshev polynomials (14) is 
as follows: 
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  

   

 

 

1        -1

cos n arccos     -1 1

ch n arccos             1 

n

n

ch n ch x x

T x x x

x x

  


  




 (14) 

Let cos  x  , then    cos  cosnT n  . 

By using the trigonometric functions,  cos n  

can be expanded into the power polynomial of

 cos  . Then substitute cos  x   into the 

equation, we can prove that  cos  arccos n x  is 

the power polynomial of x . Chebyshev's 
recurrence equation is then given by equation (15): 

    1 12 ( )n n nT x xT x T x    (15) 

Chebyshev polynomials have the following 
three properties: 

i. Even-order polynomial has the characteristic 
of an even function, the polynomial curve is 
symmetric about the vertical axis, and that is, 

when n  is even，    n nT x T x  . While 

odd-order polynomial has the characteristic 
of an odd function, that is, when n  is odd, 

  ( )n nT x T x   . 

ii. All the polynomials above pass through 

point  1,1 . When 1 1x   , the value of 

all polynomials oscillates between -1 and 1, 
and the absolute value of polynomials are 
less than or equal to 1. 

iii. All the zeros of the above polynomials are 
located at the interval 1 1x   , and the 
values of the polynomials at the interval 

1x   either monotonically increase or 

monotonically decrease. 

Since all the characteristics of Chebyshev 
polynomials are consistent with the characteristics 
required in sidelobe patterns, the array factor can 
be expressed in the form of Chebyshev 
polynomials. 

Given that the Chebyshev polynomials has only 

side lobes in the interval  1,1  and the main 

lobe is outside this interval, we need the variation 
range of the matrix factor outside the interval 

 1,1 , which is given by equation (16) : 

 0 cos
2

x x
 

  
 

 (16) 

In the above equation, let   1 0 cos
2

a nf T x


 

 
  

 

, 

then the following equations (17) and (18) can be 
obtained at the angle of maximum radiation

0

0 90  : 

 
0

0 0cos90 0,    cos
2

d x x x


 
 

    
 

(17) 

    1 00a nf T x R     (18) 

Where R  is the true value of the desired 
sidelobe level SLL, as shown in equation (19). 
Therefore, according to equation (18) and the 

value of R , 
0x  can be calculated. 

 2010 SLLR   (19) 

The Chebyshev polynomials and the matrix 
factor have the following correspondence, that is, 

when 
0x  changes to

0 cos
2

d
x

 
 
 

, the true value 

of the matrix factor is the value of Chebyshev 
polynomial. The independent variable of 
Chebyshev polynomial is described as follows: 

   1 0 cos
2

a Nf T x


 

 
  

 
 (20) 

It can be seen that the independent variable of 
the matrix factor in the Chebyshev polynomial 

varies in the range 
0 0 cos

2

d
x x

 
  

 
, and its 

range depends on spacing d  and x . 

With the given sidelobe level and the number 
of units, we can use the Chebyshev pattern 
synthesis method to calculate the excitation 
current corresponding to the optimal pattern. The 
comprehensive steps of deriving the excitation 
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current are as follows: step one, get the value of 
R based on the value obtained by the above 
Equation (18) and the known sidelobe level, and 

then calculate
0x . In order to simplify the 

calculation, the above equation can be converted 
to equation (21): 

 
1 1

2 21 1
0

1
[( 1) ( 1) ]

2
N Nx R R R R        (21) 

Step two: derive the excitation current of each 
basic unit. If the matrix factor is equal to the 
Chebyshev polynomial of order 1N  , then the 

coefficients cos
2


 of the same power on both 

sides of the equation should also be equal, and the 
excitation current of each basic unit can be 
calculated. 

Step three: calculate the radiation pattern of the 
array antenna. 

V. VERIFICATION OF WOA AND CHEBYSHEV 

PATTERN SYNTHESIS 

The optimal radiation pattern can be obtained 
by Chebyshev pattern synthesis method. For a 
given sidelobe level, Chebyshev synthesis method 
can achieve the narrowest zero-lobe width and 
main lobe width. For a given zero-lobe width, the 
Chebyshev synthesis method can obtain the lowest 
sidelobe level. In order to verify the feasibility of 
WOA in solving array optimization problems, this 
section attempts to use the algorithm to solve the 
optimal radiation pattern of a given array antenna, 
and compares the optimization results with 
Chebyshev pattern synthesis method, so that the 
effectiveness and accuracy of WOA can be 
verified. 

Combining the characteristics of the 
Dolph-Chebyshev radiation pattern, the following 
two aspects should be considered when designing 
the objective function: one is that the main lobe 
beamwidth should be close to the expected 
beamwidth, and the other is that the side lobe level 
should meet the design requirements. We will use 
the two-mask function to build the target radiation 
pattern, and the optimal radiation pattern should be 

between the upper function UMask  and the lower 

function
LMask , as shown in .7Fig . In the main 

lobe region, the main lobe width of the actual 
pattern and the target pattern should be equal. In 
the sidelobe region, the optimal sidelobe level 
should be equal to the designed sidelobe level. 
Therefore, the fitness function in this section can 
be expressed as equation (22): 

 0

( ) ( ) ,   ( ) ( )

0 ,       ( ) ( )  ( )

( ) ( )  ,  ( ) ( )

   

U U
N

U L

i

L L

f Mask f Mask

fitness Mask f Mask

f Mask f Mask

   

  

   


  


  


 

 (22) 

 

Figure 7.  Schematic of two-masks function 

Where   is the radiation angle, ( )f   is the 

actual radiation pattern,  UMask   is the upper 

bound of the expected radiation pattern, and 

 LMask   is the lower bound of the objective 

function. Fitness function is used to represent the 
error function between the actual pattern and the 
expected pattern. The smaller the error function is, 
the closer the actual pattern is to the expected 
pattern. 

In this section, a uniformly arranged linear 
array of 30 elements is selected as an example. 
The elements are ideal point source, the spacing 

between each element is 2d  , and the 

expected sidelobe level is -35dB. Each element is 
excited in phase, and the optimization variable is 

the excitation amplitude 
nI  of each basic unit. 

The value of the excitation amplitude is located at 

the interval  0,1 . Since the amplitudes of the 30 

array elements are centrally symmetric, the 
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dimension of the optimization variable is half of 
the array size, which is 15. In this example, the 
step interval of the radiation pattern is 0.1 degrees, 
and the angle range of the radiation pattern is 

0 090 ,90   . According to the equation of uniform 

linear array, the array radiation pattern ( )f   

corresponding to any optimized variable can be 
calculated. The selection of the objective 
evaluation function of the desired radiation pattern 

is shown in .4Fig . Where  UMask   and 

 LMask   are the upper and lower bounds of the 

desired radiation pattern. In this example, the 
parameters of WOA are set as follows: the number 
of populations 200N  , and the maximum 
number of iterations is 300. 

Therefore, Chebyshev amplitude distribution 
can be obtained and the radiation pattern of array 
factors can be calculated. .8Fig shows the 

comparison of low sidelobe pattern obtained by 
Chebyshev synthesis and WOA algorithm, and

.9Fig compares the amplitudes obtained by 

Chebyshev pattern synthesis and WOA. As can be 
seen from the comparison results in .8Fig , WOA 

can obtain a better radiation pattern than 
Chebyshev synthesis, with the same lobe width 
and the same amplitude and position of sidelobe 
levels. .9Fig Compares the excitation amplitudes 

and it shows that the distribution and trend, as well 
as the excitation amplitudes obtained by WOA and 
Chebyshev synthesis are basically the same. The 
specific differences between the two are shown in 
Table 1Conclusion. 

This paper focuses on the application of WOA 
in the optimizing the radiation pattern of array 
antennas. Firstly, WOA is used to solve the 
amplitude distribution for optimal radiation pattern 
of uniform linear array with Chebyshev 
distribution. Then the optimization results of 
WOA are compared and analyzed with the 
amplitude distribution obtained by Chebyshev 
synthesis method, which verifies the effectiveness 
and accuracy of WOA to solve the optimization 
problem of array antennas. 

 

Figure 8.  Comparison of low sidelobe radiation pattern obtained by 
Chebyshev synthesis and WOA 

 

Figure 9.  Comparison of distribution of excitation amplitudes obtained by 

Chebyshev synthesis and WOA 

TABLE I.  COMPARISON OF OPTIMIZATION RESULTS BETWEEN 

CHEBYSHEV DISTRIBUTION AND WOA 
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