
International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

DOI: 10.2478/ijanmc-2023-0071 1

A Model-Based Approach to Mobile Application Testing

Weidong Xu

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, 710021, China

E-mail: xuweidong@st.xatu.edu.cn

Jing Cheng

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, 710021, China

E-mail: chengjing@xatu.edu.cn

Abstract—Modeling the automated testing of mobile

applications is a crucial aspect of mobile application

automation testing. Due to the varied styles and complex

interactions of mobile applications, automated modeling

methods are urgently required, particularly in the

context of their short development cycles, large numbers,

and fast version iterations and updates. In this paper, we

address the challenge of exploring mobile application

behavior and state based on robotic testing environment

without invading the application interior, and propose a

method for automated exploration of GUI components

and GUI events of applications combined with

application domain knowledge to generate mobile

application GUI semantic test models. Our results show

that the proposed semantic model achieves 70.6% and

82.4% defect detection rate in the robot vision

environment and simulation environment, respectively.

Compared with the comparative testing method that can

only find application crash defects, our method can

explore both crash defects and functional anomalies with

the application semantic understanding and domain

knowledge, thereby extending the automated mobile

application functional testing capability of mobile

applications. In response to the limitations of mobile

application automated testing modeling mentioned

above, this paper introduces an automated testing

method based on semantic models. It uses the proposed

semantic testing model to guide the purposeful

exploration of the tested application's states.

Subsequently, it generates positive and negative test

cases based on the domain knowledge associated with

the semantic model. This modeling approach leverages

domain models in the mobile application field to conduct

automated modeling tests imbued with functional

significance, guided by domain knowledge. This

optimization aims to address the shortcomings of

current automated testing, particularly in terms of

model reuse and test expansion.

Keywords-Mobile Application; Semantic Testing Model;

Automated Testing; Test Coverage

I. INTRODUCTION

With the gradual replacement of traditional
desktop software by mobile applications as the
mainstream software tools in people's daily work,
study and life, the development of mobile
applications introduces complex new features that
make quality assurance more challenging
compared to desktop software [1]-[8]. However,
the growth in testing needs is in contrast to the
limited availability of testing tools and testers.
Currently, both industry and academia are
increasingly emphasizing the adoption and
exploration of automated testing techniques to
address the testing needs of mobile applications
[9]-[12].

Model-based automated testing is a widely
studied testing method that involves constructing
test models by mining the state and behavior of the
application, and subsequently utilizing these
models to generate test cases [13]. Model-based
automated testing typically involves completing
static modeling of mobile applications based on
GUI and dynamic modeling based on behavior
jumping, and describing mobile application
behavior using inter-state relationship models such
as Finite State Machine (FSM). For instance, GUI
Ripper [14] facilitates automated exploration
modeling of applications, while tools like UI
Automator [15]-[16] are utilized to obtain the GUI
tree of an application and target the selection of
events to complete exploration modeling of mobile
applications.

Research on improvements related to model
based automated testing: on the one hand, to
achieve automatic evolution of the model, e.g., Gu
et al [17] can find differences and quickly achieve

mailto:xuweidong@st.xatu.edu.cn

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

2

model evolution after application version update.
DeltaDroid [18] builds a defect model that can
generate new cases under different conditions
based on existing test cases combined with actual
GUI and system actions to detect dynamic
installation defects in Android applications. On the
other hand, the modeling is guided by enhanced
application knowledge, e.g., MEGDroid [19] uses
model abstraction and model-to-model migration
methods to achieve accurate generation of
application events; Pan et al [20]-[23] use manual
construction of richer test models to guide
automated testing.

To overcome the limitations of mobile
application automation test modeling mentioned
above, this chapter proposes a semantic
model-based automation test approach. This
approach fuses the mobile application domain
model to achieve a semantic matching association
between mobile application GUI state and domain
knowledge. This facilitates the automated
generation of a mobile application GUI semantic
test model, which is subsequently used to verify
the testing effectiveness of the modeling method.

II. MOBILE APPLICATION SEMANTIC TESTING

MODEL

When it comes to mobile application testing, a
typical model-based approach involves modeling
the relationship between mobile application GUI
states and GUI events to establish a series of
jumps triggered by events between different GUI
states in the application. One example of such an
approach is the finite state machine (FSM) model
[24]. However, current model-based approaches
for mobile application testing are limited to direct
records of GUI states and GUI events. These
models can only describe the jump-trigger
relationship between different GUI states of the
application, without understanding the functional
meaning of the application. To overcome the
aforementioned problems, this paper proposes a
method that integrates semantic ontology models
with traditional GUI testing models. This method
involves building a semantic testing model for
mobile applications by extracting semantic
information from the GUI of mobile applications

and attaching semantic concepts to GUI states and
GUI events.

Definition 1: A typical semantic definition of
OWL, describing ontology with a formal
definition of six tuples:

  log , , , , ,R

Conto y C A R A H X  

Ac denotes the set of attributes of each concept,
the set of concept attributes Ac(ci), each concept ci

in the set of concepts C is used to represent a set of
objects of the same kind and can be described by
the same set of attributes.

R denotes the set of relations between concepts,
relation ri (cp,cq) that is, each relation ri in relation
R represents a binary relation between concepts
cp and cq, and an instance of this relation is a pair
of concept objects (cp,cq).

AR denotes the set of attributes of each relation,
and the set of relation attributes AR(ri) is used to
represent the attributes of relation ri.

H represents a concept hierarchy, where it is a
hierarchy of sets of concepts denoted as C. H also
includes a set of parent-child relations that exist
between the concepts in C.

The set of axioms is represented as X, where
each axiom within X serves as a constraint on the
attribute values of a concept and its relation, or as
a constraint on the relations between conceptual
objects.

Definition 2: The mobile application domain
metamodel is defined as a 4-tuple

 , , ,OAPP C I R X .

The set of mobile application ontology
concepts is denoted by C and is composed of three
subsets: entity, action, and task. Each subset
contains a concept identifier, concept type, and
semantic name.

I represents a collection of instances of mobile
application ontology concepts. These instances are
concrete textual representations of mobile
application component values that are recognized
knowledge in the domain. For instance, examples
of instances for the entity "place name" could
include "Xi'an", "Beijing", and "Shanghai". These

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

3

instances can be used as the origin or destination
in an air service application.

R denotes the set of semantic relations of the
mobile application, which contains the
inter-concept relation Rcc and the concept-instance
relation Rci .

X is the constraint definition of the mobile
application domain model, which encompasses
inter-concept relationship constraints, constraints
on concept attributes, instance data constraints,
and more. For instance, one constraint could be
that a task must consist of at least one entity and
one action, and that the instance of the entity
"place name" can only be described by text.

Definition 3: The domain model action flow

graph is defined as a 5-tuple,  , , , ,S fD A T F   .

Action state set A: finite set of mobile
application interaction actions.

Action flow control set T: control set of mobile
application action sequences.

set of action flow relations F: set of relations
from one action state to another action state.

Initial states: as，af∈A .

End state: af，af∈A .

 1 2 3, , , , nA a a a a is the set of action states,

which is the set of mobile application test
interaction actions. Each action state is connected
by the control flow T in series to form an action
sequence. The action state set includes the initial
state as , the end state af , the intermediate states

 1,2,3, ,ma m n .

 1 2 3, , , , nT t t t t is the action flow control

set, which is the control set of the mobile
application test action sequence.

 1 2 3, , , , nF f f f f ,    F A T T A   is the set

of action relations describing the combination of
action states and action flow controls.

  ,Sa a A a t F   For the initial state only

backward control flow t,   ,fa a A t a F   for the

end state only forward control flow t,

    , ,ma a A a t F t a F     must have both

forward and backward control flows.

Definition 4: A component in a GUI that
cannot be split is an atomic component. The basic
components of a GUI in general are atomic
components, such as text buttons (Button), text
(Text View), images (Image View), etc. AC
denotes the set of atomic components in a GUI,

ac AC  ,  , , , ,t v a s pac ac ac ac ac ac , where:

act denotes the component type of the atomic
component ac.

acv indicates the value of the atomic
component ac, which is an optional attribute.

aca indicates the possible actions of the atomic
component ac, e.g. a button is usually bound to a
click action.

acs denotes the semantics of the atomic
component ac. The semantic entity of acv is
obtained by mapping acv to the domain model acs:

 v

e e Eac C C C  .

Definition 5: A component composed of
atomic components in a GUI is a semantic
composite component, e.g., ListView, ToolBar, etc.
CC denotes a collection of semantic composite
components in a GUI,

 , , , ,ac t a s pcc cc cc cc cc cc , where:

ccac denotes the composition of the semantic
composite component cc, i.e., which atomic
components the semantic composite component
cc is composed of, ccac is the set of atomic

components, accc AC .

The component type of a semantic composite
component is denoted by cct, and this attribute is
optional. It's possible that there may not be a
corresponding GUI component type for the
semantic composite component.

The semantics of the semantic composite
component cc is represented by λccs, which is
determined by the relationship in the domain
model where the semantics of the constituent
atomic components reside. This can be denoted

∧acs→ccs. It should be noted that despite being a

composite component, the semantics of cc still

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

4

corresponds to the entities present in the domain
model.

Definition 6: The extended semantic FSM
model, FSM-ES, is an extension of the typical
FSM model that uses the 5-tuple setting. However,
it introduces a semantic extension to the
expression of the state-hopping relationship:

 0, , , ,FSM ES S S F   .

The infinite non-empty state set of the GUI is
denoted as S, which encompasses all possible

states of the application being tested. For ∀s∈S,

 , , Ss AC CC S , where AC represents the GUI

atomic component, CC represents the GUI
semantic composite component, and SS denotes
the semantics of the GUI state that is being
represented by the GUI component.

δ is the state transfer function that maps S × Σ

to the transition function of S δ:S × ∑→S. ∀s ∈

S, ∀e ∈ ∑.

The notation δ (s, e) refers to the set of states
that can be accessed by transitioning from the
GUI state s through event e.

III. A MODEL-BASED APPROACH TO MOBILE

APPLICATION TESTING

We propose a semantic model-based mobile
application testing method, which consists of two
parts: visual semantic model-driven GUI
modeling and task subgraph-based test case
generation.

In the realm of semantic model-driven
automated test modeling, the following critical
modules are present:

A. FSM-ES model building

The process of semantic model-driven GUI
modeling is illustrated in Algorithm 1, which
takes the mobile application domain model
(ADM), the generic model (GDM), and the
application under test (AUT) as inputs and
produces the FSM-ES model of the application
under test as outputs. The following pseudo code
outlines this process:

Algorithm 1
Input. Application under test AUT, application
domain model ADM, generic model GDM
Output. Application test model FSM-ES

1. while true do
2. Get the current GUI gui_current of the
application under test
3. Perform visual recognition of GUI
component elements on gui_current to get GUI
component information gui_info
4. Match the gui_info of the current GUI with
the ADM for semantic similarity to get the vector
gui_vc

5. gui_action inferAction(gui_vector)

6. Get the response interface vector gui_vr

7. if gui_vc differs from gui_vr then

8. mark gui_a in gui_action as executed

9. Generate a path to "gui_vc, gui_a, gui_vr" f

10. if path f does not exist in fsm_es then

11. Path f is added to fsm_es

12. end if

13. else

14. Logging exceptions

15. end if

16. if there is no unexecuted action in
gui_action or the exploration timeout then

17. break

18. end if

19. end while

20. return

21.

22. function inferAction(gui_vector)

23. for each gui state in ADM do

24. if gui state == gui_vector then

25. Reasoning generates gui actions in the
domain corresponding to the gui state and saves
them to gui_action
26. else

26. Generate executable actions for the
interface based on GDM probabilities and save
them to gui_action
28. end if

29. end for

30. return gui_action

31. end function

The primary objective of the FSM-ES model is
to explore the attainable states of the application

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

5

and associate each state with the task ontology
outlined by the domain model. The structure of
the FSM-ES model is depicted in TABLE I.
FSM-ES semantic structure of music playback application
Cathay Pacific

Area Mssion State Collection Action Semantic Set

Music

playback

Register
{S0,S1,S2,S3,S4,Sl2

}

{select login, agree to the
agreement, enter the username,

enter the password, and click

1ogin}

Basin

information
{S5,S6,S7,S8,S9}

{Recently played, locally
downloaded personal cloud

drive, friend 1ist, favorite

play1ist}

Discovering
Music

{S10,S11,S12}
{Dai1y recommendation, click

1ike, c1ick play}

Search

Services
{S13,S14,S15,S16}

{Click to type, c1ick to search,
clear search,1isten to music and

recognize music}

Persoral
Settings

{S17,S18,S19,S20,S2

1,S22,S23}

{Message center, personal

privacy, personalized services,
advanced settings, about, 1og

out, switch accounts}

B. Task Subgraph Generation

The FSM-ES model is utilized to map to the
action flow diagram of the application domain
model, which generates task subgraphs for the
functional tasks of the application to produce test
cases.

If every action concept in the task concept, as
defined in the FSM-ES model, corresponds to an
action state found in an AFG in the domain, then
the task concept is deemed to comply with a
specific action flow graph (AFG). The following
pseudo code outlines this process:

Algorithm 2

Input. Application Semantic Model FSM-ES,
Domain Model Action Flow Graph AFG

Output. Task subgraph TFG

1. for each task in the semantic model do

2. for each task task in each path f do

4. if task_path has a serial relationship
5. with TFG then
5. Generate TFG by storing task_
6. path in sequence

6. else

7. return exception and interrupt location

8. break

9. end if

10. end for

11.end for

12.return TFG

13.function generatePath(task, AFG)

14. if task contains the action state and AFG
meets rule 2 then
15. Generate a feasible action flow based on
AFG inference action
16. task_path sets the continuity flag

17. else

18. task_path sets the end flag

19. end if

20. return task_path

21. end function

As observed, the domain knowledge
incorporated in the action flow diagram can be
leveraged to supplement the unexplored inter-state
action behavior, thereby generating test judgment
criteria for mobile applications.

Figure 1. Task states explored by FSM-ES

Figure 2. Task Subgraph of Domain Action Flowchart

Upon examining the actual GUI of NetEase
cloud music's search song task in (f), it becomes
apparent that while the FSM-ES has explored the
GUI states, it has failed to account for the iterative
behaviors of keying and deleting in S13 state and
S15 state. This is because the FSM-ES prioritizes
state exploration over other factors. However, by
extending the corresponding action flow diagram
definition in the domain ontology library based on
domain knowledge, a pathway can be generated,

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

6

and this domain knowledge can be effectively
applied to GUI modeling.

The process of generating task subgraphs from
FSM-ES is essentially the instantiation of the
mobile application domain model on the
application under test. This transforms the abstract
concept relationships of the mobile application
domain model into a concrete sequence of
application action behaviors, making the mobile
application testable for execution.

C. Test case generation based on task subgraph

Test case generation comprises two main
components: test sequence generation and test
data generation. Test sequences are generated by
defining semantics-oriented test coverage criteria
to guide the traversal of task subgraphs.

Coverage decision rule 1: Existence decision
c(A, B), i.e., if the element in A exists in B, the
coverage decision is satisfied.

Coverage decision rule 2: Sequential decision
s(A, B), i.e., if the elements in A are sequential
and conform to the sequential arrangement in B,
the coverage decision is satisfied.

Coverage rule 3: Key point decision d (A, B),
i.e., if there is an element in A that matches the
key element in B, then the coverage decision is
satisfied.

Definition a: Semantic concept entity coverage
criteria

The set of test cases ensures coverage of both
the conceptual entities present in the application
domain model being tested and all GUI states
formed by these entities.

    , ,A A G GEntityCoverage c F O s T F   

Where:

c(FA , OA) — the coverage of the conceptual

entity FA involved in the FSM-ES model of the
application under test with the entity OA included
in the domain model.

s(TG , FG) — the coverage of all GUI states
involved in the test case set with the GUI states

contained in the FSM-ES model of the application
under test.

Figure 3. Login Action Test Case

Definition b: Semantic concept action
coverage criteria

Test cases satisfy the coverage of actions
involved in the action flow diagram of the
application domain model being tested. Action
coverage is evaluated independently for each
action flow diagram. The coverage of semantic
concept actions is calculated using the equation
(3).


 

1

M

m mm
c S D

ActionCoverage
M





  

M—M is the number of task subgraphs
included in the FSM-ES model of the application
under test, and the action sequence coverage
within a subtask is calculated for each task
subgraph.

 m mc S D —The set of action sequences

involved in the set of test cases of the subtask Sm
and the coverage of feasible action sequences
contained in the activity diagram of the subtaskv
Dm.

Definition c: Semantic concept task coverage
criteria

Test cases fulfill the coverage requirements of
the subgraph of the task being tested, effectively
covering all relationships between GUI states. The
evaluation of coverage for semantic concept tasks
is calculated using the equation presented in (4).

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

7


 , Dd X X

TaskCoverage
M

  

X — the number of application subtasks
covered by the test case set

XD — the number of tasks defined in the
domain model

The coverage of semantic concept tasks, which
focuses on the application's functional
completeness, is calculated by assessing the
coverage of tasks in the domain model using the
test case set. The number of subtasks covered by
the test case set is represented by X, and subtask
coverage is assessed using the d-judgment rule.
Specifically, if a test case can cover any pathway
from the initial state to the end state of a task
subgraph, it is deemed as covered and assigned a
value of 1. Conversely, if there is no pathway
from the initial state to the end state of the task
subgraph, it is regarded as not covered and
assigned a value of 0.

Cov EntityCov Action TaskCov        (5)

Where, α、β、γ correspond to the adjustable

parameter weights of the three coverage criteria.

a. To generate test cases based on task
subgraphs, it is necessary to cover as many
feasible paths as possible to achieve high test case
coverage and optimize testing effectiveness.

Algorithm 3

Input. Task subgraph TFG of the application
under test

Output. Test case sequence TCi, i=1,2,3,4,......

1. while there is an untraversed path in tfg do

2. node← getStartNode(tfg)
3. Create a new sequence TCi with node

number i at the beginning
4. while node is not the end node with degree

0 do

5. if node has not been traversed then
6. p← generatePath(node, tfg) //generate

test behavior path

7. Add the node and events from p to TCi
8. Set the corresponding path in tfg to

traversed state

9. else

10. p ← generatePath(node, tfg) //generate
test behavior paths

11. end if

12. node ← p.nodef

13. end while

14. i++

15. end while

16. return TC

17.

18. function generatePath(node, tfg)
19. if node has a unique neighboring node and
an untraversed path then

20. Generate this unique path with the node p
21. else if n ode does not have the same degree
of adjacency then
22. Generate a path with the node that has the
highest degree p
23. else if node has a path that has not been
traversed then

24. Generate p from this untraversed path
25. else if node has multiple untraversed paths

then
26. if node's neighboring nodes have
traversed nodes then
27. Generate a path p between the node

and its traversed neighbors

28. else
29. Generate a path from the node to a

random neighbor node p

30. end if

31. else
32. Generate a path p between the node and

any of the next nodes

33. end if
34. return p← <beginning node nodes, event e,

ending node nodef>

35. end function

For a given task subgraph TSG:

(i) If there exists a unique pathway of the
current node with only one neighboring node, the
pathway between the current node and that
neighboring node is generated as the next test
behavior path.

(ii) If the current node has multiple
neighboring nodes with different out degrees, the
pathway of the current node and the neighboring
node with the highest out degree will be generated

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

8

as the next test behavior path.

(iii) If there are multiple neighboring nodes
at the current node and there is an untraversed
path between the current node and one of the
neighboring nodes, the untraversed path will be
generated as the next test behavior path.

(iv) If the current node has multiple
neighboring nodes and there are multiple
untraversed paths between it and the neighboring
nodes, the path of the current node with the
traversed neighboring nodes will be generated as
the next test behavior path. If there are no
traversed neighboring nodes, the path of a random
neighboring node will be generated as the next
test behavior path.

IV. EXPERIMENTATION AND ANALYSIS

When selecting applications for testing, those
with similar functions are grouped together as
domain applications, such as airline service
applications, file management applications, news
applications, and so on. To establish the domain
models, two teams, each consisting of five lab
personnel, were invited to create two domain
models based on the definition of domain models.
These models were cross-checked for accuracy
and consistency.

A. Evaluation criteria

Test effectiveness is evaluated at three levels (1)
the success rate of test action execution, which
determines whether the actions in the test script
can be executed without error; (2) the success rate
of test script execution, which determines whether
the test script can be executed in its entirety

without encountering any errors; and (3) the
success rate of defect discovery, which evaluates
whether known defects in the application set can
be identified.

B. Experimental Setup

Upon completion of the exploration of the
application under test and subsequent building of
the semantic test model, the coverage of the
semantic test model with respect to the domain
model is determined by analyzing the successful
matching of the application state and the domain
model as recorded by the exploration algorithm.
The coverage results of the FSM-ES models
created for each domain tested application, along
with the corresponding domain model, are
presented in TABLE Ⅱ. The table indicates that
the average coverage of entity concept is 89%,
while the average coverage of action concept is
also 89%. The average coverage of task concept is
81%. It is true that the non-intrusive environment
may have some impact on the modeling process,
particularly with regard to factors such as GUI
recognition accuracy.

Application crash defects:

ActivityNotFoundException, Activity not
found exception.

IllegalArgumentException, illegal parameter
exception.

IllegalStateException, illegal state exception.

NullPointer Exception, null pointer exception.

TABLE I. DISTRIBUTION OF DEFECTS DISCOVERED BY VARIOUS METHODS

Error type Defect type found
Semantic Modeling in Robot

Vision Environment

Semantic modeling in a

simulated environment
Humanoid Stoat

Application crash defects

ActivityNotFoundException 1 1 3 2

lllegalArgumentException 3 2 1 1

lllegalState Exception 3 2 2 2

NullPointer Exception 4 3 2 0

OutOfMemoryError 2 2 1 2

amount 13 10 9 7

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

9

TABLE II. DEFECT DISCOVERY RESULTS FOR EACH APPLICATION

APP
Semantic Modeling in Robot Vision Environment Semantic modeling in a simulated environment

Entity Coverage Action Coverage Task Coverage Entity Coverage Action Coverage Task Coverage

Apple Music 84% 82% 87% 84% 82% 89%

QQ Music 83% 89% 85% 86% 89% 83%

Music 88% 87% 92% 89% 90% 85%

TunePro Music 93% 92% 93% 93% 92% 93%

Shazam 92% 89% 91% 91% 91% 92%

Spotify 90% 90% 93% 92% 89% 91%

ES File Explorer 89% 87% 87% 89% 86% 89%

average 89% 89% 81% 88% 90% 89%

The button is missing, it should have interacted
with a component in the GUI, but the component
is not found.

Information is missing; part of the information
that should exist is missing.

GUI anomaly, where the GUI changes after
interaction, but the GUI interface is displayed
differently than it should be.

GUI display anomalies, where GUI display

anomalies such as buttons unresponsive or GUI

information abnormalities and missing

information appear most frequently in the

experiment. In addition, only a few exceptions

were found for the commercial application, which

may be related to the fact that it has been

adequately tested, while the open-source

application has more defects. No functional

anomalies were found for the commercial

application in the experiments, only application

crashes.

V. CONCLUSIONS

The experiments conducted in this study
validate the efficacy of the proposed semantic
model-driven automated testing approach. By
utilizing the domain semantic model as the core,
this approach enhances the reusability of the
testing model and introduces a new perspective on
mobile application testing. Furthermore, it
facilitates a completely non-invasive testing
approach, particularly in the robot vision
environment. To address the shortcomings of
current mobile application functional testing, a
semantic model-driven automated testing
approach is proposed. The paper investigates an
extended semantic model-driven automated
testing method, based on a domain model of
mobile applications. It first explores the states of

the tested application with the goal of achieving
maximum reachable states, thereby establishing
an extended semantic FSM-ES model.
Subseque-ntly, based on the domain model's
action flowchart, the FSM-ES model is extended
and mapped to a task subgraph with feasible paths
as the goal, aiming to cover application
functionality. This modeling of the tested
application is accomplished from two perspectives:
the GUI state reachability relationships (FSM-ES)
and feasible paths between GUI states (task
subgraph).Following this, by defining semantic
coverage-oriented testing criteria, the goal is to
achieve the broadest path coverage within the task
subgraph. This process generates test cases
targeting application functionality. Through
testing verification in various application domains
such as aviation services, among 13 discovered
defect categories totaling 34 defects, the test cases
generated by the semantic testing model achieved
defect detection rates of 70.6% in the robot's
visual environment and 82.4% in a simulated
environment. Moreover, the semantic
model-generated test cases were able to
simultaneously detect application crashes and
functional anomalies, supporting complex
automated testing of functionalities with strict
requirements for behavior sequences and test
inputs.

To address the shortcomings of current mobile
application functional testing, a semantic
model-driven automated testing approach is
proposed. The paper investigates an extended
semantic model-driven automated testing method,
based on a domain model of mobile applications.
It first explores the states of the tested application
with the goal of achieving maximum reachable
states, thereby establishing an extended semantic
FSM-ES model. Subsequently, based on the

International Journal of Advanced Network, Monitoring and Controls Volume 08, No.04, 2023

10

domain model's action flowchart, the FSM-ES
model is extended and mapped to a task subgraph
with feasible paths as the goal, aiming to cover
application functionality. This modeling of the
tested application is accomplished from two
perspectives: the GUI state reachability
relationships (FSM-ES) and feasible paths
between GUI states (task subgraph). Following
this, by defining semantic coverage-oriented
testing criteria, the goal is to achieve the broadest
path coverage within the task subgraph. This
process generates test cases targeting application
functionality. Through testing verification in
various application domains such as aviation
services, among 13 discovered defect categories
totaling 34 defects, the test cases generated by the
semantic testing model achieved defect detection
rates of 70.6% in the robot's visual environment
and 82.4% in a simulated environment. Moreover,
the semantic model-generated test cases were able
to simultaneously detect application crashes and
functional anomalies, supporting complex
automated testing of functionalities with strict
requirements for behavior sequences and test
inputs.

REFERENCES

[1] Tramontana P, Amalfitano D, Amatucci N, et al.
Automated functional testing of mobile applications: a
systematic mapping study [J]. Software Quality Journal,
2019, 27(1):149-201.

[2] Kong P, Li L, Gao J, et al. Automated testing of
android apps: A systematic literature review [J]. IEEE
Transactions on Reliability, 2018, 68(1): 45-66.

[3] Cruz L, Abreu R, Lo D. To the attention of mobile
software developers: guess what, test your app! [J].
Empirical Software Engineering, 2019, 24(4):
2438-2468.

[4] Wimalasooriya C, Licorish S A, da Costa D A, et al. A
systematic mapping study addressing the reliability of
mobile applications: The need to move beyond testing
reliability [J]. Journal of Systems and Software, 2022,
186: 111166.

[5] Al-Subaihin A A, Sarro F, Black S, et al. App store
effects on software engineering practices [J]. IEEE
Transactions on Software Engineering, 2019, 47(2):
300-319.

[6] Luo C, Goncalves J, Velloso E, et al. A survey of
context simulation for testing mobile context-aware
applications [J]. ACM Computing Surveys, 2020, 53(1):
1-39.

[7] Amalfitano D, Amatucci N, Memon A M, et al. A
general framework for comparing automatic testing
techniques of Android mobile apps [J]. Journal of
Systems and Software, 2017, 125(c): 322-343.

[8] Linares-Vásquez M, Bernal-Cárdenas C, Moran K, et al.
How do developers test android applications?[C]//2017
IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017:
613-622.

[9] Li N, Offutt J. Test oracle strategies for model-based
testing[J]. IEEE Transactions on Software Engineering,
2016, 43(4): 372-395.

[10] Banerjee I. Advances in model-based testing of
GUI-based software[M]//Advances in Computers.
Elsevier, 2017, 105: 45-78.

[11] Automator[EB/OL],
https://developer.android.com/training/testing/ui-autom
ator, 2020-3. Ngo C D, Pastore F, Briand L. Automated,
cost-effective, and update-driven app testing [J], ACM
Transactions onSoftware Engineering and Methodology,
2022, 31(4):1-51.

[12] Gu T, Sun C, Ma X, et al. Practical GUI testing of
Android applications via model abstraction and
refinement[C]//2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE,
2019: 269-280.

[13] Ghorbani N, Jabbarvand R, Salehnamadi N, et al.
DeltaDroid: Dynamic Delivery Testing in Android [J].
ACM Transactions on Software Engineering and
Methodology, 2022.

[14] Hasan H, Ladani B T, Zamani B. MEGDroid: A
model-driven event generation framework for dynamic
android malware analysis [J]. Information and Software
Technology, 2021, 135:106569.

[15] Pan M, Lu Y, Pei Y, et al. Effective testing of Android
apps using extended IFML models [J]. Journal of
Systems and Software, 2020, 159:110433.

[16] Perera A, Aleti A, Böhme M, et al. Defect prediction
guided search-based software testing[C]//2020 35th
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2020:448-460.

[17] Su T, Meng G, Chen Y, et al. Guided, stochastic
model-based GUI testing of Android apps
[C]//Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 2017:245-256.

[18] Zhong B, Wu H, Li H, et al. A scientometric analysis
and critical review of construction related ontology
research [J]. Automation in Construction, 2019,
101:17-31.

[19] Web Ontology Language (OWL)[EB/OL].
https://www.w3.org/OWL, 2012-12/2022-9.

[20] Li Y, Yang Z, Guo Y, et al. Humanoid: a deep
learning-based approach to automated black-box
Android app testing [C]//2019 34th IEEE/ACM
International Conference on Automated Software
Engineering (ASE). IEEE, 2019:1070-1073.

[21] Wu X, Sahoo D, Hoi S C H. Recent advances in deep
learning for object detection [J]. Neurocomputing, 2020,
396:39-64.

[22] Deka B, Huang Z, Franzen C, et al. Rico: A mobile app
dataset for building

[23] Data-driven design applications [C]//Proceedings of the
30th Annual ACM Symposium on User Interface
Software and Technology. 2017:845-854.

[24] Ioffe S, Szegedy C. Batch normalization: Accelerating
deep network training by reducing internal covariate
shift [C]//International conference on machine learning.
PMLR, 2015:448-456.

https://developer.android.com/training/testing/ui-automator,2020-3.Ngo
https://developer.android.com/training/testing/ui-automator,2020-3.Ngo

