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Abstract—Modeling the automated testing of mobile 

applications is a crucial aspect of mobile application 

automation testing. Due to the varied styles and complex 

interactions of mobile applications, automated modeling 

methods are urgently required, particularly in the 

context of their short development cycles, large numbers, 

and fast version iterations and updates. In this paper, we 

address the challenge of exploring mobile application 

behavior and state based on robotic testing environment 

without invading the application interior, and propose a 

method for automated exploration of GUI components 

and GUI events of applications combined with 

application domain knowledge to generate mobile 

application GUI semantic test models. Our results show 

that the proposed semantic model achieves 70.6% and 

82.4% defect detection rate in the robot vision 

environment and simulation environment, respectively. 

Compared with the comparative testing method that can 

only find application crash defects, our method can 

explore both crash defects and functional anomalies with 

the application semantic understanding and domain 

knowledge, thereby extending the automated mobile 

application functional testing capability of mobile 

applications. In response to the limitations of mobile 

application automated testing modeling mentioned 

above, this paper introduces an automated testing 

method based on semantic models. It uses the proposed 

semantic testing model to guide the purposeful 

exploration of the tested application's states. 

Subsequently, it generates positive and negative test 

cases based on the domain knowledge associated with 

the semantic model. This modeling approach leverages 

domain models in the mobile application field to conduct 

automated modeling tests imbued with functional 

significance, guided by domain knowledge. This 

optimization aims to address the shortcomings of 

current automated testing, particularly in terms of 

model reuse and test expansion. 

Keywords-Mobile Application; Semantic Testing Model; 

Automated Testing; Test Coverage 

I. INTRODUCTION 

With the gradual replacement of traditional 
desktop software by mobile applications as the 
mainstream software tools in people's daily work, 
study and life, the development of mobile 
applications introduces complex new features that 
make quality assurance more challenging 
compared to desktop software [1]-[8]. However, 
the growth in testing needs is in contrast to the 
limited availability of testing tools and testers. 
Currently, both industry and academia are 
increasingly emphasizing the adoption and 
exploration of automated testing techniques to 
address the testing needs of mobile applications 
[9]-[12]. 

Model-based automated testing is a widely 
studied testing method that involves constructing 
test models by mining the state and behavior of the 
application, and subsequently utilizing these 
models to generate test cases [13]. Model-based 
automated testing typically involves completing 
static modeling of mobile applications based on 
GUI and dynamic modeling based on behavior 
jumping, and describing mobile application 
behavior using inter-state relationship models such 
as Finite State Machine (FSM). For instance, GUI 
Ripper [14] facilitates automated exploration 
modeling of applications, while tools like UI 
Automator [15]-[16] are utilized to obtain the GUI 
tree of an application and target the selection of 
events to complete exploration modeling of mobile 
applications.  

Research on improvements related to model 
based automated testing: on the one hand, to 
achieve automatic evolution of the model, e.g., Gu 
et al [17] can find differences and quickly achieve 
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model evolution after application version update. 
DeltaDroid [18] builds a defect model that can 
generate new cases under different conditions 
based on existing test cases combined with actual 
GUI and system actions to detect dynamic 
installation defects in Android applications. On the 
other hand, the modeling is guided by enhanced 
application knowledge, e.g., MEGDroid [19] uses 
model abstraction and model-to-model migration 
methods to achieve accurate generation of 
application events; Pan et al [20]-[23] use manual 
construction of richer test models to guide 
automated testing. 

To overcome the limitations of mobile 
application automation test modeling mentioned 
above, this chapter proposes a semantic 
model-based automation test approach. This 
approach fuses the mobile application domain 
model to achieve a semantic matching association 
between mobile application GUI state and domain 
knowledge. This facilitates the automated 
generation of a mobile application GUI semantic 
test model, which is subsequently used to verify 
the testing effectiveness of the modeling method. 

II. MOBILE APPLICATION SEMANTIC TESTING 

MODEL 

When it comes to mobile application testing, a 
typical model-based approach involves modeling 
the relationship between mobile application GUI 
states and GUI events to establish a series of 
jumps triggered by events between different GUI 
states in the application. One example of such an 
approach is the finite state machine (FSM) model 
[24]. However, current model-based approaches 
for mobile application testing are limited to direct 
records of GUI states and GUI events. These 
models can only describe the jump-trigger 
relationship between different GUI states of the 
application, without understanding the functional 
meaning of the application. To overcome the 
aforementioned problems, this paper proposes a 
method that integrates semantic ontology models 
with traditional GUI testing models. This method 
involves building a semantic testing model for 
mobile applications by extracting semantic 
information from the GUI of mobile applications 

and attaching semantic concepts to GUI states and 
GUI events.  

Definition 1: A typical semantic definition of 
OWL, describing ontology with a formal 
definition of six tuples: 

  log , , , , ,R

Conto y C A R A H X  

Ac denotes the set of attributes of each concept, 
the set of concept attributes Ac(ci), each concept ci 

in the set of concepts C is used to represent a set of 
objects of the same kind and can be described by 
the same set of attributes. 

R denotes the set of relations between concepts, 
relation ri (cp,cq) that is, each relation ri in relation 
R represents a binary relation between concepts 
cp and cq, and an instance of this relation is a pair 
of concept objects (cp,cq). 

AR denotes the set of attributes of each relation, 
and the set of relation attributes AR(ri) is used to 
represent the attributes of relation ri. 

H represents a concept hierarchy, where it is a 
hierarchy of sets of concepts denoted as C. H also 
includes a set of parent-child relations that exist 
between the concepts in C. 

The set of axioms is represented as X, where 
each axiom within X serves as a constraint on the 
attribute values of a concept and its relation, or as 
a constraint on the relations between conceptual 
objects. 

Definition 2: The mobile application domain 
metamodel is defined as a 4-tuple

 , , ,OAPP C I R X . 

The set of mobile application ontology 
concepts is denoted by C and is composed of three 
subsets: entity, action, and task. Each subset 
contains a concept identifier, concept type, and 
semantic name. 

I represents a collection of instances of mobile 
application ontology concepts. These instances are 
concrete textual representations of mobile 
application component values that are recognized 
knowledge in the domain. For instance, examples 
of instances for the entity "place name" could 
include "Xi'an", "Beijing", and "Shanghai". These 
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instances can be used as the origin or destination 
in an air service application. 

R denotes the set of semantic relations of the 
mobile application, which contains the 
inter-concept relation Rcc and the concept-instance 
relation Rci . 

X is the constraint definition of the mobile 
application domain model, which encompasses 
inter-concept relationship constraints, constraints 
on concept attributes, instance data constraints, 
and more. For instance, one constraint could be 
that a task must consist of at least one entity and 
one action, and that the instance of the entity 
"place name" can only be described by text. 

Definition 3: The domain model action flow 

graph is defined as a 5-tuple,  , , , ,S fD A T F   . 

Action state set A: finite set of mobile 
application interaction actions. 

Action flow control set T: control set of mobile 
application action sequences. 

set of action flow relations F: set of relations 
from one action state to another action state. 

Initial states: as，af∈A . 

End state: af，af∈A . 

 1 2 3, , , , nA a a a a is the set of action states, 

which is the set of mobile application test 
interaction actions. Each action state is connected 
by the control flow T in series to form an action 
sequence. The action state set includes the initial 
state as , the end state af , the intermediate states 

 1,2,3, ,ma m n . 

 1 2 3, , , , nT t t t t is the action flow control 

set, which is the control set of  the mobile 
application test action sequence. 

 1 2 3, , , , nF f f f f ,    F A T T A   is the set 

of action relations describing the combination of 
action states and action flow controls. 

  ,Sa a A a t F   For the initial state only 

backward control flow t,   ,fa a A t a F   for the 

end state only forward control flow t,

    , ,ma a A a t F t a F     must have both 

forward and backward control flows. 

Definition 4: A component in a GUI that 
cannot be split is an atomic component. The basic 
components of a GUI in general are atomic 
components, such as text buttons (Button), text 
(Text View), images (Image View), etc. AC 
denotes the set of atomic components in a GUI,

ac AC  ,  , , , ,t v a s pac ac ac ac ac ac  , where: 

act denotes the component type of the atomic 
component ac. 

acv indicates the value of the atomic 
component ac, which is an optional attribute. 

aca indicates the possible actions of the atomic 
component ac, e.g. a button is usually bound to a 
click action. 

acs denotes the semantics of the atomic 
component ac. The semantic entity of acv is 
obtained by mapping acv to the domain model acs:

 v

e e Eac C C C  . 

Definition 5: A component composed of 
atomic components in a GUI is a semantic 
composite component, e.g., ListView, ToolBar, etc. 
CC denotes a collection of semantic composite 
components in a GUI, 

 , , , ,ac t a s pcc cc cc cc cc cc , where: 

ccac denotes the composition of the semantic 
composite component cc, i.e., which atomic 
components the semantic composite component 
cc is composed of, ccac is the set of atomic 

components, accc AC . 

The component type of a semantic composite 
component is denoted by cct, and this attribute is 
optional. It's possible that there may not be a 
corresponding GUI component type for the 
semantic composite component. 

The semantics of the semantic composite 
component cc is represented by λccs, which is 
determined by the relationship in the domain 
model where the semantics of the constituent 
atomic components reside. This can be denoted 

∧acs→ccs. It should be noted that despite being a 

composite component, the semantics of cc still 
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corresponds to the entities present in the domain 
model. 

 

Definition 6: The extended semantic FSM 
model, FSM-ES, is an extension of the typical 
FSM model that uses the 5-tuple setting. However, 
it introduces a semantic extension to the 
expression of the state-hopping relationship:

 0, , , ,FSM ES S S F   . 

The infinite non-empty state set of the GUI is 
denoted as S, which encompasses all possible 

states of the application being tested. For ∀s∈S, 

 , , Ss AC CC S , where AC represents the GUI 

atomic component, CC represents the GUI 
semantic composite component, and SS denotes 
the semantics of the GUI state that is being 
represented by the GUI component. 

δ is the state transfer function that maps S × Σ 

to the transition function of S δ:S × ∑→S. ∀s ∈ 

S, ∀e ∈ ∑. 

The notation δ (s, e) refers to the set of states 
that can be accessed by transitioning from the 
GUI state s through event e. 

III. A MODEL-BASED APPROACH TO MOBILE 

APPLICATION TESTING 

We propose a semantic model-based mobile 
application testing method, which consists of two 
parts: visual semantic model-driven GUI 
modeling and task subgraph-based test case 
generation.  

In the realm of semantic model-driven 
automated test modeling, the following critical 
modules are present: 

A. FSM-ES model building 

The process of semantic model-driven GUI 
modeling is illustrated in Algorithm 1, which 
takes the mobile application domain model 
(ADM), the generic model (GDM), and the 
application under test (AUT) as inputs and 
produces the FSM-ES model of the application 
under test as outputs. The following pseudo code 
outlines this process: 

Algorithm 1  
Input. Application under test AUT, application 
domain model ADM, generic model GDM 
Output. Application test model FSM-ES 

1.  while  true  do 
2.   Get the current GUI gui_current of the 
application under test 
3.  Perform visual recognition of GUI 
component elements on gui_current to get GUI 
component information gui_info 
4.    Match the gui_info of the current GUI with 
the ADM for semantic similarity to get the vector 
gui_vc  

5.    gui_action inferAction(gui_vector) 

6.    Get the response interface vector gui_vr 

7.   if gui_vc differs from gui_vr then 

8.     mark gui_a in gui_action as executed 

9. Generate a path to "gui_vc, gui_a, gui_vr" f 

10.    if path f does not exist in fsm_es then 

11. Path f is added to fsm_es 

12.    end if 

13.  else 

14.    Logging exceptions 

15.  end if 

16.  if there is no unexecuted action in 
gui_action or the exploration timeout  then 

17.       break 

18.    end if 

19. end while 

20. return  

21.  

22. function inferAction(gui_vector) 

23.   for each gui state in ADM do 

24.     if gui state == gui_vector then 

25.       Reasoning generates gui actions in the 
domain corresponding to the gui state and saves 
them to gui_action 
26.     else 

26.        Generate executable actions for the 
interface based on GDM probabilities and save 
them to gui_action 
28.     end if 

29.   end for 

30.   return gui_action 

31. end function 

The primary objective of the FSM-ES model is 
to explore the attainable states of the application 
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and associate each state with the task ontology 
outlined by the domain model. The structure of 
the FSM-ES model is depicted in TABLE I. 
FSM-ES semantic structure of music playback application 
Cathay Pacific 

Area Mssion State Collection Action Semantic Set 

Music 

playback 

Register 
{S0,S1,S2,S3,S4,Sl2

} 

{select login, agree to the 
agreement, enter the username, 

enter the password, and click 

1ogin} 

Basin 

information 
{S5,S6,S7,S8,S9} 

{Recently played, locally 
downloaded personal cloud 

drive, friend 1ist, favorite 

play1ist} 

Discovering 
Music 

{S10,S11,S12} 
{Dai1y recommendation, click 

1ike, c1ick play} 

Search 

Services 
{S13,S14,S15,S16} 

{Click to type, c1ick to search, 
clear search,1isten to music and 

recognize music} 

Persoral 
Settings 

{S17,S18,S19,S20,S2

1,S22,S23} 

{Message center, personal 

privacy, personalized services, 
advanced settings, about, 1og 

out, switch accounts} 

B. Task Subgraph Generation 

The FSM-ES model is utilized to map to the 
action flow diagram of the application domain 
model, which generates task subgraphs for the 
functional tasks of the application to produce test 
cases.  

If every action concept in the task concept, as 
defined in the FSM-ES model, corresponds to an 
action state found in an AFG in the domain, then 
the task concept is deemed to comply with a 
specific action flow graph (AFG). The following 
pseudo code outlines this process: 

Algorithm 2  

Input.  Application Semantic Model FSM-ES,  
Domain Model Action Flow Graph AFG 

Output.  Task subgraph TFG 

1. for each task in the semantic model  do 

2.  for each task task in each path f do 

 
4.    if task_path has a serial relationship  
5.      with TFG then  
5.      Generate TFG by storing task_ 
6.      path in sequence 

6.    else 

7.      return exception and interrupt location  

8.      break 

9.    end if 

10. end for 

11.end for   

12.return TFG 

13.function generatePath(task, AFG) 

14.  if task contains the action state and AFG 
meets rule 2 then 
15.   Generate a feasible action flow based on 
AFG inference action 
16.   task_path sets the continuity flag 

17.  else 

18.   task_path sets the end flag 

19.  end if 

20.  return task_path 

21. end function 

 

As observed, the domain knowledge 
incorporated in the action flow diagram can be 
leveraged to supplement the unexplored inter-state 
action behavior, thereby generating test judgment 
criteria for mobile applications. 

 

Figure 1.  Task states explored by FSM-ES 

 

Figure 2.  Task Subgraph of Domain Action Flowchart 

Upon examining the actual GUI of NetEase 
cloud music's search song task in (f), it becomes 
apparent that while the FSM-ES has explored the 
GUI states, it has failed to account for the iterative 
behaviors of keying and deleting in S13 state and 
S15 state. This is because the FSM-ES prioritizes 
state exploration over other factors. However, by 
extending the corresponding action flow diagram 
definition in the domain ontology library based on 
domain knowledge, a pathway can be generated, 
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and this domain knowledge can be effectively 
applied to GUI modeling. 

The process of generating task subgraphs from 
FSM-ES is essentially the instantiation of the 
mobile application domain model on the 
application under test. This transforms the abstract 
concept relationships of the mobile application 
domain model into a concrete sequence of 
application action behaviors, making the mobile 
application testable for execution. 

C. Test case generation based on task subgraph 

Test case generation comprises two main 
components: test sequence generation and test 
data generation. Test sequences are generated by 
defining semantics-oriented test coverage criteria 
to guide the traversal of task subgraphs.  

Coverage decision rule 1: Existence decision 
c(A, B), i.e., if the element in A exists in B, the 
coverage decision is satisfied. 

Coverage decision rule 2: Sequential decision 
s(A, B), i.e., if the elements in A are sequential 
and conform to the sequential arrangement in B, 
the coverage decision is satisfied. 

Coverage rule 3: Key point decision d (A, B), 
i.e., if there is an element in A that matches the 
key element in B, then the coverage decision is 
satisfied. 

Definition a: Semantic concept entity coverage 
criteria 

The set of test cases ensures coverage of both 
the conceptual entities present in the application 
domain model being tested and all GUI states 
formed by these entities.  

    , ,A A G GEntityCoverage c F O s T F   

Where: 

c(FA , OA ) — the coverage of the conceptual 

entity FA involved in the FSM-ES model of the 
application under test with the entity OA included 
in the domain model. 

s(TG , FG ) — the coverage of all GUI states 
involved in the test case set with the GUI states 

contained in the FSM-ES model of the application 
under test. 

 

Figure 3.  Login Action Test Case 

Definition b: Semantic concept action 
coverage criteria 

Test cases satisfy the coverage of actions 
involved in the action flow diagram of the 
application domain model being tested. Action 
coverage is evaluated independently for each 
action flow diagram. The coverage of semantic 
concept actions is calculated using the equation 
(3). 


 

1

M

m mm
c S D

ActionCoverage
M





  

M—M is the number of task subgraphs 
included in the FSM-ES model of the application 
under test, and the action sequence coverage 
within a subtask is calculated for each task 
subgraph. 

 m mc S D —The set of action sequences 

involved in the set of test cases of the subtask Sm 
and the coverage of feasible action sequences 
contained in the activity diagram of the subtaskv 
Dm. 

Definition c: Semantic concept task coverage 
criteria  

Test cases fulfill the coverage requirements of 
the subgraph of the task being tested, effectively 
covering all relationships between GUI states. The 
evaluation of coverage for semantic concept tasks 
is calculated using the equation presented in (4). 
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
 , Dd X X

TaskCoverage
M

  

X — the number of application subtasks 
covered by the test case set 

XD — the number of tasks defined in the 
domain model 

The coverage of semantic concept tasks, which 
focuses on the application's functional 
completeness, is calculated by assessing the 
coverage of tasks in the domain model using the 
test case set. The number of subtasks covered by 
the test case set is represented by X, and subtask 
coverage is assessed using the d-judgment rule. 
Specifically, if a test case can cover any pathway 
from the initial state to the end state of a task 
subgraph, it is deemed as covered and assigned a 
value of 1. Conversely, if there is no pathway 
from the initial state to the end state of the task 
subgraph, it is regarded as not covered and 
assigned a value of 0.  

Cov EntityCov Action TaskCov         (5) 

Where, α、β、γ correspond to the adjustable 

parameter weights of the three coverage criteria. 

a. To generate test cases based on task 
subgraphs, it is necessary to cover as many 
feasible paths as possible to achieve high test case 
coverage and optimize testing effectiveness.  

Algorithm 3 

Input.  Task subgraph TFG of the application 
under test 

Output. Test case sequence TCi, i=1,2,3,4,...... 

1. while there is an untraversed path in tfg do 

2.   node← getStartNode(tfg)  
3.   Create a new sequence TCi with node 

number i at the beginning 
4.  while node is not the end node with degree 

0 do  

5.    if node has not been traversed then 
6.      p← generatePath(node, tfg) //generate 

test behavior path 

7.      Add the node and events from p to TCi 
8.      Set the corresponding path in tfg to 

traversed state 

9.    else 

10.      p ← generatePath(node, tfg) //generate 
test behavior paths 

11.   end if 

12.   node ← p.nodef 

13.  end while 

14.  i++ 

15.  end while 

16. return TC 

17.               

18. function generatePath(node, tfg) 
19.  if node has a unique neighboring node and 
an untraversed path then 

20.    Generate this unique path with the node p 
21.  else if n ode does not have the same degree 
of adjacency then 
22.    Generate a path with the node that has the 
highest degree p 
23.    else if node has a path that has not been 
traversed then 

24.    Generate p from this untraversed path 
25. else if node has multiple untraversed paths 

then 
26.     if node's neighboring nodes have 
traversed nodes then 
27.         Generate a path p between the node 

and its traversed neighbors 

28.    else 
29.        Generate a path from the node to a 

random neighbor node p 

30.    end if 

31.  else 
32.    Generate a path p between the node and 

any of the next nodes  

33.  end if 
34.  return p← <beginning node nodes, event e, 

ending node nodef> 

35. end function 

For a given task subgraph TSG: 

(i) If there exists a unique pathway of the 
current node with only one neighboring node, the 
pathway between the current node and that 
neighboring node is generated as the next test 
behavior path. 

(ii) If the current node has multiple 
neighboring nodes with different out degrees, the 
pathway of the current node and the neighboring 
node with the highest out degree will be generated 
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as the next test behavior path. 

(iii)  If there are multiple neighboring nodes 
at the current node and there is an untraversed 
path between the current node and one of the 
neighboring nodes, the untraversed path will be 
generated as the next test behavior path. 

(iv) If the current node has multiple 
neighboring nodes and there are multiple 
untraversed paths between it and the neighboring 
nodes, the path of the current node with the 
traversed neighboring nodes will be generated as 
the next test behavior path. If there are no 
traversed neighboring nodes, the path of a random 
neighboring node will be generated as the next 
test behavior path. 

IV. EXPERIMENTATION AND ANALYSIS 

When selecting applications for testing, those 
with similar functions are grouped together as 
domain applications, such as airline service 
applications, file management applications, news 
applications, and so on. To establish the domain 
models, two teams, each consisting of five lab 
personnel, were invited to create two domain 
models based on the definition of domain models. 
These models were cross-checked for accuracy 
and consistency.  

A. Evaluation criteria 

Test effectiveness is evaluated at three levels (1) 
the success rate of test action execution, which 
determines whether the actions in the test script 
can be executed without error; (2) the success rate 
of test script execution, which determines whether 
the test script can be executed in its entirety 

without encountering any errors; and (3) the 
success rate of defect discovery, which evaluates 
whether known defects in the application set can 
be identified. 

B. Experimental Setup 

Upon completion of the exploration of the 
application under test and subsequent building of 
the semantic test model, the coverage of the 
semantic test model with respect to the domain 
model is determined by analyzing the successful 
matching of the application state and the domain 
model as recorded by the exploration algorithm. 
The coverage results of the FSM-ES models 
created for each domain tested application, along 
with the corresponding domain model, are 
presented in TABLE Ⅱ. The table indicates that 
the average coverage of entity concept is 89%, 
while the average coverage of action concept is 
also 89%. The average coverage of task concept is 
81%. It is true that the non-intrusive environment 
may have some impact on the modeling process, 
particularly with regard to factors such as GUI 
recognition accuracy.  

Application crash defects: 

ActivityNotFoundException, Activity not 
found exception. 

IllegalArgumentException, illegal parameter 
exception. 

IllegalStateException, illegal state exception. 

NullPointer Exception, null pointer exception. 

 

 

TABLE I.  DISTRIBUTION OF DEFECTS DISCOVERED BY VARIOUS METHODS 

Error type Defect type found 
Semantic Modeling in Robot 

Vision Environment 

Semantic modeling in a 

simulated environment 
Humanoid Stoat 

Application crash defects 

ActivityNotFoundException 1 1 3 2 

lllegalArgumentException 3 2 1 1 

lllegalState Exception 3 2 2 2 

NullPointer Exception 4 3 2 0 

OutOfMemoryError 2 2 1 2 

amount 13 10 9 7 
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TABLE II.  DEFECT DISCOVERY RESULTS FOR EACH APPLICATION 

APP 
Semantic Modeling in Robot Vision Environment Semantic modeling in a simulated environment 

Entity Coverage Action Coverage Task Coverage Entity Coverage Action Coverage Task Coverage 

Apple Music 84% 82% 87% 84% 82% 89% 

QQ Music 83% 89% 85% 86% 89% 83% 

Music 88% 87% 92% 89% 90% 85% 

TunePro Music 93% 92% 93% 93% 92% 93% 

Shazam 92% 89% 91% 91% 91% 92% 

Spotify 90% 90% 93% 92% 89% 91% 

ES File Explorer 89% 87% 87% 89% 86% 89% 

average 89% 89% 81% 88% 90% 89% 

The button is missing, it should have interacted 
with a component in the GUI, but the component 
is not found. 

Information is missing; part of the information 
that should exist is missing. 

GUI anomaly, where the GUI changes after 
interaction, but the GUI interface is displayed 
differently than it should be. 

GUI display anomalies, where GUI display 

anomalies such as buttons unresponsive or GUI 

information abnormalities and missing 

information appear most frequently in the 

experiment. In addition, only a few exceptions 

were found for the commercial application, which 

may be related to the fact that it has been 

adequately tested, while the open-source 

application has more defects. No functional 

anomalies were found for the commercial 

application in the experiments, only application 

crashes. 

V. CONCLUSIONS 

The experiments conducted in this study 
validate the efficacy of the proposed semantic 
model-driven automated testing approach. By 
utilizing the domain semantic model as the core, 
this approach enhances the reusability of the 
testing model and introduces a new perspective on 
mobile application testing. Furthermore, it 
facilitates a completely non-invasive testing 
approach, particularly in the robot vision 
environment. To address the shortcomings of 
current mobile application functional testing, a 
semantic model-driven automated testing 
approach is proposed. The paper investigates an 
extended semantic model-driven automated 
testing method, based on a domain model of 
mobile applications. It first explores the states of 

the tested application with the goal of achieving 
maximum reachable states, thereby establishing 
an extended semantic FSM-ES model. 
Subseque-ntly, based on the domain model's 
action flowchart, the FSM-ES model is extended 
and mapped to a task subgraph with feasible paths 
as the goal, aiming to cover application 
functionality. This modeling of the tested 
application is accomplished from two perspectives: 
the GUI state reachability relationships (FSM-ES) 
and feasible paths between GUI states (task 
subgraph).Following this, by defining semantic 
coverage-oriented testing criteria, the goal is to 
achieve the broadest path coverage within the task 
subgraph. This process generates test cases 
targeting application functionality. Through 
testing verification in various application domains 
such as aviation services, among 13 discovered 
defect categories totaling 34 defects, the test cases 
generated by the semantic testing model achieved 
defect detection rates of 70.6% in the robot's 
visual environment and 82.4% in a simulated 
environment. Moreover, the semantic 
model-generated test cases were able to 
simultaneously detect application crashes and 
functional anomalies, supporting complex 
automated testing of functionalities with strict 
requirements for behavior sequences and test 
inputs. 

To address the shortcomings of current mobile 
application functional testing, a semantic 
model-driven automated testing approach is 
proposed. The paper investigates an extended 
semantic model-driven automated testing method, 
based on a domain model of mobile applications. 
It first explores the states of the tested application 
with the goal of achieving maximum reachable 
states, thereby establishing an extended semantic 
FSM-ES model. Subsequently, based on the 
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domain model's action flowchart, the FSM-ES 
model is extended and mapped to a task subgraph 
with feasible paths as the goal, aiming to cover 
application functionality. This modeling of the 
tested application is accomplished from two 
perspectives: the GUI state reachability 
relationships (FSM-ES) and feasible paths 
between GUI states (task subgraph). Following 
this, by defining semantic coverage-oriented 
testing criteria, the goal is to achieve the broadest 
path coverage within the task subgraph. This 
process generates test cases targeting application 
functionality. Through testing verification in 
various application domains such as aviation 
services, among 13 discovered defect categories 
totaling 34 defects, the test cases generated by the 
semantic testing model achieved defect detection 
rates of 70.6% in the robot's visual environment 
and 82.4% in a simulated environment. Moreover, 
the semantic model-generated test cases were able 
to simultaneously detect application crashes and 
functional anomalies, supporting complex 
automated testing of functionalities with strict 
requirements for behavior sequences and test 
inputs. 
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