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Abstract—Path planning is one of the very important 

aspects of UAV navigation control, which refers to the 

UAV searching for an optimal or near-optimal route 

from the starting point to the end point according to the 

performance indexes such as time, distance, et al. The 

path planning problem has a long history and has more 

abundant algorithms. The path planning problem has a 

long history and a rich set of algorithms, but most of the 

current algorithms require a known environment, 

however, in most cases, the environment model is 

difficult to describe and obtain, and the algorithms 

perform less satisfactorily. To address the above 

problems, this paper proposes a UAV path planning 

method based on deep reinforcement learning algorithm. 

Based on the OpenAI-GYM architecture, a 3D map 

environment model is constructed, with the map grid as 

the state set and 26 actions as the action set, which does 

not need an environment model and relies on its own 

interaction with the environment to complete the path 

planning task. The algorithm is based on stochastic 

process theory, modeling the path planning problem as a 

Markov Decision Process (MDP), fitting the UAV path 

planning decision function and state-action function, and 

designing the DQN algorithm model according to the 

state space, action space and network structure. The 

algorithm enables the intelligences to carry out strategy 

iteration efficiently. Through simulation, the DQN 

algorithm is verified to avoid obstacles and complete the 

path planning task in only about 160 rounds, which 

validates the effectiveness of the proposed path planning 

algorithm. 

Keywords-Component; UAV; Path Planning; DQN; 

Deep Reinforcement Learning 

I. INTRODUCTION 

In recent years, unmanned aerial vehicles 
(UAVs) have been used in a wide variety of fields 
and nowadays, UAVs are always used to collect 

data for humans in dangerous places. Quadrotor 
UAVs, as a type of UAV, have a wide range of 
applications (due to their hovering capabilities and 
low condition takeoff and landing capabilities) 
such as search and rescue, aerial photography, 
environmental monitoring, industrial inspection, et 
al [1]. Regardless of the mission, autonomous path 
planning is always the key to accomplish the task. 

Traditional path planning methods are 
relatively mature, such as Dijkstra's method, A* 
algorithm, D* algorithm, and artificial potential 
field method, et al [2]. These methods have been 
widely used in some scenarios, but as the 
difficulty of the task to be performed increases, 
especially in unknown environments, the path 
planning problem becomes more complex and 
increases the uncertainty, from the existing path 
planning methods, each method has its own 
advantages and shortcomings, and none of them 
has the ability to learn, and also does not have the 
ability to cope with the changes in the 
environment and the uncertainty. 

In recent years, artificial intelligence and 
machine learning (ML) have been widely used in 
the field of robotics, and reinforcement learning 
(RL) is even more with the improvement of 
algorithms and theories, with the ability to apply 
its latest theoretical achievements to the actual 
control of robotic systems. Based on the 
theoretical foundation of reinforcement learning, 
this paper proposes a deep reinforcement learning 
(DRL)-based UAV path planning method different 
from the traditional method, which can make the 
UAV obtain human-like learning ability, and in 
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the task with high difficulty coefficient, unknown 
environment, complex and uncertain factors, it can 
cope with unexpected situations and complex 
terrain to a considerable extent and complete the 
task. A 3D map environment model is constructed 
based on the OpenAI-GYM architecture, with the 
map grid as the state set and 26 actions as the 
action set, which does not need an environment 
model and relies on its own interaction with the 
environment to accomplish the path planning task. 
The algorithm is based on stochastic process 
theory, modeling the path planning problem as a 
MDP, fitting the UAV path planning decision 
function and state-action function, and designing a 
DQN algorithm model based on the state space, 
action space and network structure. The algorithm 
enables the intelligences to carry out strategy 
iteration efficiently. Simulation experiments 
demonstrate that the DQN algorithm can avoid 
obstacles and realize the path planning task in only 
a small number of rounds, proving the 
effectiveness of the proposed algorithm.  

II. RELATED WORKS 

The path planning problem has a long history, 
and scholars at home and abroad have made a 
large number of research results. Path planning is 
one of the very important aspects of UAV 
navigation control, which means that the UAV 
searches for an optimal or near-optimal route from 
the starting point to the end point according to 
time, distance, and other performance metrics. Its 
essence can be treated as a conditional 
optimization problem, and the optimization index 
will be different in the face of different demands. 
For different task requirements, scholars have 
proposed a large number of methods from 
different angles and different fields. 

Traditional path planning methods are 
relatively mature and have been widely used, with 
the continuous completion of reinforcement 
learning theory and the vigorous development of 
methods, many traditional problems can be solved 
under the framework of reinforcement learning, 
and the path planning problem is one of them [3]. 
RL, as an important research direction in the areas 
of ML, optimizes action strategies based on the 
interaction between an intelligent body and its 

environment, and scholars have been paying more 
and more attention to this direction in recent years. 
Different from traditional methods, reinforcement 
learning enables agents to learn optimal strategies 
autonomously and maximize cumulative rewards 
through trial-and-error interactions with the 
environment [4]. As for deep reinforcement 
learning, which is the use of deep neural networks 
to solve the problem model of reinforcement 
learning, the integration of the two techniques can 
solve the problems of high storage capacity 
requirements for high-dimensional state and action 
space and complex model training, which were 
difficult to deal with in the past. Deep 
reinforcement learning is a technique that 
empowers intelligences to learn by themselves, so 
this method is very suitable for tackling the path 
planning problem of UAVs. 

In terms of solving the path planning problem, 
Faust et al [5] used preference estimation to realize 
the path planning of robots in moving obstacle 
environments while solving the "dimensional 
catastrophe" problem, and Jaradat et al [6] 
proposed a new method to define the state space 
based on the Q-learning algorithm to reduce the 
number of states in dynamic environments, which 
effectively reduces the number of dimensions of 
Q-tables and improves the system learning 
efficiency. Method to reduce the number of states 
in a dynamic environment, which effectively 
reduces the dimension of the Q-table, accelerates 
the convergence speed, and improves the learning 
efficiency of the system. Shammah et al [7] 
combined deep learning with reinforcement 
learning methods and applied the policy gradient 
method, which successfully solved the path 
planning problem in automated driving, and 
improved the efficiency of the path planning 
problem. Wang et al [8] combined the Q-learning 
algorithm with Sarsa's algorithm and proposed a 
reverse Q-learning algorithm, which can improve 
the convergence speed and learning efficiency of 
the system. Bianchi et al [9] proposed an 
accelerated Q-learning algorithm based on a 
heuristic strategy, i.e., a heuristic function is used 
to help decision-making during action selection, 
and experiments show that a simple heuristic 
function can improve the convergence speed and 



International Journal of Advanced Network, Monitoring and Controls      Volume 08, No.03, 2023 

83 

computational overhead of the reinforcement 
learning algorithm. 

III. RELATED THEORETICAL STUDIES 

A. Definition of path planning 

Trajectory planning is one of the very important 
technical aspects of UAV navigation control. It is 
a trajectory from the start point to the end point 
that can avoid obstacles and is short enough based 
on the map environment information within the 
mission area and satisfies the aircraft's own 
physical performance constraints [10]. 

There are two methods for UAVs to perform 
path planning. The first is pre-flight planning; this 
method also needs to scan the surrounding 
environment and establish the initial model in 
advance when considering the mission target point, 
and to fully consider the impact of factors such as 
surrounding obstacles and weather on the 
trajectory. The second is real-time planning of the 
flight path. When using this method for planning, 
although there are fewer integrated factors to 
consider, satisfying the real-time nature of the path, 
it is necessary for the aircraft load to have a 
powerful chip to process the surrounding 
environment and update the path at any time. 
Therefore it will greatly increase the cost of flight 
cost. In this paper, the first UAV trajectory design 
method using pre-flight planning is chosen. At 
present, the theoretical technology about the 
trajectory planning in the two-dimensional plane is 
relatively mature and there are many related 
literature, but many of these algorithms degree 
cannot meet the requirements of three-dimensional 
space and do not have the actual flight. Because 
path planning in three-dimensional space is closer 
to real-life applications, the problem will definitely 
become a focus of research in the future, but when 
the space is expanded to three-dimensional space, 
it is necessary to consider not only the theoretical 
planning algorithm of the trajectory, but also 
involves GPS, sensor technology, et al. The 
requirements for path planning for UAVs are as 
follows: 

 Flight paths that achieve mission 
requirements.  

 The trajectory is a continuous curve or line 
from the starting point of the aircraft to the 
target point. 

 Try to ensure that the path of the UAV is 
optimal, that is, to achieve the purpose of 
the algorithm to plan the path with the least 
amount of time or the shortest designed 
path. 

B. Markov Decision Process 

In DRL, the main core still lies in the 
foundation of RL, through the ability of deep 
learning to extract features and complex mapping 
of functions, some pain points in reinforcement 
learning will be solved. In reinforcement learning, 
it is mainly expected that an intelligence learns a 
behavioral strategy and is able to output a behavior 
corresponding to the current environmental 
information: 

 ( )a s  (1) 

Where 𝑎 is the action and s is the state of the 
intelligent body in the environment. Depending on 
the environment, the actions and states may be 
discrete or continuous. 

The problem of reinforcement learning can be 
modeled as a MDP, which is characterized by a 
system in which the state at the next moment is 
related to the current state only and is independent 
of the previous state, and by a MDP in which the 
state at the next moment is determined by the 
current state and the action at the current moment. 
The MDP can be defined by a five-
tuple , , , ,S A R P   . The tuple , , , ,S A R P    

consists of the set of states S, the set of actions A, 
the reward function ( , )R s a , the transfer 

function ( | , )P s s a , and the discount 

factor [0,1]  . In each state s S , the 

intelligence takes an action a A . After 
performing the action 𝑎 in the environment, the 
intelligence receives the reward ( , )R s a  and 

arrives at the new state s , determined by the 
probability distribution ( | , )P s s a  [11]. 

Solutions to dynamic programming problems 
with finite states and action spaces can be obtained 
by a variety of methods, especially with a given 
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transfer probability. However, in most MDPs, 
transfer probabilities or reward functions are not 
available. In this case, the intelligence needs to 
interact with the environment to obtain some 
internal information to solve the MDP, which is 
achieved by reinforcement learning methods. The 
core problem to be solved by the Markov decision 
process is the strategy of choosing an action, 
which is mathematically represented using the   
function as follows: 

    0 0t ta s P a a s s     (2) 

C. Reinforcement learning algorithms 

RL, also known as augmented learning, is a 
branch of ML [12]. The method differs from the 
common supervised learning and from 
unsupervised learning. RL is trained without 
explicit supervised data, i.e., the environment does 
not give explicit feedback that the action made by 
the intelligence at the current moment must be 
correct or incorrect; the environment simply helps 
the intelligence to learn by giving it a reward 
signal. Alternatively, instead of directly 
determining whether a state or action is good or 
bad, the environment assists the learning by giving 
a reward for a state or action. In the case of Go, for 
example, the current move is not directly judged 
as a correct or incorrect move, but a reward 
feedback is generated at the end of the whole 
game [13]. 

While the training data used in the traditional 
supervised and unsupervised learning training 
process are independent of each other, in RL the 
data are time-series related. The state generated by 
an intelligent body at each interaction with the 
environment influences the next move and the 
subsequent state. 

RL is based on the principle that if an action 
taken by an intelligence in a state returns a positive 
reward to the environment, the tendency of the 
intelligence to take that action in that state will 
increase in the future. The basic model of RL, 
which views learning as a process in which an 
intelligence explores the learning environment, is 
shown in Figure 1. In RL, the intelligence selects 
an action a based on the current policy and passes 
it to the environment by observing the 

environment at the current moment, and the new 
state is generated based on the state transfer matrix 
after the action is executed in the environment. At 
the same time, the environment also transmits a 
reward signal r to the intelligent body, which 
adjusts its strategy by using the reward signal r to 
generate the next action according to its strategy 
and the current state of the environment [14].  

 

Figure 1.  Reinforcement learning model 

Reward r, is a scalar quantity that reflects the 
performance of the action produced by the 
intelligence in the environment performance in the 
environment, and the aim of the intelligence is to 
maximize the cumulative reward. RL is based on 
this hypothesis: the goal of all the goal of all 
problems can be expressed as maximizing the 
cumulative reward. 

The intelligence and the environment, the RL 
problem can be described from both the 
perspective of the intelligence and the 
environment. At moment t, the perspective of the 

intelligent body is that it observes the state ts  of 

the environment, needs to make an action ta  at 

based on this state, and gets a reward signal tr  

returned by the environment after executing this 
action in the environment. The perspective of the 

environment is that it receives the action ta  of the 

intelligent body to update the environment 
information, generates a new state, and gives a 

reward signal tr  back to the intelligent body. 

State s, which can be divided into environment 
state, intelligences state, and information state. 
The environment state, which is the detailed 
description of the environment, including the data 
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of the next observation needed by the intelligence 

and the data of the reward signal 
tr  generated, et 

al., is usually not fully visible to the intelligence, 
that is, the intelligence sometimes does not know 
all the detailed data of the environment state, and 
even if sometimes the environment state is fully 
visible to the individual, these data may contain 
some data that are not needed by the intelligence. 
The intelligences state, which is the internal 
structure and parameters of the intelligence, 
includes all the data that the intelligence uses to 
determine future actions, such as network 
parameters, policy information, et al. The 
information state is all the useful data in the 
history, also known as Markov state. 

From the above description it is shown that the 
state space S, action space A, the reward function 
R and the state transfer probability matrix P need 
to be designed in the RL algorithm. The state 
space is a characterization of the environment 
other than the intelligent body and is the basis of 
information provided to the intelligent body for 
selecting actions. The action space describes the 
decision details of the intelligent body. The reward 
function is the benefit of performing an action in a 
certain state, which is the evaluation of the 
goodness of the performed action, and is the most 
central part of RL. A good reward function often 
helps RL algorithms converge quickly and achieve 
good results and learn the best strategies. 

D. Deep Reinforcement Learning 

Deep reinforcement learning (DRL) was 
proposed because RL deals with problems with 
small sample spaces and discrete actions, while it 
does not work well for the kind of problems with 
huge state spaces and continuous actions [15]. 
Therefore, it is difficult to find good strategies in 
large state spaces using RL. DRL introduces 
neural networks in deep learning based on RL, 
combining both the technique of giving rewards 
based on actions in RL and the idea of using 
neural networks to learn feature representations by 
processing some high-dimensional state data 
through neural networks, training deep neural 
networks and learning the underlying features of 
the input data to approximate any nonlinear 
function. Its powerful representation capability 

allows another breakthrough in the integration of 
RL with deep neural networks. 

The basic model of DRL is shown in Figure 2. 

 
Figure 2.  Basic model of deep reinforcement learning 

IV. METHODS AND MATERIAL 

The DQN algorithm is based on deep learning 
and Q-learning algorithms, i.e., it combines the 
advantages of both the feature-awareness 
capability of deep learning and the trial-and-error-
learning capability of Q-learning algorithms. 
Based on the Q-learning algorithm, in order to 
overcome the shortcomings of using Q-tables that 
occupy a large amount of space and the 
inefficiency of updating in a high-dimensional 
state space, DQN is able to compute the action 

value function  ,Q s a  in a huge state and action 

space, and the DQN algorithm uses  , ,Q s a   to 

approximate the optimal action value function as 
follows: 

    , , ,Q s a Q s a   (3) 

Where  , ,Q s a   is a deep neural network 

(DNN) with parameters  , called Q-network. 

When using the temporal difference (TD) 

method,  , ,Q s a   is used to approximate 

 max , ,
a

E r Q s a 


 
 

  , and in the DQN 

algorithm, the set of loss functions of Eq. (4) is 
used as the optimization objective of the current 
network, and the gradient descent method is used 
to solve for its weights  . 
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   
2

( ) max , , ( , , )
a

L E r Q s a Q s a   


 
   





  (4) 

However, the current Q value and the target Q 
value in Eq. (5) both use parameters of the same 
shape   and are updated simultaneously, making 
the model training unstable and difficult to 
converge. To solve this situation, the DQN 
algorithm uses the old network parameter    to 
evaluate the state Q value at the next time step, 
and updates the parameter    every certain time 
step, providing a clearer reference target to the 
current Q network to be fitted in this way, and 
adjusting the optimization target to that shown in 
Equation (5). 

   
2

( ) max , , ( , , )
a

L E r Q s a Q s a   


 
   





  (5) 

Therefore, the DQN algorithm contains two 
neural networks. As shown in Figure 3, the current 

network  , ,Q s a   is used to evaluate the value 

function of the current state and action, and the 

target network  ,Q s a  is used to compute the 

temporal difference target. The algorithm updates 
the parameters   for N rounds and then replicates 
them directly to   . 

Agent

eval network 

parameter: θ

target network 

parameter: θ´

Loss Fuction

N = (st, at, rt, st+1)

Experience 

replay 

memory

Environment

Q_eval(s,a,θ) Q_target(s ,́a ,́θ )́update θ

Sampling mini-batch

restore(st,at,rt,st+1)

st

at

 
Figure 3.  DQN algorithm structure diagram 

In the training process of deep learning, it is 
usually required that the training data must satisfy 
the nature of independent identical distribution, 
and if the correlated data of RL is trained directly, 
it will lead to the difficulty of convergence of the 
model or the continuous riot of loss values. Based 
on this, the DQN algorithm proposes an 
experience replay mechanism, where the algorithm 

saves the current moment's state ts  , the action ta  

generated by the intelligence, and the new state 

body 1ts   and reward tr  generated by the 

environment performing the action in the form of a 

tuple
1( , , , )t t t ts a r a 

into the experience pool, and 

randomly draws a specific batch of experience 
data from the experience pool for training during 
training, effectively removing the correlation and 
dependence between samples. 

The detailed process of the DQN algorithm is 
shown in Algorithm 1. It can be seen that the 
algorithm mainly consists of two loop operations, 
the first loop is responsible for the replay of the 
empirical trajectory, which is executed M times; 
the second loop is responsible for iteratively 
traversing the empirical trajectory with time steps, 
T being the termination time step, while updating 
the parameters of the prediction model using the 
gradient descent method based on small batch 
sample data. In the second loop, the algorithm 
copies the model parameters p of the current 
network to the target network k at every C steps to 
achieve the update of the target network model 
parameters. Accordingly, the algorithm performs 
continuous loop computation to continuously 
update the network parameters and learn the 
update strategy from historical experience until 
convergence to a relatively stable state. 

Algorithm 1 DQN. 

Input: replay memory D, initial current 
network parameters  , initial target network 
parameters  , Update Frequency C.  

1. for episode = 1 to M do 

2.      Initialize the state 0s  

3.      for t = 1 to T do 

4. Select  max , ,t a ta Q s a   

5.           Execute the action a 

6.          Get the next state 1ts   

7.          Get the reward value r 

8.          Store D =  1, , , , _t t t t ts a r s is end  

9.          Sampling mini-batch in D  

10.          Calculate jy  

11.          if _ tis end  = true then jy = jr  

12.          else  *

1max , ,j j j ja
y r Q s a       
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13.          end if 

14.          Update   
2

1

1
, ,

m

j j j

j

y Q s a
m

 


   

15.          Update 
1t ts s   

16.          Every C step copy   to    

17.      end for 

18.  end for 

V. RESULTS AND DISCUSSION 

In the path planning process, the DQN 
algorithm is studied and analyzed using the raster 
method to define the environment model. The 
simulation study in this paper is conducted in a 3D 
simulation environment, and to ensure the 
planning accuracy and at the same time ensure the 
safety of the UAV's body, the raster size is set to 
be exactly the same as the length of the UAV's 
outer contour side, and the following assumption 
is made: when the quadrotor UAV performs 
diagonal motion, its collision with the obstacle 
boundary is not considered. The path planning 
results using the DQN method are shown in Figure 
4. 

 
Figure 4.  DQN algorithm learning results 

The number of neurons in the input layer of the 
deep neural networks (DNN) is consistent with the 
size of the state of each time slot, and the number 
of neurons in the output layer of the network is 
consistent with the size of the action space. The 
parameters used in the DQN algorithm in this 
chapter are shown in Table 1. As can be seen in 
Figure 5, after 160 experiments, the DQN method 
was able to solve the path from the starting point 

to the end point and successfully bypassed all 
obstacles with a time step of 84.  

 

Figure 5.  DQN algorithm learning results 

TABLE I.  DQN SIMULATION PARAMETERS 

VI. CONCLUSIONS 

In recent years, ML has been widely used in the 
field of robotics, and with the improvement of RL 
algorithms and theories, it has the possibility of 
being applied to robotic systems. Distinguished 
from traditional methods, RL theory applied to the 
field of robot path planning, can enable the robot 
to obtain human-like learning ability, in the higher 
difficulty coefficient, the environment is unknown, 
complex and uncertain factors in the task, to a 
considerable extent, can cope with the unexpected 
situation and complex terrain, to complete the task. 
And DRL that combines DNN to solve the 
problem model of RL, after the fusion of the two 
technologies can cover the traditional algorithms 
are difficult to deal with the high-dimensional state 
and action space under the high storage capacity 
requirements, the model training complexity and 
other issues. DRL is a technology that empowers 
intelligences with self-learning capabilities, so 
such methods are very suitable for solving the 
problems faced by traditional UAV path planning 
algorithms. Therefore, a UAV path planning 

Parameters Value 

Size of the replay memory pool D  

Size of Mini-batch 

5000 

64 

Discount Factor  

Initial exploration rate  

Learning Rate 

Neural network activation function 

0.9 

0.9 

0.0002 

ReLU 
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method based on DQN algorithm is proposed in 
this paper. 

This paper systematically introduces the model, 
principle and its main components of the RL 
method, and also includes the Markov decision 
process, an important description method of the 
RL method. The path planning task is realized 
based on the deep reinforcement learning method. 
Based on the OpenAI-GYM architecture, the 3D 
environment is described by the raster method and 
a raster-based map is built. The DQN algorithm is 
used to solve the optimal policy by taking each 
raster as a state, the movements in 26 directions as 
action sets, and the action value function 
composed of state-action pairs as the objective 
function. Through simulation, the DQN algorithm 
is verified to avoid obstacles and complete the 
path planning task in only about 160 rounds, 
which validates the effectiveness of the proposed 
path planning algorithm.  

In this paper, although the DQN method is used 
to realize the path planning task, but there are still 
some problems and shortcomings when applied to 
the actual system. The maps in this paper are 
discrete maps based on grids, which means that 
the state space and action space are discrete and 
finite, and the discrete states and actions determine 
the upper limit of the shortest paths planned, i.e., 
they cannot be moved at any angle within the map, 
and the absolute shortest paths cannot be obtained. 
At the same time, after simulation experiments, it 
appears that the sample efficiency of this model 
algorithm is poor, and the next step is to improve 
the sample efficiency by combining the off-policy 
method. 
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