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Abstract—The problem of human-computer interaction 

mental workload in flight driving has great reference 

value for the prevention of safety hazards in aviation 

driving. This paper analyzes and studies the 

classification method of mental workload in flight 

driving by designing different simulated flight 

experiment tasks. This study uses a combination of EEG 

signals and subjective evaluation, through the use of 

convolutional neural networks and long short-term 

memory network method of combining EEG signals for 

research and analysis. The accuracy of EEG signal 

classification is as high as 94.9 %. NASA-TLX 

evaluation results show that there is a positive 

correlation between task load difficulty and evaluation 

score. The results show that the combination of 

convolutional neural network and long short-term 

memory network is suitable for pilots ' mental workload 

classification. This study has important practical 

significance for flight accidents caused by pilots ' mental 

workload. 
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I. INTRODUCTION 

With the emergence and rapid development of 
the Internet, people's load on cognitive resources 
has also increased, and the demand for mental 
workload optimization has become increasingly 
prominent [1]. Studies have shown that too high 
and too low cognitive load will have a negative 
impact on job performance [2]. Pilots need to 
obtain more instrument data information during 
driving, and combine it with the working 
environment for comprehensive analysis, so as to 
make corresponding decisions quickly and 
accurately [3]. In the relevant operation process 

requires a high degree of concentration, may 
produce large mental labor [4], will not only 
affect the work efficiency, and even cause serious 
accidents. Thus, in human-computer interaction, 
mental labor gradually occupy the advantage. The 
intensity of mental labor can be measured by 
mental workload, which is mainly generated in 
projects where operators use limited mental 
resources for task processing [5]. Appropriate 
mental workload helps the operator to maintain 
good task performance, while too high or too low 
mental workload will adversely affect the 
performance in the operation. 

According to the aviation accident research 
report, 60 % to 90 % of flight accidents occur in 
flights where the pilot 's mental workload 
intensity is too high and the stress task level is 
high [6]. Complex human-machine interaction 
operations such as air defense missiles, medical 
rescue and efficient driving are often 
accompanied by high-load human-machine 
interaction tasks [7]. For example, in the operation 
of missile weapons, it is necessary to achieve 
accurate and fast analysis of space intelligence 
such as the course and speed of combat targets, 
and to quickly realize the assessment of the threat 
of combat targets for the implementation of 
complex actions such as target tracking and attack 
[8-10]. Because there is a large degree of human-
computer interaction tasks in this process. The 
high-intensity operation process can easily cause 
the mental operator to fall into an overload state, 
which greatly reduces the safety and reliability of 
the operator 's operation process and easily causes 
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safety accidents. Therefore, the study of mental 
workload is of great significance to the safety and 
reliability of human-computer interaction. 

The concept of mental workload was first 
proposed in the 1980 s. Scholars have mainly 
conducted in-depth research and discussion on the 
causes, internal mechanisms, and measurement 
methods of mental workload [11]. In the past forty 
years, researchers have continued to pay attention 
to the mental workload of operators. The 
physiological measurement method has greater 
advantages in terms of sensitivity to changes in 
brain load and digital quantitative analysis, but 
there are greater difficulties in terms of post-
processing of data and other aspects, a certain 
knowledge base is required for data analysis, and 
the highly sensitive measurement method is 
susceptible to interference from external factors. 
In response to these difficulties, some scholars 
have proposed the use of eye-movement metrics 
for the assessment of brain load [12-14]. Liu Yan 
[15] et al. conducted a correlation analysis of 
pilots' brain load in terms of typical issues such as 
fatigue and sleep, and obtained from the 
experimental results that the correlation degree 
coefficient between brain load and 
multidimensional fatigue measurements was 
around 0.5, while the correlation degree 
coefficient between brain load and Pittsburgh 
sleep quality was as high as 0.59. From the results 
of this study, it can be obtained that the degree of 
pilots' brain load is influenced by the degree of 
fatigue and sleep. Wang Lei et al. from Civil 
Aviation University of China [16] conducted a 
study on the brain load characteristics of pilots 

based on flight task context routes, in which they 
used different task difficulties to carry out 
relevant studies on the brain load characteristics 
of pilots. The experimental results are of great 
reference value for the study of pilot brain load 
classification methods. In this paper, we will draw 
on the relevant pilot brain load characteristics to 
investigate pilot brain load classification methods. 

II. EXPERIMENT 

A. Experimental preparation 

The experiment was conducted under a 
simulated flight platform and eight male graduate 
student volunteers aged 22-30 years were 
recruited as subjects for data collection. The 
subjects were all in good health, had normal or 
corrected vision, were right-handed and had good 
sleep conditions. The subjects were familiarised 
with the details of the experimental operation and 
related precautions before the simulation. When 
conducting the experiments, only the subjects 
were left alone for each trial in order to avoid 
interference from the outside environment. 

The equipment for this pilot mental workload 
classification study contains a DELL computer, 
three high definition displays (2560 x 1440 
resolution), EEG signal synchronisation 
acquisition equipment and the test deployment 
platform is shown in Figure 1. The flight 
simulation platform contains a monitor, flight 
joystick and mainframe. The flight simulation was 
conducted using the DCS World digital battlefield 
game, using a free to fly Su-25T fighter aircraft 
designed and manufactured by Sukhoi in Russia. 

 
Figure 1.   Simulated flight environment experimental platform 
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(a) EEG signal acquisition device (b) EEG cap port diagram 

Figure 2.  ErgoLAB EEG device 

The experimental equipment used in this 
experiment was the ErgoLAB human-computer 
environment synchronous platform EEG 
measurement system provided by Beijing Jinfa 
Technology Co. The system adopts the 
international standard 10-20 standard lead semi-
dry electrohydraulic stage with an output bit 32- 

lead EEG signal; a wet sponge is used as the 
conduction medium, as shown in Figure 2(a). 

B. Experiment design 

In this simulated flight experiment task, each 
subject performed three main simulated flight 
experiments containing three mental-load flight 
tasks: control, low load and high load. The 
cockpit dial information that needed to be 
monitored during the simulated flight 
corresponding to the different difficulty tasks 
during the simulated flight was shown in Table 1. 
The flight information contained in the cockpit 
interface [17] includes indication of airspeed table, 
pitch scale information, no altimeter information, 
heading angle, roll angle, direction pod, landing 
gear status and engine status. During a flight task, 
the subject is required to respond accurately and 
quickly to the information presented in the 
interface.  

TABLE I.   INFORMATION ON THE DIALS TO BE MONITORED FOR DIFFERENT DIFFICULTY TASKS 

High loads Low loads Control group 

Indicated airspeed meter Indicated airspeed meter — 

Pitching scale information Pitching scale information — 

Altimeter information Altimeter information — 

Directional angle information — — 

Rolling corners information — — 

Status of the steering compartment — — 

Landing gear conditions — — 

Engine status — — 

C. The experimental process 

For different subjects, the experiments are 
conducted one by one. Each subject is required to 
perform a control, low and high load flight for 
each experiment. In the same flight environment, 
the operator is prompted with different difficulty 
tasks based on the flight heading status and is 
required to quickly and accurately monitor the 
corresponding dial information. 

The NASA-TLX Subjective Rating Scale [18] 
was used in the experiment. The scale of [0,100] 
was used to indicate the scale's score range to rate 
the subject's level of mental workload on six 
dimensions, with higher scores indicating higher 

levels of workload. 

D. Data recording 

During the experiment, simultaneous 
acquisition of EEG signals was performed using  

 

EEG acquisition equipment. At the end of each set 
of simulated flight experiments, subjects are 
required to complete the NASA-TLX 
measurement form, which is used to evaluate the 
subjective load of the subjects. 

III. METHODS 

In this study, a modified long and short term 
memory network was used to classify the EEG 
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signals for mental workload research, and the 
flight mental workload was studied and analysed 
by combining subjective evaluation methods. 

A. Data pre-processing 

During the experimental process, the hardware 

equipment will inevitably be disturbed by external 
factors. Therefore, the raw EEG signal needs to be 
pre-processed before the mental workload 
analysis is carried out, and the processing flow is 
shown in Figure 3. 

Original 
EEG signal

Data 
Interception

Work trap 
filtering

Butterworth 
filtering

Post-
processing 

data
 

Figure 3.  Figure. 3 Flow chart of data processing 

Related studies have shown that most EEG 
signals are concentrated between the range of 
0.05-50Hz, while event-related desynchronisation 
and event-related synchronisation (ERD/ERS) 

patterns are mainly manifested in μ rhythms (8-

13Hz) and β beats (14-30Hz), so this study used 

Butterworth filters for 50Hz IDF trapping and 
0.05-30Hz bandpass filtering, and Butter The 
Butterworth band-pass filtering removed the fine 
burrs of interference from the original data [19]. A 
comparison of the data before and after processing 
is shown in Figure 4. 

 
Figure 4.  Comparison of EEG waveforms before and after data processing 

B. EEG features extraction 

According to recent research in cognition, 
psychology and psychiatry, EEG information 
about mental activity can be divided into five 

bands: delta (δ), theta (θ), alpha (α), beta (β) 

and gamma (γ), and the frequency range of each 

band is shown in Table 2.  

TABLE II.   TABLE OF FREQUENCY BANDS OF EEG SIGNALS 

Frequency band range(Hz) Band names 

1-4 delta (δ) 

4-8 theta (θ) 

8-13 alpha (α) 

13-30 beta (β) 

>30 gamma (γ) 

 
In this paper, the discrete Fourier transform is 

used for EEG signal feature extraction [20]. The 
power spectrum was estimated mainly using the 
Welch method with the power spectral densities 

of the  , ，  and   frequency bands, using a 

Hamming window with a window size of 256 and 
a 50% overlap of adjacent window segments. In 
calculating the power of different frequency bands, 
the sum of the power density of the band, i.e. the 
area within the corresponding frequency band of 
the corresponding power density curve, can be 
calculated as shown in equation (1): 
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Where, ( )psd f denotes the power spectral 

density function and f indicates the frequency of 

the signal. This paper uses the power under the 
four fundamental frequency bands spectral 
densities for mental workload classification 

judgement.

 

C. Network model 

The network model proposed in this paper is 
shown in Figure 5. The model is a new input 
convolutional neural network in front of the long 
and short-term memory network for local feature 
extraction of the EEG signal. The extracted local 
features are then fed into the long and short-term 
memory network for training. The loss function 
for model training is L1-loss and its expression is: 
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Figure 5.  Network model diagram 

D. LSTM networks 

The Long Short-Term Memory (LSTM) is a 
recurrent neural network (RNN) [21]. The 
LSTM contains a three-part structure of input 
gates, forgetting gates and output gates, which 

is shown in Figure 6 and mainly outputs (0,1) 
through the sigmoid activation function values 
between. 
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Figure 6.   LSTM structure diagram 

The role of the forgetting gate is to control the 
discard rate of the delivered information, as 
implemented in equation (3). 


T T

t f t-1 f t ff =σ(W s +U x +b )   

Where   indicates the activation function, 

usually set to a sigmoid function, T

fw indicates the 

forgetting gate weight matrix, T

fU  is the weight 

matrix between the input and hidden layers of the 

forgetting gate, and fb indicates the bias of the 

forgetting gate, 1ts   is the previous moment's 

output value and tx  is the current moment's input 

value. The closer the forgetting gate output value 
is to 1, the more information is retained, and the 
closer it is to 0, the less information is retained. 

The input gate determines at what percentage 
of the current moment's input information is fed 
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into the memory information stream, and is 
calculated similarly to the forgetting gate, as 
shown in equation (4). 


T T

t i t-1 i t ii =σ(W s +U x +b )   

The output gate is mainly used to control the 
amount of information updated by the next layer 
of the network and is implemented as shown in 
equation (5). 


T T

t O t-1 o t oO =σ(W s +U x +b )   

  t t ts =O tanh C  

  is usually a sigmoid function. This structure 
expands the effectiveness of the action of the 
current amount of information so that it can both 
suppress the current information and output it 
normally through equation (6) combined with the 
memory information to obtain the output value at 
the current moment. 

IV. RESULTS AND ANALYSIS 

Based on the results of the NASA-TLX 
subjective evaluation table obtained statistically, 
the sensitive assessment index scores for changes 
in mission difficulty can be obtained as shown in 
Figure 7. According to the ANOVA results, the 
NASA-TLX subjective evaluation scores show an 
extremely significant difference (p<0.01) and 
become larger as the difficulty of the mission 
increases and the load level increases. 
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Figure 7.   NASA-TLX evaluation results 

Based on the results of the NASA-TLX 
subjective evaluation table obtained statistically, 
the sensitive assessment index scores for changes 
in mission difficulty can be obtained as shown in 
Figure 7. According to the ANOVA results, the 
NASA-TLX subjective evaluation scores show an 
extremely significant difference (p<0.01) and 
become larger as the difficulty of the mission 
increases and the load level increases. 

TABLE III.  MODEL TRAINING PARAMETERS 

Name of the layer Hyperparameters Input vector Output vector 

EEG_Input None (256,1) (256,1) 

Conv1D 
Kernel size=5 

(256,1) (128,64) 
stride = 2 

Conv2D 
Kernel size=3 

(128,64) (64,128) 
stride = 2 

Reshape None (64,128) (8192,1) 

Max Pooling pool size=128 (8192,1) (64,1) 

LSTM units=32 (64,1) (32,1) 

Dense units=64 (32,1) (64,1) 

Dense units=32 (64,1) (32,1) 

 

This paper presents a study related to the use of 
a modified long and short term memory network 
for mental workload classification methods. In 
conducting the model training process, the pre-
processed data was used as the input data for the 
model, where 80% of the data was used to 
conduct the model training and 20% of the data 
was used to conduct the test. Details of the 
parameter settings of the model are shown in 
Table 3. 

The number of times the model was trained 
was set to 500 and the learning rate was set to 
0.001. The experimental results showed that the 
training accuracy could basically reach over 90% 
around the 120th epoch. In the first 20 epochs and 
70~80 epochs, the discriminant accuracy 
improved faster, and the experimental result 
accuracy is shown in Figure 8; the loss value 
converged more rapidly, and the experimental loss 
rate is shown in Figure 9. In this model training, 
the final accuracy rate can reach 94.9%. 
Compared with other traditional methods, this 
experimental model has greater accuracy. 
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Test

 
Figure 8.  Training and test set accuracy 

Test

 
Figure 9.  Loss rate for training and test sets 

V. CONCLUSIONS 

 Piloting in aviation is a major hazard and pilots 
are under great stress during the flight. The study 
of the pilot's mental workload is conducive to a 
better assessment of the pilot's driving state, as 
well as to the effective prediction of phenomena 
that exceed the mental workload, which is 
conducive to the rational design of the human-
computer interaction system in flight driving, thus 
reducing the phenomenon of high or low mental 
workload during flight driving and ensuring the 
safety of flight driving. 

This paper uses a combination of convolutional 
neural networks and long and short-term memory 
networks to classify mental workload with an 

accuracy of 94.9%. The results of the analysis 
show that there is a positive correlation between 
the difficulty of the flight task and the subjective 
evaluation score. In summary, this study has some 
reference value for the classification of pilot 
mental workload. 
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