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Abstract—Sight is the main source for humans to obtain 

information from the outside world. Due to the structure 

of the human eye [1], the range of human sight is limited. 

For this reason, people need to constantly move their 

line of sight when observing the surrounding 

environment and the target, and the movement of the 

sight is based on the coordinated movement of the head 

and the eye[2]. Therefore, the key issue for gaze research 

is how to correctly establish the relationship between 

head-eye movement and gaze movement. Taking the 

simulated flight environment as the research 

background, this paper collects a large number of head-

eye images through the designed "three-camera and 

eight-light source" head-eye data acquisition platform, 

and proposes a gaze estimation method based on the 

combination of appearance and features, which 

effectively combines The relationship of head-eye 

coordination movement. Then, the ResNet-18 deep 

residual network structure and the traditional BP neural 

network structure are used to complete the effective 

fusion of the head pose and human eye features in the 

process of capturing the sight target, so as to realize the 

accurate estimation of the sight drop point, and its 

average accuracy up to 89.9%. 

Keywords-Head-Eye Coordination; Gaze Estimation 

Method；Experimental Platform Design; Deep Residual 
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1. INTRODUCTION 

Head-eye coordination is the process of 
coordinating and combining head and eye 
movements and synthesizing a unified action to 
complete the shift of sight to the target [3]. In the 
research of visual impact point estimation, it is 
necessary to establish the relationship between 
head movement, eye movement and gaze 
movement in order to obtain a more accurate gaze 
point location. Therefore, how to establish the 

head-eye-line of sight relationship is the key issue 
of research. 

For the research on the relationship between 
head-eye-line of sight, the initial method is to limit 
the free movement of the human head and only 
track the eye movement [4], so that a slight 
movement of the head will cause a large 
systematic error, and it is not suitable for in 
practical application scenarios. For this reason, the 
mechanism of head-eye movement has become a 
hot research topic at that time. In 2008, Freedman 
[5] used physiological methods to study the 
relationship between eye movement and head-eye 
movement in rhesus monkeys, which are similar to 
human head-eye movement mechanisms. The 
experimental results show the relationship 
between the head-eye movement and the line of 
sight: when the target appears in a larger field of 
view, the eyes will first move towards the target 
before the head, and then the head starts to move 
in the same direction. Due to the fast movement of 
the eyes, the sight can quickly complete the target 
acquisition and stop moving. However, the head 
movement was relatively slow, and Ren did not 
stop moving in the target direction. At this time, 
under the action of the vestibular function, the 
tendency of the eyes to move in the opposite 
direction at a certain speed is used as a vestibulo-
ocular reflex (VOR) [6] to compensate for the 
head movement, so as to ensure that the target 
exists stably in the line of sight. Inside. It can be 
seen that although the contribution of head 
movement to the target capture process is small, it 
also directly affects the direction of sight 
movement. 
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Gaze estimation is a study of the subject's 
current gaze direction or gaze location using 
existing detection technologies such as mechanical, 
electronic, and optical [7]. The early research on 
eye sight estimation benefited from the 
development of medicine and psychology, and 
researchers recorded the relevant information of 
eye movement by direct observation. Based on the 
different devices used for gaze estimation, gaze 
estimation research can be divided into wearable 
and non-wearable [8]. With the development of 
sight estimation technology, wearable sight 
estimation methods such as contact lens and 
electrooculography (EOG) have appeared. 
Although the influence of head movement is 
reduced, it is more disturbing to the subjects. , not 
suitable for long-term wear. With the development 
of image processing and computer vision 
technology, the advantages of video-based line-of-
sight estimation methods are convenient and non-
wearable. However, for gaze estimation research, 
how to efficiently integrate head motion data still 
needs further research. 

In recent years, under the research upsurge of 
deep neural network, new progress has been made 
in the research of gaze estimation algorithm based 
on head-eye data fusion, which can be mainly 
divided into gaze target estimation, gaze location 
estimation and gaze direction estimation. In 2016, 
Recasens [9] et al. designed a deep neural network 
model composed of two branches, which were 
used to extract the head pose and gaze direction of 
human images respectively, and to estimate the 
gaze target by judging the saliency of the target; 
Kyle Krafka [10] et al. took mobile phones and 
tablet computers as the research objects, and 
designed a deep neural network composed of four 
branches, respectively inputting left and right eye 
images, face images and face positions, and 
realized a two-dimensional plane. line-of-sight 
estimate. The idea of sharing and processing the 
parameter weights of the left and right eye image 
branches in this study has been used for reference 
by many subsequent studies; in 2019, the Google 
[11] team further improved the above model and 
changed the line of sight estimation model to three 
The branch and the coordinate positions of the 
four corners of the eyes are used to replace the 

face image and the face position, and finally a 
good estimation effect of the line of sight is 
achieved; for the estimation of the line of sight, it 
is usually represented by a direction vector formed 
by two horizontal and vertical angles. , Zhang 
[12]'s research in 2015, spliced the head pose data 
of the input image with the eye features, and used 
a shallow network structure similar to LeNet [13] 
to estimate the line of sight direction. The way of 
data fusion has greatly inspired the follow-up 
research in this paper. 

2. MATERIALS 

1) Experiment preparation) 

The data collection experiment in this paper 
recruited 8 male graduate student volunteers as 
subjects, aged 23-30 years old, in good health and 
with good eyesight. Before the experiment, each 
subject was familiar with the specific content and 
precautions of the experiment, and they all 
participated in the experiment voluntarily. Each 
subject signed a written commitment and informed 
letter to ensure the legitimacy of the experiment in 
this paper. In order to exclude external 
interference, after the preparation for the 
experiment, each experiment was completed by 
only one subject alone. 

The experimental equipment includes a DELL 
computer, an inertial sensor (MTI-G-700), three 
industrial cameras, three high-definition displays 
(resolution 2560× 1440), and eight infrared point 
light sources. Among them, the inertial sensor was 
worn to about the position of the occipital bone 
behind the subject's head to measure the Euler 
angles (Pitch, Roll, Yaw) of the subject's head 
posture when capturing the target. Since the MTI-
G-700 inertial sensor is only used to measure the 
change of the head posture in this paper, it will be 
referred to as the head posture instrument in the 
following. In this study, three Point Grey GS3-U3-
41C6NIR-C industrial cameras were selected, and 
the resolution of the collected images was 
2048×2048 and the chromaticity was near-infrared 
(NIR). Three cameras were installed above the 
three high-definition monitors, and were used to 
simultaneously capture the head motion images 



International Journal of Advanced Network, Monitoring and Controls      Volume 07, No.01, 2022 

118 

and eye motion images captured by the subjects 
during the experiment. 

For the data collection experiment of head-eye 
coordination movement, this study innovatively 
built a non-wearable sight-drop data collection 
platform of "three eyes and eight light sources". 
This platform not only expands the subject's head 
movement range, but also effectively reduces the 
impact of changes in lighting conditions. It is 
mainly composed of three industrial cameras 
mounted on three monitors and eight near-infrared 
light sources evenly distributed on the border of 
the monitors, which are used to record the head-
eye images of the subjects when the target is 
captured. The schematic diagram of the platform 
deployment is shown in Figure 1. 

 
Figure 1.  Deployment of the "Three Cameras and Eight Lights" platform 

2) Maintaining the Integrity of the Specifications 

The head-eye movement data collection 
experiment designed in this study mainly refers to 
the process of the subjects performing visual 
interaction with the randomly appearing objects on 
the three screens through coordinated head-eye 
movement. Before starting the experiment, the 
infrared light source, camera, head attitude meter 
and other equipment should be calibrated to ensure 
that each equipment is in normal operation. The 
subjects were required to wear the head posture 
meter, and adjust the horizontal distance between 
the sitting position and the middle screen to save 
about 60cm to ensure that they were within the 
best focal length of the three cameras. At the 
beginning of the experiment, the subjects' eyes 
need to face the center of the middle screen, and 
press the record button to calibrate the initial Euler 
angle of the head posture. After the calibration is 

successful, the target to be captured appears 
randomly on the three screens in the form of a red 
circle with a radius of 30 pixels. The subject uses 
the head-eye movement to aim at the target, and 
press the record button to complete the target 
capture process. . During the experiment, there are 
no other requirements for the subjects, and the 
head can move freely in a large range. After the 
experiment, the program will record the Euler 
angle of the head pose, head image, eye image and 
the coordinates of the center point of the target 
each time the subject captures the target, and set it 
as a set of data. The experimental process is shown 
in Figure 2. 

 
Figure 2.  Flow chart of head-eye movement data collection 

Considering that the experimental operation is 
relatively simple, in order to ensure the 
experimental status of the subjects and the quality 
of the experimental data, the duration of a single 
experiment is set to 20 minutes in this study. 
During the experiment, the equipment was 
deployed on a six-axis full-motion simulated flight 
platform, as shown in Figure 3. Due to the long-
term use of the camera, the performance will be 
effectively degraded, and there may be cases of 
missed shots, so simple manual screening is 
required after each experiment. Finally, after 
screening unqualified samples, a total of 31507 
groups of head-eye movement data were collected 
in this paper. 

 
Figure 3.  The experimental process of head-eye movement data collection 
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3. METHODS 

In this study, the appearance-based line of sight 
estimation method is used to estimate the location 
of the subject's line of sight through head-eye 
images captured by a non-wearable multi-eye 
camera. Although the appearance-based line-of-
sight estimation method has strong robustness, it 
also has some problems, such as a great restriction 
on the free movement of the subject's head and a 
great influence by the change of lighting 
conditions. The "three eyes and eight light 
sources" platform built in this paper can not only 
expand the subject's head movement range 
through the strapdown of three monitors; Feature 
points are added to the external image to reduce 
the influence of lighting. For this reason, this 
research uses the method of image processing and 
feature extraction, fuses head features and eye 
features, establishes a neural network model for 
line of sight estimation, and then realizes the 
research of line-of-sight drop estimation. 

1) Head feature extraction 

In this paper, the posture measuring instrument 
was worn on the back of the subject's head and 
used as the three-axis reference point for head 
movement. The head attitude data mainly includes: 
pitch angle (Pitch), yaw angle (Yaw), roll angle 
(Roll), namely looking up, shaking head and 
turning head, through these three Euler angles, the 
head position can be estimated more accurately. 
space pose. In this study, a right-handed Cartesian 
coordinate system is used, and the three-axis 
positions of X, Y, and Z in space and the 
corresponding Euler angles of the head posture are 
shown in Figure 4. 

 
Figure 4.  Euler angle of head posture 

In order to facilitate the statistics and analysis 
of the head pose data, this study visualized the 
recorded data. The three-axis pose data of the head 
is shown in Figure 5. Through the three-axis Euler 
angle deflection angle, it can be intuitively 
observed that the head yaw angle (Yaw) and the 
pitch angle (Pitch) change greatly during the target 
acquisition process, while the roll angle (Roll) 
changes less. 

 

Figure 5.  Three-axis attitude data record 

2) Eye feature extraction 

The human eye detection method used in this 
study mainly uses the AdaBoost cascade classifier 
combined with Haar-like features to first detect the 
face area, and then detects and intercepts the 
human eye area in the face area. Based on the pre-
trained classifiers for faces, eyes, etc. included in 
OpenCV, this study carried out face detection and 
eye detection on the front view image collected by 
the camera corresponding to the target appearing 
screen. The recognition results are shown in 
Figure 6. According to the results of human eye 
detection, the monocular area of the subject is 
intercepted at a resolution of 64×64, and the left 
and right eye images are obtained as the input of 
the next convolutional neural network model. 

 
Figure 6.  Face detection, Eye detection results 
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Aiming at the requirement of lighting 
conditions in appearance-based visual estimation 
method, this study combines the idea of feature-
based visual estimation method, and places eight 
near-infrared point light sources equidistantly on 
the boundary of three screens. The Purkinje 
formed by the reflection are used as the feature 
points of the eye image. Since the camera is a 
near-infrared camera, the brightness of the 
Purkinje formed by the reflection of the infrared 
point light source through the corner of the eye is 
not affected by external light. To sum up the above 
assumptions, this study performed threshold 
processing on the intercepted left and right eye 
images before training the line of sight placement 
model, and obtained left and right eye images with 
more obvious Purkinje spots, which were used as 
the control group input by the convolutional neural 
network model. Its influence on the estimation 
result of the line-of-sight landing point. 

In this study, the three monitors (resolution: 
2560×1440) are numbered in the order of left (0), 
middle (1), and right (2). degree. This study takes 
the five target points on the left (0) screen as an 
example for analysis, and the specific positions are 
shown in Figure 7. Among them, the first two 
coordinates of each point are the position of the 
target center pixel on the screen, and the third 
coordinate is the screen number. 

 
Figure 7.  Location of the target center point 

The eye images collected at the five points A, B, 
C, D, and E in the above figure are processed in 
the order of binarization thresholding, truncation 
thresholding, and super-thresholding zero. The 
detection effect is shown in Figure 8. It can be 
observed from the figure that for different fixation 
points, the number and positional relationship of 
Purkinje spots formed by the subjects' eyes are 

different. Treatment can detect 6-7 Purkinje. 
Among them, the Purkinje after the truncated 
thresholding process is more obvious, which can 
effectively eliminate the reflected light spots on 
the cornea of other external light sources, and 
retain the original eye image. Therefore, this paper 
will use the truncation thresholding method to 
process the cropped left and right eye images, and 
detect the left and right eye images with obvious 
Purkinje as the input of the next convolutional 
neural network model. 

 
Figure 8.  Purkinje detect results 

For the deep convolutional neural network 
model, this paper refers to the deep residual 
network structure proposed by researchers such as 
He in 2015. At present, several commonly used 
ResNet networks mainly include: ResNet-18, 
ResNet-34, ResNet-50 and other variants. 
Although increasing the depth of the network can 
improve the accuracy of the model, the shallower 
residual network (ResNet-18) also has good 
accuracy in practical applications, and its model is 
small, which provides faster convergence speed 
and facilitates parameter optimization. Moreover, 
based on the short-circuit operation of the ResNet 
model, the combination of features of different 
resolutions can be realized, and it has a better 
feature extraction effect for the eye image input in 
this paper. Therefore, in this study, ResNet-18 is 
used as the estimation model of the human eye 
line of sight, and the network structure of ResNet-
18 is shown in Table 1. By comparing different 
types of binocular image inputs (with and without 
thresholding to detect Purkinje), analyze the 
accuracy of the output on the screen where the 
sight falls. Since traditional residual neural 
networks are mostly used for classification tasks, 
this paper is inspired by the Google team's 
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research on line-of-sight drop estimation in 2019. 
Multiple fully-connected layers are connected after 
the hidden layer of the neural network to return the 
line-of-sight drop coordinates. 

For the estimation model of human eye gaze 
point in this paper, the input is the grayscale 
images of the left and right eyes when the subject 
is facing the capture target in the middle of the 
screen. Due to the low resolution requirement of 
the eye image, this paper adopts the resolution size 
of 64×64 to capture the monocular image. 
Compared with the input size of the traditional 
ResNet-18 network RGB image (224×224×3), the 
image input in this paper is smaller (64×64×1), 
which improves the computational speed of the 
model. This model is divided into two branches 

with the same structure. The input layer is the 
cropped left and right eye images, and the main 
structure of the hidden layer of each branch is built 
according to the ResNet-18 network structure. It 
consists of 17 convolutional layers, 8 residual 
blocks and 2 pooling layers. Relu is used as the 
activation function of all convolutional layers to 
achieve feature extraction for left and right eye 
images. Finally, the left and right eye images are 
extracted through 4 fully connected modules. The 
feature maps of the eyes are fused and the 
estimated line-of-sight coordinates G(x, y, n) are 
output. Figure 9 shows the structure of the 
network model for the estimation of the human 
eye gaze point in this paper. 

 
Figure 9.  Eye gaze point estimation network structure

3) Eye feature extraction 

In order to fuse the head pose data in the line-
of-sight drop estimation, this study draws on the 
idea of using the traditional BP neural network, 
and uses multiple fully connected layers as the 
network branch of the head pose data feature 
extraction, mainly including: an input layer and a 
Hidden layer composition. Among them, the input 
layer is the subject's head posture Euler angles 
(Roll, Pitch, Yaw); the hidden layer is composed 
of three fully connected layers, the number of 
neuron nodes is 100, 16, 16 respectively, and Relu 
is used as the activation function uses the feature 
vector extracted by the last fully connected layer 
as the output. 

Based on the principle of feature layer fusion, 
this research first preprocesses the head-eye data 
to complete feature extraction. Image feature 
extraction; for the head image, the Euler angle of 
the head pose is used to output the feature vector 
with the same dimension as the eye feature 
through the head feature extraction network to 
complete the dimension registration. The features 
of the two parts are fused through multiple fully 
connected layers to form a line-of-sight estimation 
model structure fused with head-eye movements. 
The network structure of the line of sight 
estimation model in this study includes three 
branches. The input layer inputs the left and right 
eye images and the Euler angle of the head pose 
when the subject is capturing the target. For the 
left and right eye branches, three fully connected 
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layers are used for feature extraction, and the 
number of neuron nodes is 128, 32, and 16 
respectively; for the head pose branch, a head 
feature extraction network is used, and finally two 
neurons are used for feature extraction. The fully 

connected modules with the number of nodes are 
16 and 3 to complete the feature fusion of the data 
of the three branches, and realize the regression of 
the landing point of the three screens, as shown in 
Figure 10. 

 
Figure 10.  Gaze estimation model with head-eye movement fusion

4. RESULT 

In order to improve the estimation performance 
of the human eye gaze point estimation model in 
the learning process, this paper uses the mean 
squared error (MSE) as the loss function. MSE 
represents the mean value of the sum of squares of 
the point errors corresponding to the predicted data 
and the original data: 
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where  is the number of samples,  is the original 
data, and  is the predicted data. When the MSE 
value is closer to 0, it indicates that the fitting 
ability of the model is stronger, and the estimation 
of the line of sight is more accurate. Based on the 
three-screen experimental platform in this paper, 
each screen is a two-dimensional plane, and the 
Euclidean distance is used to calculate the 
difference between the calibration point and the 
estimated point. The predicted receptive field is a 
circular area with the calibration point as the 
center and a radius of 30 pixels. In the training 
process of the model, this paper uses adaptive 
moment estimation (Adam) as the optimizer, 
which can adjust different learning rates for 
different parameters; the learning rate of the 

network is set to  , and the batch size is set is 
32, and the training epoch is 100. 

In this study, through the screening of the 
original data, after removing the images of the 
subjects with eyes closed, 30,000 images were 
selected from a total of 30,000 images and 
cropped to a size suitable for the model input, of 
which 70% were used for model training and 30% 
were used for model training. Performance Testing. 
At the same time, two different line-of-sight 
estimation models were constructed and used as a 
control experiment to compare and analyze the 
final prediction accuracy and other performances 
based on whether or not Purkinje detection was 
performed before inputting the original data. 

The experimental results show that when only 
the original eye image is used as the model input, 
the model (Eye) needs to extract fewer features 
and the convergence speed is faster. At about 200 
epochs, the model basically converges, and its 
average accuracy can reach 85.6%; when the input 
is the eye image after Purkinje detection, although 
the model (Eye & Purkinje) has a slower 
convergence speed, it is basically at about 400 
epochs. Convergence, but its average accuracy can 
reach 87.7%. 

By comparing the performances of the two 
models, the (Eye & Purkinje) model makes the 
Purkinje patch features more obvious through 
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thresholding before input, which increases the 
complexity of feature extraction in the hidden 
layer, thereby increasing the convergence time of 
the model, but it is relatively slow compared to the 
Eye model. The average accuracy of line-of-sight 
location estimation is increased by 2.1%, and the 
loss curve is relatively stable, and the stability of 
the model is better. Therefore, in this study, the 
(Eye & Purkinje) model is selected as the model 
for estimating the human eye gaze, and it is 
verified that the input of eye images with 
significant Purkinje spots can add feature points to 
the image, reduce the influence of lighting 
conditions, and improve the estimation accuracy 
of the model. Accuracy. The accuracy and loss 
curves of the training of the two models are shown 
in Figure 11. 

 
Figure 11.  Comparison of the performance of different models 

In order to evaluate the performance of the gaze 
point estimation model fused with head-eye 
motion, this paper compares it with two models 
that only use eye images. As shown in Figure 12, 
in the first 200 epochs, the performance of the 
model after adding head pose is better than that of 
the (Eye & Purkinje) model, but due to the need to 
fuse head-eye features, parameter optimization 
takes a long time, and the accuracy is not as good 
as the Eye model. From the analysis of the 
convergence speed of the model, although the 
(Eye & Purkinje & Head) model converges slowly, 
the model tends to be stable after 600 epochs, and 
the accuracy of the model is high. Enter the model, 
which compresses and correlates head-eye 
coordination motion data by fusing multi-

dimensional head-eye data, and its accuracy is 
improved by up to 4.3%. 

 
Figure 12.  Comparison of the performance of three gaze estimation models 

5. CONCLUSION 

For the research on gaze point estimation, this 
paper uses three models for comparative analysis, 
namely, the gaze point estimation model using 
only eye images, the gaze point estimation model 
using eye features, and the fusion head-eye motion 
feature. Line-of-sight estimation model. By 
comparison, the line of sight estimation model 
(EPH) that fuses head motion and eye feature 
point images has a high test accuracy for the 
prediction results of the test set, and the estimated 
line of sight is basically within the prediction 
receptive field of the target to be captured. And 
there is no over-fitting phenomenon, and the 
average accuracy of the line of sight estimation 
can reach 89.9%. However, this paper also finds 
that the accuracy of the general estimation of these 
three models is not high. This problem is a 
common problem in the estimation method of line-
of-sight placement based on appearance, which 
needs to be further studied and prospected. 

To sum up, this paper is based on a line-of-
sight estimation method that combines appearance 
and features, which effectively integrates the head 
motion and eye motion when the line of sight 
moves. Accurate estimation of the line-of-sight 
placement in a two-dimensional screen is achieved. 
A practical and effective research method is put 
forward for the estimation of sight drop point. 



International Journal of Advanced Network, Monitoring and Controls      Volume 07, No.01, 2022 

124 

REFERENCES 

[1] Atchison D A, Smith G, Smith G. Optics of the human 
eye[M]. Oxford: Butterworth-Heinemann, 2000. 

[2] Wang Changyuan, Li Jingjing, Jia Hongbo, et al. 
Research methods and progress of head-eye 
movement[J]. Journal of Xi'an University of 
Technology, 2012, 32(3): 173-182. 

[3] Mao Xiaobo. Research on Modeling and Control of 
Bionic Robot Eye Movement System[D]. Zhengzhou: 
Zhengzhou University, 2011. 

[4] Lei Zhihui, Yu Qifeng. A new method to determine eye 
movement translation[J]. Experimental Mechanics, 
2003, 18(4): 564-568. 

[5] Freedman E G. Coordination of the eyes and head 
during visual orienting[J]. Experimental brain research, 
2008, 190(4): 369-387. 

[6] Mao Xiaobo, Chen Tiejun. A bionic model of head-eye 
coordination motion control[J]. Journal of Biomedical 
Engineering, 2011, 28(5): 895-900. 

[7] Liu Jiahui, Chi Jiannan, Yin Yixin. Review of feature-
based gaze tracking methods [J]. Journal of Automation, 
2021, 47(2): 252-277. 

[8] Zhang C, Chi J N, Zhang Z H, et al. Gaze estimation in 
a gaze tracking system[J]. Science China Information 
Sciences, 2011, 54(11): 2295-2306. 

[9] Recasens ,A R C. Where are they looking?[D]. 
Massachusetts Institute of Technology, 2016. 

[10] Krafka K, Khosla A, Kellnhofer P, et al. Eye tracking 
for everyone[C]. Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2016: 
2176-2184. 

[11] He J, Pham K, Valliappan N, et al. On-device few-shot 
personalization for real-time gaze estimation[C]. 
Proceedings of the IEEE/CVF International Conference 
on Computer Vision Workshops. 2019: 0-0. 

[12] Zhang X, Sugano Y, Fritz M, et al. Appearance-based 
gaze estimation in the wild[C]. Proceedings of the IEEE 
conference on computer vision and pattern recognition. 
2015: 4511-4520. 

[13] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based 
learning applied to document recognition[J]. 
Proceedings of the IEEE, 1998, 86(11): 2278-2324. 



International Journal of Advanced Network, Monitoring and Controls      Volume 07, No.01, 2022 

125 

基于头眼协调运动的视线落点估计研究 
 

吴其右 

西安工业大学计算机科学与工程学院 

中国，西安 

E-mail: wu314650592@163.com 
 

 

王长元 

西安工业大学计算机科学与工程学院 

中国，西安 

E-mail: Cyw901@163.com 
 

 

摘要：视线是人类获取外界信息的主要来源。由于人眼

的构造[1]，人的视线范围是有限的。为此，人在观察周

围环境与目标时需要不断地移动视线，而视线的移动又

是基于头眼协调运动同时构成的，即当人大范围转移视

线时，需要依靠头部的运动以扩大视野范围[2]。因此，

对于视线研究的关键问题是如何正确地建立头眼运动与

视线移动的关系。本文以模拟飞行环境为研究背景，通

过所设计的“三目八光源”头眼数据采集平台采集大量

的头眼图像，并提出一种基于外观与特征相结合的视线

估计方法，有效地结合了头眼协调运动的关系。随后，

利用 ResNet-18 深度残差网络结构与传统的 BP 神经网

络结构完成对视线目标捕获过程中的头部姿态与人眼特

征的有效融合，实现对视线落点的精确估计，其平均准

确度可达 89.9%。 
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络；视线估计方法 

1. 介绍 

头眼协调运动是协调组合头部、眼部运动并
合成统一动作从而完成视线转移向目标的过程
[3]。在视觉落点估计的研究中，需要建立头部
运动、眼部运动和视线移动的关系，才能得到
较为准确的视线落点位置。因此，如何建立头
眼-视线关系是研究的关键问题。 

对于头眼-视线关系的研究，最初的方式是
通过限制人的头部自由运动，仅对眼部运动进
行跟踪[4]，使得头部稍有移动便造成很大的系
统误差，且不适应于实际应用场景。为此，头
眼运动机制成为了当时研究的热点。2008 年，
Freedman E G[5]使用生理学方法对与人类头眼
运动机制相似的猕猴作为研究对象，测得视线
移动与头眼运动的关系。其实验结果表明了头
眼运动与视线的关系：当目标出现于较大视野
范围中时，双眼会率先于头部朝目标进行移

动，随后头部开始同向移动。由于双眼运动速
度较快，视线可快速地完成目标捕获并停止运
动。但头部运动较为缓慢，任未停止向目标方
向移动。此时，在前庭功能的作用下，趋势双
眼以一定的速度反向移动，作为补偿头部运动
的 前 庭 动 眼 反 射 (vestibulo-ocular reflex, 

VOR)[6]，保证目标稳定地存在于视线范围
内。由此可得，虽然头部运动对目标捕获过程
的贡献较小，但其也直接影响了视线移动的方
向。 

而视线估计是利用机械、电子、光学等现有
检测技术对受试者当前视线方向或视线落点的
研究[7]。早期的视线估计研究得益于医学与心
理学的发展，研究者多以直接观察的方式记录
眼睛运动的相关信息。基于视线估计所使用设
备的不同，可将视线估计研究划分为穿戴式与
非穿戴式[8]。随着视线估计技术的发展，出现
了如接触镜(Contact Lens)和眼电图(EOG)等穿
戴式的视线估计方法，虽然减小了头部运动的
影响，但对受试者干扰较大，不适于较长时间
的佩戴。伴随图像处理与计算机视觉技术的发
展，使得基于视频的视线估计方法便捷、非穿
戴式的优势逐渐显现出来，并在医疗诊断、辅
助驾驶和人机交互等多个领域得到普及与应
用。但对于视线估计研究而言，如何高效地融
入头部运动数据仍然有待进一步的研究。 

近些年，在深度神经网络的研究热潮下，基
于头眼数据融合的视线估计算法研究有了新的
进展，主要可分为对注视目标的估计、视线落
点估计与视线方向估计。2016 年，Recasens[9]

等人设计了一个由两支路组成的深度神经网络
模型，分别用于提取人物图像的头部姿态与注
视方向，通过目标显著性判断实现对注视目标
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的估计；Kyle Krafka[10]等人以手机和平板电
脑等设备为研究对象，设计了由四个支路构成
的深度神经网络，分别输入左右眼图、人脸图
像和人脸位置，实现了于二维平面的视线落点
估计。此研究对左右眼图像支路的参数权值进
行共享处理的思想，受到此后很多研究的借
鉴；2019 年，Google[11]团队对上述模型做了
进一步改进，将视线落点估计模型改为三支路
并由四个眼角的坐标位置代替人脸图像与人脸
位置，最终取得了不错的视线落点估计效果；
对于视线方向的估计，通常由水平和竖直两个
角度所构成方向向量表示，Zhang[12]于 2015

年的研究中，将输入图像的头部姿态数据与眼
部特征进行拼接，使用类似于 LeNet[13]的浅
层网络结构实现对视线方向的估计，此研究对
头眼数据融合的方式对本文后续研究起到了很
大启发。 

2. 实验 

1) 实验准备 

本文的数据采集实验招募了 8 名男性研究生
志愿者作为被试，年龄在 23-30 岁之间，身体
健康，视力良好。在实验前，每位受试者已熟
悉实验的具体内容和注意事项，且均为自愿参
与实验。每位被试都签署了书面的承诺与知情
书，保证本文实验的合法性。为排除外界干
扰，在做好实验准备后，每次实验仅由一名被
试单独完成。 

实验设备包括一台 DELL 计算机、一部惯性
传感器(MTI-G-700)、三部工业相机、三台高
清显示屏(分辨率 2560×1440)和八个红外点光
源。其中，惯性传感器佩戴至被试头部后方大
约枕骨位置，用于测量被试在进行目标捕获时
的头部姿态欧拉角(Pitch、Roll、Yaw)。由于在
本文中 MTI-G-700 惯性传感器仅用于测量头部
姿态的变化，下文将其简称为头部姿态仪。本
研究选用了三部 Point Grey GS3-U3-41C6NIR-

C 工业相机，其采集图像的分辨率为 2048×
2048，色度为近红外光谱(NIR)。三部相机分
别安装在三台高清显示器的上方，用于同时拍
摄被试在实验过程中进行目标捕获的头部运动
图像和眼部运动图像。 

对于头眼协调运动的数据采集实验，本研究
创新性地搭建了“三目八光源”非穿戴式的视
线落点数据采集平台。此平台不仅扩大了被试
的头部运动范围，还能有效减小光照条件变化
的影响。其主要由三部挂载在三台显示器上的
工业相机和八个均匀分布于显示器边界的近红
外光源组成，用于记录被试在目标捕获时的头
眼图像，平台部署示意图如图 1 所示。 

 

图 1 “三目八光源”平台部署示意图" 

2) 实验设计 

本研究设计的头眼运动数据采集实验主要是
指：被试对三块屏幕上随机出现的目标通过头
眼协调运动进行视觉交互的过程。开始实验
前，要对红外光源、相机、头部姿态仪等设备
进行校准，确保各设备出于正常运行状态。被
试需佩戴好将头部姿态仪，调整坐位与中间屏
幕的水平距离保存 60cm 左右，以确保自身出
于三台相机的最佳焦距范围内。实验开始时，
被试双眼需要正视中间屏幕的中心位置，按下
记录键来标定头部姿态的初始欧拉角。标定成
功后，待捕获目标以半径为 30 像素的红圈形
式随机出现于三块屏幕上，被试通过头眼运动
将视线落点瞄准在目标上，并按下记录键完成
一次目标的捕获流程。实验过程中对被试无其
他的要求，头部可以较大范围的自由移动。实
验结束后，程序将记录每次被试在捕获目标时
的头部姿态欧拉角、头部图像、眼部图像和目
标中心点的坐标，并设置为一组数据。实验流
程如图 2 所示。 
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图 2 头眼运动数据采集流程图 

考虑到实验操作较为单一，为确保被试的实
验状态，保证实验数据质量，本研究设置单次
实验时长为 20 分钟。实验时设备部署于六轴
全动模拟飞行平台上，如图 3 所示。由于长时
间使用相机性能会有效下降，存在多拍漏拍的
情况，每次实验后需进行简单人工筛选。最
终，通过对不合格样本的筛选后，本文共采集
了 31507 组头眼运动数据。 

 

图 3 头眼运动数据采集实验过程 

3. 方法 

本研究采用基于外观的视线估计方法，通过
非穿戴式多目相机所拍摄的头眼图像，实现对
被试的视线落点估计。虽然基于外观的视线估
计方法有较强的鲁棒性，但也存在着对被试头
部自由运动限制较大、受光照条件变化影响较
大等问题。而本文搭建的“三目八光源”平台
通过三部显示器的捷联，不仅可以扩大被试的
头部运动范围；并通过红外光源在人眼角膜上
的反射光斑（普尔钦斑），为眼部图像增加了
特征点，减小光照的影响。为此，本研究通过
图像处理与特征提取的方法，融合头部特征与
眼部特征，建立视线估计神经网络模型，进而
实现视线落点估计的研究。 

1) 头部特征提取 

本文将姿态测量仪佩戴至被试的后脑勺位
置，并将其作为头部运动的三轴基准点。头部
姿态数据主要包括：俯仰角 (Pitch)、偏航角
(Yaw)、滚转角(Roll)，即抬头、摇头和转头，
通过这三个欧拉角可以较为准确地估计出头部
的空间姿态。本研究采用右手笛卡尔坐标系，
其空间 X、Y、Z 三轴位置与对应的头部姿态
欧拉角如图 4 所示。 

 

图 4 头部姿态欧拉角 

为了便于对头部姿态数据的统计和分析，本
研究对所记录数据进行了可视化处理，头部的
三轴姿态数据如图 5 所示。通过三轴欧拉角偏
转角度，可直观地观察出头部偏航角(Yaw)和
俯仰角(Pitch)在目标捕获过程中的变化幅度较
大，而滚动角(Roll)的变化幅度较小。 

 

图 5 三轴姿态数据记录 

2) 眼部特征提取 

本研究使用的人眼检测方法主要是利用
AdaBoost 级联分类器结合 Haar-like 特征先检
测出人脸区域，再在人脸区域中检测出人眼区
域并进行截取。基于 OpenCV 所包含针对面
部、眼部等进行过预训练的分类器，本研究对
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目标出现屏幕对应相机所采集的正视图像进行
了人脸检测、人眼检测，识别结果如图 6 所
示。通过人眼检测结果，对被试的单眼区域按
64×64 的分辨率进行截取，得到左右眼部图像
作为下一步卷积神经网络模型的输入。 

 
图 6 人脸检测、人眼检测结果 

针对基于外观的视觉估计方法所存在对光照
条件的要求，本研究结合基于特征的视觉估计
方法的思想，在三个屏幕的边界等距地安放了
八个近红外点光源，通过其在角膜的反射所形
成的普尔钦斑作为眼部图片的特征点。由于相
机属于近红外相机，因此红外点光源经眼角反
射所形成普尔钦斑的亮度不受外界光照影响。
综上述设想，本研究在对视线落点模型训练
前，对所截取的左右眼图像进行阈值处理，得
到含有较为明显普尔钦斑的左右眼图像并作为
卷积神经网络模型输入的对照组，对比其对视
线落点估计结果的影响。 

本研究对三台显示器(分辨率：2560×1440)

按左(0)、中(1)、右(2)的顺序编号，为了更加
直观地对比几种阈值处理的效果与普尔钦斑的
明显程度。本研究以左(0)屏的五个目标点位为
例进行分析，具体位置如图 7 所示。其中，每
个点前两个坐标为目标中心像素点于屏幕上的
位置，第三个坐标为屏幕号。 

 
图 7 目标中心点位置 

对上图 A、B、C、D、E 五点的所采集的眼
部图像按照二值化阈值、截断阈值化和超阈值
化零的顺序进行处理，对比几种阈值处理方法
对普尔钦斑的检测效果，其结果如图 8 所示。
由图中可观察出，对于不同的注视点，被试眼
部所形成的普尔钦斑的数量与位置关系都有所
不同，当注视左屏(0)屏幕中心位置时(C)，通
过阈值处理可检测出 6-7 个普尔钦斑。其中，
截断阈值化处理后的普尔钦斑较为明显，能有
效地消除了其他外界光源的在角膜的反射光
斑，保留了原始眼部图像。因此，本文将采用
截断阈值化处理法对裁剪后的左右眼图像进行
处理，检测含有明显普尔钦斑的左右眼图像作
为下一步卷积神经网络模型的输入。 

 
图 8 普尔钦斑检测结果 

对于深度卷积神经网络模型，本文参考了
2015 年由何凯明等研究者提出的深度残差网络
结构。目前，常用的几种 ResNet 网络主要包
括：ResNet-18、ResNet-34、ResNet-50 以及其
他变种，虽然增加网络的深度可以提升模型的
准确率，但较为浅层的残差网络(ResNet-18)在
实际应用中同样有良好的准确性，同时其模型
较小，提供了更快的收敛速度，便于参数的优
化。而且基于 ResNet 模型短接的操作，可实
现对不同分辨率特征的组合，对于本文输入的
眼部图像有较好的特征提取效果。因此，本研
究以 ResNet-18 作为人眼视线落点估计模型，
ResNet-18 网络结构如表 1 所示。通过对比不
同类型的双眼图像输入（有无通过阈值处理检
测普尔钦斑），分析其输出位于屏幕上视线落
点的精度。由于传统的残差神经网络多用于分
类任务，本文受 2019 年 Google 团队对视线落
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点估计的研究启发，在神经网络的隐含层后连
接多个全连接层，用于回归出视线落点坐标。 

本文的人眼视线落点估计模型，输入为被试
正视屏幕中带捕获目标时的左、右眼部灰度图
像。由于眼部图像的分辨率要求较低，本文采
用 64×64 的分辨率大小截取单眼图像。相对
于传统 ResNet-18 网络 RGB 图片的输入大小
(224×224×3)，本文的图像输入较小(64×64

×1)，使得模型的计算速度提高。而本模型分

为两条结构相同的支路，其输入层为裁剪后的
左、右眼图图像，而每条支路隐含层的主要结
构是按着 ResNet-18 网络结构搭建的，主要由
17 层卷积层、8 个残差块构成和 2 个池化层构
成，使用 Relu 作为所有卷积层的激活函数，实
现对左右眼图像的特征提取，最后通过 4 个全
连接模块将左右眼的特征图进行融合并输出所
估计的视线落点坐标 G(P_x, P_y, S_n)，本文的
人眼视线落点估计网络模型结构如图 9 所示。

 

图 9 人眼视线落点估计网络结构

3) 融合头眼的视线落点估计 

为了在视线落点估计中融合头部姿态数据，
本研究借鉴采用传统的 BP 神经网络的思想，
通过多个全连接层作为头部姿态数据特征提取
的网络分支，主要包括：一个输入层和一个隐
含层构成。其中，输入层为被试的头部姿态欧
拉角(Roll, Pitch, Yaw)；隐含层由三个全连接层
组成，神经元节点个数分别为 100，16，16，
并使用 Relu 作为激活函数，将最后一层全连接
层所提取的特征向量作为输出。 

基于特征层融合的原理，本研究先对头眼数
据进行预处理以完成特征提取，对于眼部图像
由上文中所提及的眼部视线落点估计模型的输
入层和隐含层实现左右眼部图像特征的提取；

对于头部图像则是由头部姿态欧拉角，通过头
部特征提取网络输出与眼部特征维度相同的特
征向量，完成维度配准。两部分特征通过多个
全连接层实现特征融合，构成融合头眼运动的
视线落点估计模型结构。本研究的视线落点估
计模型的网络结构共包括三个支路，输入层分
别输入被试在捕获目标时的左右眼图像与头部
姿态欧拉角。对于左右眼支路，使用三个全连
接层进行特征提取，神经元节点个数分别为
128、32、16；对于头部姿态支路，采用头部
特征提取网络，最后通过由两个神经元节点个
数为 16 和 3 的全连接模块完成对三条支路数
据的特征融合，实现对三屏实现落点的回归，
如图 10 所示。
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图 10 融合头眼运动的视线落点估计模型

4. 结果 

为了使人眼视线落点估计模型在学习中朝向
更精确的估计性能改进，本文使用均方方差
(MSE)作为损失函数，MSE 表示预测数据与原
始数据所对应点误差的平方和均值： 
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其中， 是样本的个数， 是原始数据， 是预
测数据。当 MSE 值越接近 0 时，说明模型的
拟合能力越强，其视线落点估计也越准确。基
于本文的三屏实验平台，每个屏幕为一个二维
平面，采用欧式距离计算标定点与估计点间的
差值，预测接受域为以标定点为圆心，半径 30

像素的圆形区域。在模型的训练过程中，本文
使用自适应矩估计(Adam)作为优化器，其能对
不同的参数调整不同的学习率；网络的学习率
设定为 ，批处理量设置为 32，训练周期为
100。 

本研究通过对原始数据的筛选，去除被试闭
眼的图像后，从中共选取了 30000 张图像并将
它们裁剪为适合模型输入的尺寸，其中 70%用
于模型训练，30%用于模型的性能测试。同
时，以输入原始数据前是否进行普尔钦斑检测
的两种情况，构成两种不同的视线落点估计模
型并作为对照实验，对比分析最终的预测准确
率和其他性能。 

实验结果表明，当仅使用原始眼部图像作为
模型输入时，模型(Eye)所需提取的特征较少，

收敛速度较快。在 200 个 epoch 左右模型基本
收敛，其平均准确度可达到 85.6%；而当输入
为普尔钦斑检测后的眼部图像时，虽然模型
(Eye&Purkinje)的收敛速度较慢，在 400 个
epoch 左右基本收敛，但是其平均准确率可达
到 87.7% 。通过对比两种模型的性能，
Eye&Purkinje 模型在输入前通过阈值处理使普
尔钦斑特征更加明显，增加了隐含层特征提取
的复杂度，从而增加了模型的收敛时间，但其
相对于 Eye 模型的视线落点估计平均准确率提
升了 2.1%，且损失曲线较为平稳，模型的稳定
性更好。因此，本研究的选用 Eye&Purkinje 模
型作为人眼视线落点估计的模型，并验证了输
入含有显著普尔钦斑的眼部图像，可为图像增
加特征点，减小光照条件的影响，提高模型估
计的准确率。两种模型训练的准确率和损失变
化曲线，如图 11 所示。 

 

图 11 Eye和 Eye&Purkinje 模型性能对比分析图 
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为了评价融合头眼运动的视线落点估计模型
的性能，本文将其与仅使用眼部图像的两种模
型进行了对比分析。如图 12 所示，在前 200

个 epoch 中，加入头部姿态后的模型性能已优
于 Eye&Purkinje 模型，但由于需要融合头眼特
征，参数优化所需时间较长，准确率不如 Eye

模 型 。 从 模 型 的 收 敛 速 度 分 析 ， 虽 然
Eye&Purkinje&Head 模型收敛较慢，但在 600

个 epoch 后模型趋于平稳，模型的精度较高，
其平均准确率可达 89.9%，相对于仅使用单维
度的眼部图像输入模型，该模型通过融合头眼
多维度的数据，实现对头眼协调运动数据的压
缩与关联，其准确率最多提升了 4.3%。 

 

图 12 三种视线落点估计模型性能对比分析图 

5. 总结 

对于视线落点估计的研究，本文分别采用了
三种模型进行了对比分析，即仅使用眼部图像
的视线落点估计模型、使用眼部特征的视线落
点估计模型与融合头眼运动特征的视线落点估
计模型。通过对比，融合头部运动与眼部特征
点图像的视线落点估计模型(EPH)对测试集的
预测结果有较高的测试准确度，所估计的视线
落地基本在待捕获目标的预测接受域内且未出
现过拟合的现象，其对视线落点估计的平均准
确率可达 89.9%。但本文也发现这三个模型普
遍估计的精度不高，该问题是基于外观的视线

落点估计方法存在的普遍问题，有待后续进一
步的研究与展望。 

综上，本文基于一种外观与特征相结合的视
线估计方法，有效地融合了视线移动时的头部
运动与眼部运动，将头部姿态数据与眼部特征
通过深度卷积神经网络结构最终实现了对二维
屏幕中视线落点的精确估计。为视线落点估计
研究提出了一种切实有效的研究方法。 
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