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Abstract—With the rapid development of computer
computing power, as an important method in the field of
artificial intelligence, deep learning has amazing
learning ability, especially in dealing with massive data,
which makes deep learning in the fields of image
language

processing, data mining and unmanned driving, Has

recognition, image classification, natural
shown an extraordinary role. In previous studies, the
style transfer algorithm has not developed well due to
the poor computing power of Computer, the basic
configuration of computer hardware can not meet the
minimum requirements and the poor image effect after
migration. However, with the development of computer
hardware and the rapid change of GPU computing
power, the style transfer network based on deep
learning has become a hot issue in the study of style
transfer in recent years. According to the research,
although the traditional style transfer method can
obtain the texture, color and other information of the
style image, the model needs to be learned every time a
new target image is generated, and the time cost during
this period is very high. In this way, the trained model is
not repeatable, and the generated image is often very
random and can not get good results. Therefore, the
emergence of style transfer methods based on deep
learning solves the limitations of traditional style
transfer methods. Style transfer methods based on deep
learning are faster than traditional style transfer
methods, and the generalization of the model is better.
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The style transfer algorithms of main neural networks
are divided into two categories, Slow style transfer
based on image iteration and fast style transfer based on
model iteration. VGG network model can combine style
image and content image, and greatly improve the style
transfer efficiency of image.
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I. OVERVIEW

Image style transfer technology is to migrate
the painting style, stroke, texture and other
information of a style image to the content image,
and re render the content image, so that the
content image can change the color, texture and
other information of the style image while
retaining the content features. It is a technology
with artistic creation and image editing. Style
transfer can also be regarded as an extension of
texture synthesis. Texture synthesis inputs a
content image and a style image, and the
generated image retains the structure of the
original image and has the artistic style of the
style image through the algorithm. The local
texture is recorded by statistical model, and then
the local texture is synthesized into the overall
image texture. Texture based synthesis method is
to combine texture and content image, so that the
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content image has the texture and color of style
image. The significance of style transfer
technology is that an ordinary person without any
skills can realize the desired style transfer of
different images by using the model. In real life,
style transfer technology is being applied in
various commercial fields, such as Meitu software,
animated film production, advertising design and
so on. Inspired by the Convolutional Neural
Networks (CNN) in visual perception task [1], in
2015, Gatys et al. [2] proposed using VGG
network model to achieve the goal of image style
migration, with ideal effect, and initiated the
research on style transfer technology based on
neural network.

With the wide application of neural network in
the field of image processing, convolutional
Neural Networks also began to appear frequently
in people's vision. Convolutional neural network
is composed of multilayer neural network, which
mainly includes five hierarchical structures, Input
layer, conv layer, ReLU layer, Pooling layer and
FC layer. The input layer processes the image,
including normalization, resizing, de averaging
and so on. Convolution layer is the most important
step in convolution neural network. It connects the
feature information of each layer of the image,
The activation function is mainly used for
nonlinear mapping of the output results of the
convolution layer. The commonly used activation
functions are ReLU function, Sigmod function,
Tahn function, etc. The pooling layer is mainly
used for image dimensionality reduction or
dimensionality upgrading. The purpose of
dimensionality reduction is to compress the
number of parameters, reduce the over fitting of
data and improve the training speed.
Dimensionality upgrading is mainly to restore the
original feature information of the image. The full
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connection layer concatenates the data elements
after the operations of convolution layer, activate
function and pooling layer to obtain the final
classification result.

Visual Geometry Group Network (VGG)
neural network model is a deep convolution neural
network developed by the computer vision group
of Oxford University and Google deep mind in
2014 [3]. It was originally born as an image
classification network, Since its successful
development, vgg-16 and vgg-19 models have
been launched, the most commonly used VGG-16
and VGG-19.The VGG network model is shown
in Figure 1 VGG Network structure.
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Figure 1. VGG Network structure.

VGG-16 and VGG-19 models are commonly
used. There is no essential difference between
them, but the depth of the network is different.
The network model structure of VGG-19 is shown
in Figure 2. VGG-19 contains 19 hidden layers,
consisting of 16 convolution layers and 3 full
connection layers. It adopts a continuous 3x3
convolution core, with stripe of 1 and padding of 0.
The pool layer uses MaxPooling.
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Figure 2.  VGG-19 network model structure.

In the VGG network structure, multiple
identical 3x3 convolution layers are stacked
together. It shows that two 3x3 convolutions in
series and one 5x5 convolution have the same
receptive field, while three 3x3 convolutions in
series and one 7x7 convolution have the same
receptive field. This structural design method can
reduce the amount of learning parameters and
reduce over fitting, This makes the network more
capable of learning features, which also makes it a
good advantage to select VGG network structure
for feature extraction of style migration.

I11. IMAGE STYLE TRANSFER

In 2015, Gatys et al. [2] Divided the style
transfer of images into two parts: content loss and
style loss, and used VGG network as the style
transfer network for the first time. The style
transfer network of Gatys et al. belongs to the
slow style transfer method based on image
iteration. The stylized image is generated by pixel
iteration on the noisy image, and the style
matching is mainly carried out according to the
global statistical information. Li and Wand's [9]
style transfer method is based on regional fast
similarity. The closer the shape of the content
image is to the style image, the better the effect.
The style transfer method of Johnson et al. [4]
And Ulyanov et al. [13] is a fast style transfer
method based on model iteration. The parameters
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of the model are obtained through the pre training
of the feedforward network for style transfer. The
image generated by this model is faster, but the
image effect may not be very good. The style
transfer method based on GAN network mainly
converts the input image style through the game
between generator and discriminator, represented
by conditional generative adversarial networks
(CGAN), CycleGAN and StarGAN. The
advantage of this style transfer method is that the
generated image is more realistic. This paper
mainly studies the application and improvement of
VGG neural network in the field of style transfer.

Establishment of experimental environment:

The experimental project uses Python as the
programming language and tensorflow as the
mainstream framework to realize VGG-19 neural
network model. The processor of the experimental
hardware platform is Intel (R) core (TM)
15-6300HQ, the main frequency is 2.50 GHz and
the memory is 8.00 GB. The GPU is GTX960M.
During the experiment, the selected content
images are common landscape images, and the
classic oil paintings with distinctive color and
style are used as style images to carry out image
style transfer experiments under different
conditions.

Effects of different model parameters on image
style transfer:

The landscape map of Taipeil01 building is
selected as the content image. The following is the
experiment on the influence of different
convolution layers on the image style. Figure 3 is
the image with white noise, after using the
convolution kernel of conv2_1 of VGG-19
network, it can be seen that the low-level
convolution check of VGG network has obvious
retention of the semantic information of the image,
the dividing boundary between buildings is
obvious. Using the convolution kernel of conv3_1,
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we can see that the edge of the image has been
blurred. After passing through the convolution
kernel of conv4 1, the edge information has
become difficult to identify, and after passing
through the convolution kernel of conv5_1,the
has

semantic information been

unrecognizable.

completely

Figure 3. Convolution check of VGG Network and recognition ability of

image semantic information.

VGG-19 network is composed of 16
convolution layers and 3 full connections. The
low-level convolution layer can well retain texture
and semantic information, while the high-level
convolution layer often loses important semantic
information and blurs the boundary between
image objects, but the degree of style will be
better. The image stylization algorithm mainly
includes three most important parts: content
reconstruction, style representation and style
transformation. In this paper, the output of the
middle and high-level activation function of VGG
network is used to represent the content features
of the image, mainly including its macro structure
and contour, and then the Gram matrix is used to
describe its style features. Image style transfer can
be realized by minimizing the difference between
the content features and style features of the
generated image and the input image. The
following is the definition of image content loss:

Icontent(B’;(’l):%Z(Fi,lj _PIIJ)2 (1)

i]
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On the left side of the equation, p represents
the content image, x represents the stylized image,
and | represents the | layer of the VGG network;

F; and B, jon the right side of the equation

]
represent the jth activation value of the ith feature
mapping of the stylized image and the content
image in layer | of the VGG network, respectively.
The style loss function is defined as follows. The
following is the definition of image style loss:

E, :%Z(Gil,j _Ail,j)z'

AIN'MP 4 @)

The following is the definition of Gram matrix:

Gil,j = Z Fijl Fjlk. (3)
k

Where Gi'y ; Is the inner product of feature map

i and j in layer I, Where Fij' represents the kth

activation value of the ith feature map of the style
image in the L layer of the VGG network.

The total loss function is defined as follows:
Lot (P, @, X) = Bl (@, X) + alcontent(p, X). (4)

Among a, p and X represent style image,
content image and generated image respectively; 3
and o is the weight of style loss function and
content loss function in the total loss function.

Select the landscape map of Taipei 101
building as the content image and Van Gogh's star
sky as the style image. The final target image
generated after different iterations of the model is
shown in the figure below:
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Figure 4.

Image after style transfer of Taipei 101 building.

Each training of such a network takes a lot of
time, and the generated images vary greatly
according to the number of iterations, which
obviously can not meet the requirements of style
migration. Therefore, the modification of VGG
network structure is also a very important research
direction.

A. Improved method of introducing residual
block.

The training speed of images generated through
VGG-19 network training is very slow, because
the loss value needs to be calculated for each style
transfer image. Such training requires a lot of
computing resources of computers, and it is
difficult for ordinary computers to train images
with good results in a short time, so Johnson et al.
[4] A method of training feedforward network
with perceptual loss function is proposed to
transfer image style. A feedforward convolutional
neural network is trained in supervised mode, and
the pixel by pixel gap is used as loss function to
measure the gap between output image and input
image. The advantage of this design is that only
one feedforward is required to pass through the
trained network, it greatly saves the time of image
style migration. This style transfer method is
improved based on the idea of residual network.
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In 2014, GoogleNet [9] of Google and
VGGNet [3] of visual geometry group of Oxford
University once again achieved excellent results in
using deep convolution neural network in ilsvrc
that year, and was several percentage points better
than alexnet in classification error rate, once again
pushing the deep convolution neural network to a
new peak. Compared with alexnet, these two
network structures choose the strategy of
continuing to increase the network complexity to
enhance the feature representation ability of the
network. Generally speaking, the learning degree
of the deep convolution network is related to the
depth of the network structure. The more layers of
the network, the stronger the learning ability. The
deep learning network designed based on this idea
will have many convolution layers. Although the
learning ability of the neural network is improved,
the problem is that the parameters become
miscellaneous and the speed of the training
network will be slower. Therefore, some people
put forward the problem of improving many
parameters of deep convolution network and
speeding up the training speed of convolution
network. In 2015, he Kaiming and others from
Microsoft Research Asia participated in the ilsvrc
of that year using the residual network RESNET
[10], and their performance in image classification,
target detection and other tasks significantly
exceeded the performance level of the competition
of the previous year, and finally won the
championship. The obvious feature of the residual
network is that it has a considerable depth, from
32 layers to 152 layers, which is much deeper than
the previously proposed depth network structure,
and then a 1001 layer network structure is
designed for small data. The depth of residual
network RESNET is amazing, and the extremely
deep depth makes the network have very strong
expression ability.
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The experiment of he Kaiming et al. [11]
proved that in the same network structure, the
deep network learning ability will be relatively
improved. However, when the network is deep,
continuing to improve the number of layers of the
network will not improve the performance. As
shown in Figure 5, in the same number of
iterations, the training effect of the neural network
with deep network layers decreases. With the
increase of network layers, the learning ability of
the network does not improve, but significantly
degrades, and the training error also increases with
the increase of layers. If this happens, we usually
consider whether the data is over fitted, Whether
different activation functions and normalization
operations are required. However, such operation
will make the network unable to go deeper. How
can we ensure the depth of the network without
the decline of training degree. So Deep Residual

Learning was born.
u

20-layer

training error (%)
test error (%)

20-layer

1 2 3 ] 3 & o 1 ] 3 ]

iter. (led) iter. (led)

Figure 5. Training error (left) and test error (right) on CIFAR-10.

Let a hidden layer in the depth network be
h(x)-x — f (x). If it can be assumed that the
combination of multiple nonlinear layers can
approximate a complex function, it can also be
assumed that the residual of the hidden layer is
approximate to a complex function. That is, we
can express the hidden layer as H (x) = f (x) + x.
In this way, we can get a new residual structure
unit, as shown in Figure 6 It can be seen that the
output of the residual unit is obtained by adding
the output and input elements cascaded by
multiple convolution layers (ensuring that the
dimensions of the output and input elements of the
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convolution layer are the same), and then
activated by relu. Connecting this structure, the
residual network is obtained.

b 4
F(x) .
identity
F(x) +x

Figure 6. Residual structure.

It can be seen that the network with residual
structure has better convergence performance and
lower training error rate. As shown in Figure 7.

Figure 7. Training on ImageNet.

In this experiment, a pre trained VGG network
is used as the classification network. The network
layer is composed of convolution layer and
residual block. The five-layer convolution layer in
VGG-19 model is replaced by five-layer residual
block. The last layer uses a scaled tahn function to
ensure that the value of the output image is
between 0 ~ 255. Except that the first layer and
the last layer use 9x9 convolution core, the other
layers are 3x3 convolution core. The residual
structure is introduced into VGG network to better
optimize the network, because its internal residual
block uses jump connection, which alleviates the
problem of gradient disappearance caused by
increasing depth in depth neural network.
Traditional neural network may have more or less
information loss and loss during information
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transmission, If the appropriate residual block is
added to the VGG network, the input information
can be directly bypassed to the output to protect
the integrity of the information and improve the
training speed of the network.

Figure 8 below shows the output image after
the style transfer of Van Gogh's starry sky. Due to
the simple structure of the residual block, it solves
the problems of the degradation of the learning
ability of the convolution neural network and the
slow training speed of many parameters. In
addition to the excellent classification ability of
the VGG network, it can be seen that the image
effect of the style transfer of the VGG network
combined with the structure of the residual
network is good, but there are also some other
problems, For example, it can be clearly seen that
the segmentation between image objects after
style transfer is not obvious, and some image
semantics are lost.

Figure 8. Output image after style conversion.

B. Improved method of introducing encoder
-decoder.

The effect of transfer is ensured by calculating
the content loss and style loss of the original
image and style image, which leads to the need to
train the corresponding network for each style,
and the training Network is very time-consuming.
Style loss and content loss still need to adjust the
parameters of layer to get an area that matches the
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style image, so they can have a better effect.
Moreover, this step needs to be retrained for
different styles, so they need to be retrained,
which will waste a lot of time in the process of a
large number of parameters.

In order to solve the above problems, in 2017,
Huang et al [4]. Proposed a multi style transfer
network and introduced the encoder decoder
structure. In 2018, Li et al. [12] Added whiting
transform and coloring transform (WCT)
operations to the reserved encoder decoder
structure to carry out style transfer without
training. The advantage of this model is that it can
avoid the loss of time caused by model adjustment
parameters, and better preserve the texture of the
generated image.

The network of encoder decoder structure is an
unsupervised learning technology, which uses
neural network for characterization learning. It is a
neural network that copies the input of the
network to the output, compresses the input into a
hidden space representation, and then outputs the
reconstructed representation. The network consists
of encoder and decoder. The encoder compresses
the input into potential space, which can be
represented by the coding function H = f (x). The
decoder is to reconstruct the input from the hidden
space, which can be represented by the decoding
function r = g (H). The encoder decoder structure
can also be understood as training multiple
encoders with different layers, so that the input
data can be reduced from the original
multi-dimensional data to a smaller dimension,
and then the reduced dimension data can be used
for image classification respectively. In this way,
the original big data classification problem will be
transformed into a small-scale image classification
problem. The encoder decoder structure is shown
in Figure 9.



International Journal of Advanced Network, Monitoring and Controls

Original Input Latent Representation Reconstructed Output

X h r

Figure 9. Encoder decoder structure.

The network structure is divided into two parts,
generating network and calculating loss network.
The generative network is a feedforward network,
which is used for style conversion in the later
stage. The computational loss network is used to
constrain data during training.

The style transfer generation network is
composed of encoder AdalN decoder. The
encoder part adopts the pre trained VGG network
and only relu4_1. Turn the image space of the
style image and the content image to the feature
space, and then use the Adain module to
normalize the content image. Adain is an adaptive
instance normalization. In the feature space, the
normalized mean and variance of each channel
input of the content image are matched to the
mean and variance of each channel input of the
style image. Here, the input of content image and
style image are feature space.

AdalN(x, ) =U(Y)(X;T/;()X))+#(Y)-

(5)

Where x is the content image, y is the style
image, is the standard deviation of the style image,
is the average value of the content image, is the
standard deviation of the content image, and is the
average value of the style image.

The decoder part is a network that transforms
the feature space into the image space. This part of
the network generally adopts the network structure
symmetrical to the encoder. What needs to be
trained in the whole network is the parameter
weight information of this part of the network.
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Generally, a pool layer is added between the
convolution layers. In the process of image
processing, the pool layer is mostly used to
compress the image Compress the amount of data
and parameters to reduce over fitting. The network
structure diagram is shown in Figure 10.

Figure 10. Encoder decoder style transfer network structure.

The style loss function consists of two parts:
content loss and style loss. The overall style loss
function consists of the sum of the two.

In this experiment, a pre trained VGG network
is selected as the encoder to encode the input
pictures, then a symmetrical decoder is designed
for decoding, and a layer of adain is added
between the encoder and the decoder for
normalization. The following is the style transfer
image obtained by extracting features from a
simple encoder-decoder + VGG network. The
generated image is shown in Figure 11.

Figure 11. Style transfer image.

It can be seen that the generated style transfer
image works well in the image area with simple
background, but it doesn't work well in the area
with complex background and many objects. In
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order to make the degree of stylization high and
lose the semantic information of the original
content image, many areas are easy to be ignored,
and the edge boundary between objects is not
obvious, the model does not understand which
areas should be preserved and should be noticed
when migrating the style image to the content
image.

The effect of the style image generated by the
style transfer network described above is not very
good. Li et al. [12] Considered whether the image
requiring style transfer can be improved in
addition to the normalization processing,
Therefore, it is proposed to color and decolor the
image. Firstly, the image is input into the decoder,
and then a symmetrical decoder is designed to
color and decolor between the two networks, that
is, the input feature map subtracts mean value, and
then multiplies the inverse matrix of its own
covariance matrix to control the centralization of
the feature map to a whitening distribution space,
That is, the features of the content image are
extracted and the style color is removed. Then, the
covariance matrix of the feature map is obtained
for the style image, multiplied by the result of the
whitening of the content image, and then added
with the mean value, that is, the feature map after
the whitening of the content image is transferred
to the distribution of the style map. Before the
output is passed into the decoder, the stylization
degree can be controlled by adjusting parameters.
The control style formula is shown in equation 6
below.

fo=d ,+Q—a)f, (6)
o 1s the stylization factor.
Firstly, this experiment trains multiple

decoders, inputs the image into the pre trained
VGG network, extracts different relu layer
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structures as the encoder output, trains the decoder
for the results of conv layer, and designs multiple
decoders for different relul to reluS layers to
restore the results of VGG convolution layer.

Figure 12 below shows the generated image
obtained by adjusting the stylization parameters
when selecting the landscape map and figure map
as the content image. It can be seen that the higher
the degree of stylization, the more obvious the
style of the Image, and the appropriate adjustment
parameters can make the fusion effect of content
image and style image better.

Figure 12. Style images with different weights.

C. Improved method of introducing Generative
Adversarial Network.

Generative adversarial network (GAN) [6] is a
network proposed by Goodfellow et al. In 2014, at
present, it has become one of the most important
research directions in the field of deep learning.
This technology is mainly used in the fields of
image super-resolution, style transfer, image
segmentation, text to image generation, natural
language generation. GAN is based on the idea of
two person zero sum game in game theory, in
which both sides of the game are generators and
discriminators in GAN. The function of the
generator is to generate a sample similar to the
real training data according to the input random
noise. The purpose of discriminator is to
distinguish between real data and generated data.
The function of the generator is to generate a
sample similar to the real training data according
to the input random noise. The purpose of
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discriminator is to distinguish between real data
and generated data. In order to win the game, both
generator and discriminator need to improve their
generation and discrimination ability. The ultimate
purpose is to find Nash equilibrium between
generator and discriminator. Based on this
principle, the generated countermeasure network
can make the generated image close to the real
image.

In recent years, many scholars have proposed a
variety of improved GAN algorithms according to
different application scenarios. Radford et al.[7]
fused CNN (revolutionary neural network) and
GAN and proposed deep convolution to generate
countermeasure network, which makes the model
training more stable and the generated images
more diversified. Zhu et al. proposed CycleGAN
[8] using bidirectional Gan, so as to control the
learning of the model.

Compared with the traditional generation
countermeasure network, CycleGAN has two
main improvements: (1) The input of the
traditional generation countermeasure network is
random noise, so it can only generate pictures
randomly, so the quality of the generated images
can not be controlled. CycleGAN changes the
input to the given picture data to control image
generation. (2) In the past, the conversion between
images, such as gray image to color image, image
to semantic label, day image to night image, etc.,
required paired training data. However, in real life,
the acquisition of paired data is difficult and
expensive. CycleGAN can realize the conversion
from the input image to the target image without
paired training data. The main principle of
CycleGAN is to introduce the cyclic consistent
loss function based on the counter loss of GAN.
The anti loss control generates an image close to
the target image, and the cyclic consistent loss is
used to preserve the content structure of the input
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image and the characteristics of the target image.
When the image is generated, the potential
relationship of multiple feature domains is found
through training, so as to transform the relevant
domain according to the input image. However,
when the conversion degree is not constrained, the
generation result of CycleGAN will have the
obvious disadvantage of arbitrary change of
irrelevant domain characteristics.

Figure 13 are CycleGAN demonstration
pictures.

Input Ground truth Qutput

Ground truth

—

Figure 13. Night and Day switch.

This paper uses the method of combining VGG
network and CycleGAN. The network structure is
composed of encoder, decoder and converter.

Encoder: The images are input into the neural
network in turn to extract different images type
style. Convolution layer using VGG-19 network,
the number of filters in the first convolution layer
is 64. When input to the encoder, The size of the
is 256>256, resulting in 256>64>64 feature map.

Converter Transform an
domain to another.

image from one

Decoder The decoder is the inverse process of
the encoder. Also from the eigenvector, the
original work of low-level features can wait for
image generation.

Discriminator The discriminator predicts
whether each image is the original image or the
generated image formed image.
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Figure 14 below shows the target image
generated after training with the same content
image and different style images. It can be seen
that the image generated after using the
CycleGAN structure is more realistic.

Figure 14. Generate different style images.

IV. SUMMARY

This paper takes image transfer as the main
research content, extracts the characteristics of
content image and style image through VGG
network model, realizes the style transfer of
generated image, and introduces some
improvement measures for VGG network, which
makes VGG network model more suitable for
style migration. Experiments show that the image
style transfer effect achieved by using the methods
mentioned in this paper is good and the image
generation speed is fast, but these methods also
have some limitations, the generated image often
loses some semantics, and the texture features and
edge boundaries are fuzzy. In the future, we will
continue to study and improve the image transfer
algorithm, further improve the accuracy of
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stylized images, and extend the research results to
practical product applications.
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