
International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

DOI: 10.21307/ijanmc-2021-038 89

Research on Hierarchical Multi-core Scheduling

Algorithm Based on Task Replication

Yin Haijing

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 1391275494@qq.com

Wang Jianguo

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 2269261628@qq.com

Huang Shujuan

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 349242386@qq.com

Abstract—The rapid development of multi-core systems

makes task scheduling in multi-core systems a new

research topic. While tasks are running in parallel, how

to improve the efficiency of the system and maintain the

load balance of the system is the focus of research in the

new era. Aiming at the problem that the multi-core

scheduling algorithm based on task duplication does not

consider the load balance of each CPU, which leads to

the problem of reduced CPU utilization. This paper

combines a hierarchical idea on the basis of task

replication, and proposes a new hierarchical multi-core

scheduling algorithm TDLS algorithm based on task

replication. This algorithm is based on the idea of

hierarchical scheduling. According to the fact that there

is no dependency relationship between tasks at the same

layer after layering, the task scheduling sequence is

adjusted to reduce the waste on the core, shorten the

waste between cores caused by communication time, and

reduce the number of processors. , Thereby greatly

improving the CPU utilization rate, using the least time

and the least number of cores to complete scheduling,

making the load of multi-core scheduling more balanced.

Experiments show that under the same experimental

conditions, compared with the traditional multi-core

scheduling algorithm based on task replication, the

improved algorithm TDLS reduces the number of

processor cores, and also shortens the scheduling length

of the total task. Its performance is better than the

traditional multi-core scheduling algorithm based on

task replication.

Keywords-Load Balancing; Task Scheduling; Task

Duplication; Hierarchical Scheduling

I. INTRODUCTION

Multi-core processor technology mainly

integrates two or more processor cores on a single

chip to enhance computing performance.

Multi-core processors improve system

performance by distributing load on multiple CPU

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

90

cores, and relying on high-speed on-chip

interconnection and high-bandwidth pipelines of

memory and input/output (I/O). Under the same

conditions, multi-core processors can bring more

performance and productivity advantages than

current single-core processors. Therefore, the

research of scheduling algorithms under

multi-core platforms is also a future development

trend.

Multi-core processor task scheduling refers to

how to allocate multiple tasks to multiple cores for

parallel execution through a scheduling algorithm,

so as to minimize the total time for task

completion. Multi-core task scheduling has long

been proved to be an NP problem [1], and it is

difficult to find the optimal solution in polynomial

time. The most common task scheduling algorithm

is based on heuristic scheduling algorithm.

Heuristic scheduling algorithms mainly include

table scheduling algorithm based on critical path

[2-5], task duplication algorithm [6-8], processor

allocation algorithm based on task duplication [9],

improved multi-core scheduling based on task

duplication Algorithm [10]，clustering algorithm

[11-13] and so on.

Since the communication overhead between

tasks on the same processor can be ignored,

scheduling based on task duplication is an

effective strategy for reducing communication

overhead. The characteristic of the task copy

method is to reduce the communication time

between processors by copying the predecessor

tasks that have a communication relationship,

thereby reducing the execution time of the system

as a whole.

When using reasonable and effective

duplication rules and strategies, scheduling

algorithms based on task duplication have been

proven to have better scheduling effects than other

scheduling algorithms. However, the scheduling

algorithm does not consider the factor of load

balancing, and in the DAG graph, there is no

dependency between nodes in the same layer.

According to the adjustment of the scheduling

sequence between nodes in the same layer, the idle

time is reduced and the CPU is increased.

Utilization, while coordinating the load in each

CPU to make it more balanced. Therefore, this

paper proposes a hierarchical scheduling algorithm

based on task duplication to solve the

shortcomings of unbalanced load of traditional

scheduling algorithms based on task duplication.

II. TASK SCHEDULING MODEL

The task scheduling problem is a kind of

combinatorial optimization problem in

mathematics, that is, an abstract task model of a

computer application is established, and then

based on the constraints of the task model, through

a reasonable scheduling strategy, a scheduling

sequence is generated and the tasks are assigned to

the processing cores for calculations. Get the least

total task execution time and maximize the parallel

execution advantages of multi-core systems.

The task scheduling model is mainly divided

into two aspects: system model and task model.

The system model is a mathematical abstraction of

information such as the topological structure and

computing capabilities of a multi-core system, and

the task model is a mathematical abstraction of

computer application programs. It mainly includes

information such as the constraint relationship

between tasks and the characteristics of the task

itself. The following are two parts Detailed

discussion.

A. System model

The system model is an abstraction of the

actual computing system. The actual computing

system in this article is a multi-core system, that is,

a system composed of multiple processing cores.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

91

The system is generally expressed as

}p,,p,,p,p{P 21 ni .

Among them, P represents a collection of

processing cores in a multi-core system, which pi

represents the i processing core, and n represents

that the system contains a total of n cores.

B. Mission model

The relationship between multi-core tasks is

generally represented by DAG (Directed Acyclic

Graph), and when there is a dependency between

tasks, a weighted DAG graph is used (as shown in

Figure 1)

2/1T

3/2T

3/3T

4/4T

5/5T

4/7T

4/8T

4/6T

2/9T

4

1

1

1

1

12

12

6

1

1

10

10

10

10

Figure 1. DAG diagram

Its mathematical description is:

 },,,{ ctETG

Among them, the formula

},,,,,{ 21 ni TTTTT represents the set of nodes

in the graph, which is the first task; represents the

set of nodes in the graph, which is the first task;

}{ ijEE Represents the set of directed edges

that Eij is a communication relationship between

task Ti and task Tj, otherwise, they cannot

communicate directly. },,,,,{ 21 ni ttttt . This Set

represents the set of node weights in the graph，in

other words，ti is execution time of the task i.

Meanwhile, The set, }{ ijcc ,is the set of weights of

directed edges that cij Indicates the communication

time between task Ti and task Tj.

Since the communication time of tasks between

different cores is much longer than the

communication time between the same cores,

when two tasks are on the same processor, the

communication time is ignored, that is
0ijc
 in

two related tasks on the same processor.

Definition:

 The earliest start time Ti
begin of task i: it

represents the smaller value between the

predecessor time of task execution and the

maximum associated predecessor time in

the task predecessor set. which is:

 }}max{,min{ __ prere
i

preexe
i

begin
i TTT

 The completion time Ti
end of task i: the time

when the task is executed on the processing

core is equal to the start time plus the task

execution time, which means the time it

takes to complete the task. which is:

 ibegin
i

end
i tTT

 Associated predecessor j of task i: The set

of tasks that must be completed before the

task i is executed. That is, the task set on

which the execution of the task depends.

For example, the task set Ti, Tj in Figure 1

is the associated predecessor of task T7. The

associated predecessor time Ti
re_pre of task i

is: if the associated predecessor task j and

task i of the task are on the same core, the

associated predecessor time is the

completion time of the associated

predecessor task j; if not on the same core,

The associated predecessor The time is the

completion time of the associated

predecessor task j and the maximum value

of the sum of communication values

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

92

between task i and its associated

predecessor task j.

coredifferent ain ,,

core same in the ,,
_

jicT

jiT
T

ijend
j

end
j

prere
i

Where task j is a predecessor task of task i.

 The running result of a certain processor

pi
end indicates the total time spent by the

processor after all tasks on the processor are

scheduled.

 The running result of all processors Pend: it

represents the final task scheduling result,

namely: the total time for all tasks to

complete.

 The successor task next of task i: the task

related to task i, and it must be ensured that

task i has been executed before it is

executed.

 Execution predecessor k of task i: On the

same core, task k to be executed before task

execution is the execution predecessor of

task i. And the execution predecessor time

Ti
re_pre of task i is: the completion time of

the execution predecessor of task k, that is:

 end
k

prere
i TT _

 The idle time Ti
rest of task i: represents the

wasted time slice on the same core when

the task is executed. which is:

 preexe
i

begin
i

rest
i TTT _

 The communication start time Tnext
begin_comm

between task i and the successor task next:

It mainly represents the communication

relationship between task i and its successor

task next that are not on the same processor.

That is: after the execution of task i is over,

after the communication time between

processor cores, the start time of the

successor task next.

C. Basic constraints of task scheduling

For a certain task, when it meets the following

two necessary conditions, it can be executed on a

specific processing core.

On one hand, All the predecessor tasks of the

same processing core with which it is dependent

have been executed, and the communication

between the predecessor tasks that are not on the

same processing core and this task has also been

completed;

On the other hand, the time period occupied

between the task start time and the end time does

not conflict with other tasks on the processing core

where the task is located.

 For task i, its earliest start execution time

must not be less than the execution

completion time of all predecessor tasks,

which is:

 }{max _ prere
i

begin
i TT

 The start time of the communication

between the task and the successor task

must be after the end time of the task,

because only the task execution is

completed before the relevant data can be

provided to the successor task, which is:

 end
i

commbegin
i TT _

 For a task graph, the final task scheduling

result depends on the task that finishes

executing at the latest. That is, the time

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

93

used by the processor with the longest

scheduling length among all processors.

which is:

 }max{Pend end
ip

III. TASK DUPLICATION SCHEDULING

ALGORITHM

The idea of task duplication scheduling

algorithm is to generate copies of specific tasks

through duplication. These copies will be allocated

to the processing core according to a certain

strategy. When the subsequent tasks of the copy

are allocated to the same processing core, they can

be offset. Consumption of communication

between tasks to save time.

Task duplication can be divided into single-task

duplication and multi-task duplication according

to the number of duplication tasks. Single-task

duplication copies and allocates tasks that restrict

the start time of the current task to the processing

core; multi-task duplication copies and allocates

multiple predecessor tasks of the task to the

processing core.

Taking Figure 1 as an example, the successor

tasks of task T1 are T2, T3, T4, and T5. Therefore,

when T1 and T2, T3, T4, and T5 are executed on

different processing cores, there will be inter-core

communication, in order to save inter-core During

the communication time, a task duplication

strategy is adopted to replicate T1, and all three

copies are allocated to the processing cores where

T2, T3, T4, and T5 are located. Through this task

duplication method, the task scheduling result is

finally optimized.

As shown in Figure 2, if the T1 task is not

copied, and assuming that the tasks T2 and T1 are

not on the same core, the earliest start time of the

task T2 is equal to the time W1 waiting for the

completion of the predecessor task T1 and the task

that is not on the same processor The sum of the

communication time C1,2 between T1 and task T2,

that is, the earliest start time of T2 is 6, and the

scheduling result of task T2 is 9; and if the task

duplication strategy is adopted for scheduling, a

copy is made on the processor where T2 is located

The copy of T1, at this time, because the

communication time is reduced by 4, the start time

of T2 becomes 2, and the scheduling result of task

T2 is reduced to 5 (as shown in Figure 3). At this

time, the optimization effect is significant and the

scheduling efficiency is greatly improved.

Figure 2. T1 does not use task duplication strategy T2 scheduling result

diagram

Figure 3. T1 adopts task duplication strategy T2 scheduling result graph

IV. TDLS SCHEDULING ALGORITHM

In the DAG diagram, tasks can be classified by

layer. The tasks in the same layer are independent,

and the tasks in the same layer are not dependent

on each other, that is, if there is no priority

T1

W1

T3

C1,2 T2

0 2 4 6 8 10 12 14 16 18 20 22 24
TIME

C
O

R
ES

T1

T1

T3

T2

0 2 4 6 8 10 12 14 16 18 20 22 24

TIME

C
O

R
ES

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

94

difference, the tasks in the same layer, there is no

difference in the execution of tasks. The TDLS

algorithm mainly relies on hierarchical scheduling

without dependencies between tasks on the same

layer. By adjusting the scheduling sequence of

tasks on the same layer, tasks with a smaller initial

start time can be scheduled when the time slice

comes, reducing the number of cores. At the same

time, considering that the communication value

between tasks with dependencies between

different layers is too large, it will also affect the

completion time of the task, so the predecessor

tasks that have a greater impact on the task are

adjusted to reduce the communication time

between tasks, Thereby increasing the CPU

utilization.

A. Steps of hierarchical multi-core scheduling

algorithm based on task replication

Step 1: Calculate the in-degree of all tasks in

the DAG graph;

Step 2: Determine whether the in-degree of all

tasks is 0, and put all tasks with in-degree of 0 into

one layer, that is, the k layer is obtained;

Step 3: Remove the tasks that have been

layered in the DAG graph and their related edges

to get a DAG graph, and make 1 kk , repeat

steps 1~3, until the task in the DAG graph is

empty, that is The DAG graph completes the

layering operation.

B. The Steps of TDLS Algorithm

Step 1: According to the in-degree of the tasks

in the DAG, use the hierarchical algorithm to

perform hierarchical operations on all tasks;

Step 2: According to the layering result, the

scheduling sequence is initially obtained; because

the tasks in the same layer do not have mutual

dependence, the tasks of the same layer can be

scheduled according to the earliest start time T
i
begin

of the task in the order of scheduling from small to

large to reduce idle time , Improve CPU

utilization.

Start

Hierarchical all tasks

according to degree

Calculate the earliest start time of

tasks in the same layer, and adjust

the scheduling sequence of each

layer

Determine whether the last task

has been scheduled?？
N

According to the hierarchical

results, schedule by layer

In the same layer, according to

the principle of the earliest

start time of the task from

small to large, adjust the task

scheduling sequence sequence

Determine whether the earliest

start time of a task on multiple

cores is the same？

Cores with smaller idle time for

computing tasks are allocated

Determine whether the idle

time of the task is greater than

0?

Assume that the predecessor task of

the task is adjusted to the core where

the task is located

Analyze whether the earliest

start time of the task has not

become larger

Adjust the predecessor task

of task i
Give up adjustment

Y

Y

Y

N

N

N

N

End

Y

Determine whether the task to be

assigned and the last scheduled

task are in the same layer?？
Y

N

Determine whether all

predecessor tasks of the task

have been analyzed?

Figure 4. TDLS algorithm flow chart

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

95

Step 3: Schedule each task in turn according to

the adjusted task scheduling sequence sequence.

The polling method assigns the task Ti to each core

in turn, calculates and compares the earliest start

time T
i
begin of the task on each core, so as to find

out which core takes the least time, that is, allocate

Ti to the core.

If the task's earliest start time T
i
begin is not single,

consider the core with the smaller idle time T
i
rest

for priority allocation, and when the idle time T
i
rest

is greater than 0, it means that the communication

time between a predecessor task T
i
re_pre of the task

and the task is relatively large. When they are not

on a core, the earliest start time T
i
begin of the task is

relatively large, so the precursor task T
i
re_pre that

affects the start time of the task is adjusted to the

core where the task is located for analysis and

comparison. If the earliest start time of the task is

not If it changes or becomes smaller, adjust the

predecessor task T
i
re_pre of the task to the core

where the task is located; otherwise, give up the

adjustment. The final scheduling sequence is the

optimal scheduling sequence (the algorithm flow

chart is shown in Figure 4).

C. Analysis of the time complexity of TDLS

algorithm

When selecting an algorithm for a task

scheduling problem, it is usually necessary to

evaluate the time complexity of the algorithm.

Time complexity refers to the increasing trend of

the execution time required by the algorithm when

the scale of the problem expands. Generally, O is

used to represent the time complexity. Among

them, O(1) means that the time complexity of the

algorithm is constant, that is, no matter how much

the problem scale increases, the time consumed by

the algorithm remains the same; O(n^2) means

that the time complexity of the algorithm is square,

that is, when the problem scale When the problem

is enlarged by 2 times, the time required for the

algorithm to solve the problem is 4 times; O(2^n)

means that the time complexity of the algorithm is

exponential of 2, and once the scale of the problem

increases, the time consumed by the algorithm will

be exponential increase.

Assume that the DAG task graph has n nodes.

By traversing the task graph to schedule each node,

the time complexity required for each node is O(n).

For each node of each layer, it is necessary to

perform simulation scheduling before confirming

the scheduling to determine whether the

scheduling reduces idle time, reduces CPU waste,

and improves CPU utilization. When planning to

schedule, the scheduling sequence of each layer

needs to be adjusted. At this time, assuming that

there are m nodes in a certain layer, the time

complexity required at this time is O(m), so the

TDLS algorithm is extremely In this case, the time

complexity of the algorithm is not greater than

O(n^2).

V. EXPERIMENTAL RESULTS AND ANALYSIS

This chapter will use the TDLS algorithm and

the traditional task replication-based scheduling

algorithm (CPTD and TDMC algorithm) to

conduct experiments in the same environment to

schedule the specific DAG graph (Figure 1), and

use TDLS, CPTD and TDMC to perform the

experiments respectively. The task scheduling

distribution diagram of the three algorithms

available for scheduling is shown in Figures 5~7,

and the two performance indicators and the

algorithm time complexity of the number of

processors used and the CPU utilization rate are

compared. Each of the three algorithms is the

comparison of performance evaluation parameters

is shown in Table 1.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

96

A. Performance evaluation parameters

The performance of the task scheduling

algorithm can be evaluated with the following

performance evaluation parameters:

 The number of processors used to complete

all tasks. After all tasks in the task graph are

scheduled, the fewer processors are used,

the more resources can be saved.

 Scheduling length. After all tasks in the task

graph are scheduled, the length of time used,

the smaller the scheduling length, the better

the explanation of resources, and the better

the algorithm.

B. Task diagram example analysis

For a specific task graph example (Figure 1),

call TDLS, CPTD, and the (TDMC algorithm for

short) in Literature 14 (referred to as TDMC

algorithm [14]) respectively based on task

duplication scheduling algorithm, draw a

scheduling diagram, and compare these 3

algorithms Various performance indicators.

The DAG graph shown in Fig. 1 has 4 layers,

including 9 tasks T1 ~ T9. Among them, each circle

in the figure represents a task node, and the nodes

in the node represent the task and the time required

to execute the task. The line segment with arrows

in the figure represents the communication

dependency between tasks. Where the start

position of the arrow line segment is the

predecessor task node, the end position is the

successor task node, and the number on the

straight line represents the communication time

between tasks (because the execution time of two

tasks on the same CPU is much shorter than that of

different CPU The execution time of the two tasks

between the two, therefore, when two dependent

tasks are on the same CPU, the communication

time can be ignored).

TABLE I. COMPARISON OF SCHEDULING RESULTS OF TDLS, CPTD,

AND TDMC ALGORITHMS

Use TDLS, CPTD and TDMC three algorithms

to schedule the DAG graph respectively, and the

task scheduling and distribution diagram

corresponding to the three algorithms can be

obtained, as shown in Figure 5~7, and the

comparison of each performance evaluation

parameter under the three algorithms the situation

is shown in Table 1.

Figure 5. TDLS algorithm scheduling diagram

Figure 6. CPTD algorithm scheduling diagram

T1

T1

T4

T2

T6

T3

C6,9

T5 T8 T7 T9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

TIME

C
O

R
ES

T1

T1

T1

T4

T2

T2

C4,9

T3

T6

T7

C6,9

T5 T8 T9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

TIME

C
O

R
ES

Algorithms

Scheduling

Length

Number of

Processors

Algorithm Time

Complexity

TDLS

CPTD

TDMC

23

23

24

2

3

5

O(n^2)

O(n^2)

O(n^2)

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

97

Figure 7. TDMC algorithm scheduling diagram

It can be seen from Figures 5 to Figures 7 and

Table 1 that the TDMC algorithm is used to

schedule the task graph. The total execution time

is 24, and the number of processor cores is 5. The

main reason why the CPU is not fully utilized is T7

and T9. The communication time of the node is too

long, resulting in waste between T9 and T8, thereby

increasing the total length of task scheduling. The

CPTD algorithm is used to schedule the task graph.

The total execution time is 23, and the number of

processor cores is 3. The algorithm first finds the

critical path, and then adopts the early completion

strategy of the preceding node group to merge the

scheduling sequences of nodes T7 and T8 , So that

the execution time of T9 can be advanced, and the

communication time can be better controlled. The

scheduling of T6 and T4 is completed through task

replication, but the processors where these two

tasks are located mainly complete the scheduling

of T6 and T4, which greatly reduces the CPU

Utilization rate makes the CPU load unbalanced.

The total execution time used by the improved

TDLS algorithm is 23, which only occupies 2

processor cores. It is mainly used in the scheduling

process of the third layer, by adjusting the

scheduling sequence, according to the T7 and T8

nodes are unrelated For nodes on the same layer,

T7 is adjusted to T8 before scheduling, which

shortens the waste of time caused by too long

communication time, improves CPU utilization,

and makes the load more balanced than the

previous algorithm.

Compared with the TDMC algorithm, the

TDLS algorithm on the one hand shortens the total

scheduling length of task execution (the

scheduling length is reduced from 24 to 23), and

on the other hand, it reduces the number of CPU

required to complete all tasks (the number of CPU

is reduced from 5 to 2), the algorithm reduces the

waste of resources on the whole and improves the

utilization of CPU; at the same time, compared

with the CPTD algorithm, the TDLS algorithm

reduces the number of redundant tasks on the one

hand (such as: Reduction in the number of tasks T1

and task T2 redundancy). On the other hand, it

also reduces the number of CPU required to

complete the task (the number of CPU is reduced

from 3 to 2). It also reduces the waste of time

slices between tasks and greatly improves each

CPU The utilization rate makes the load more

balanced. Through the comparison and analysis of

the above two groups of experiments, it can be

seen that the TDLS algorithm has better

scheduling performance than the CPTD algorithm

and the TDMC algorithm.

VI. CONCLUSION

Aiming at the problem of load imbalance in the

traditional multi-core scheduling algorithm based

on task duplication under certain circumstances,

this paper proposes a hierarchical scheduling

algorithm based on task replication, TDLS. TDLS

is based on no scheduling sequence between tasks

in the same layer. The scheduling sequence of

tasks in the same layer can shorten the idle time of

the CPU, shorten the execution time of the

program, and then improve the utilization of

multiple CPU. It is proved through comparative

T1

T1

T1

T1

T1

T2

T3

T4

T2

T2

T3

C3,8

C4,6

T5

T6

T7

T8

C6,9

C7,9

T9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

TIME

C
O

R
ES

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

98

experiments that the TDLS algorithm is compared

to the other two traditional scheduling algorithms

based on task replication. The load is more

balanced, and it also has a certain significance for

the improvement of the scheduling performance of

the multi-core parallel computer system.

The hierarchical task scheduling algorithm

based on task replication proposed in this paper

overcomes some inherent shortcomings of

traditional task replication-based algorithms in the

experimental environment of simulated scheduling,

and improves the efficiency of task scheduling and

CPU utilization. The research of this algorithm is

completely based on assumptions and simulated

environment. However, the real situation is more

complicated and changeable. For multi-core

systems, its load balancing, power consumption,

and communication congestion between cores

need to be considered under actual conditions.

Therefore, it is necessary to further expand the

scope of research in future research, apply it to

real-time systems, and make more comprehensive

considerations for the problems in the actual

situation.

REFERENCES
[1] Han Yingjie. Research on Multi-core Task Scheduling

Based on Comprehensive Scheduling Critical Path [D].
Harbin University of Science and Technology, 2014.

[2] Ren Liangyu, Zhao Chengping, Yan Hua. Multi-core
scheduling algorithm based on task duplication and
redundancy elimination [J]. Computer Engineering,
2019, 45(05):59-65.

[3] Shi Wei, Zheng Weimin. A balanced dynamic critical
path scheduling algorithm based on related task graphs
[J].Chinese Journal of Computers, 2001(09):991-997.

[4] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D.
Anger,Chung-Yee Lee. Scheduling Precedence Graphs

in Systems with Interprocessor Communication Times.
[J]. SIAM J. Comput.,1989,18(2):

[5] Wu M Y, Gajski D D. Hypertool: a programming aid
for message-passing systems [J]. IEEE Transactions on
Parallel and Distributed Systems, 1990, 1(3):330-343.

[6] Liu Y, Jia P, Yang Y. Efficient scheduling of DAG
tasks on multi-core processor based parallel
systems[C]// Tencon IEEE Region 10 Conference.
IEEE, 2016．

[7] S. Darbha and D. P. Agrawal, "Optimal scheduling
algorithm for distributed-memory machines," in IEEE
Transactions on Parallel and Distributed Systems, vol. 9,
no. 1, pp. 87-95, Jan. 1998, doi: 10.1109/71.655248.

[8] An optimal scheduling algorithm based on task
duplication [J]. Journal of Systems Engineering and
Electronics, 2005(02):445-450.

[9] Harbin. An Algorithm of Processor Pre-Allocation
Based on Task Duplication [J]. Chinese Journal of
Computers, 2004.

[10] Ye Jia, Zhou Mingzheng. An improved multi-core
scheduling algorithm based on task replication［J］.
Computer Engineering and Applications, 2015, 51(12):
31-37．

[11] Boeres C, Filho J V, Rebello V. A Cluster-based
Strategy for Scheduling Task on Heterogeneous
Processors[C]// Symposium on Computer Architecture
& High Performance Computing. IEEE, 2004.

[12] Palis M A, Liou J C, Wei D. Task Clustering and
Scheduling for Distributed Memory Parallel
Architectures. IEEE Transactions on Parallel and
Distributed Systems, 7(1):46-55 [J]. IEEE Transactions
on Parallel and Distributed Systems, 1996, 7(1):46-55.

[13] Lan Zhou. Research on scheduling algorithms in
distributed systems［D］ . Chengdu: University of
Electronic Science and Technology of China, 2009．

[14] Zhiqiang Xie, Lei Zhao, Yu Xin, Jing Yang. A
Scheduling Optimization Algorithm Based on Task
Duplication for Multi-core Processor [J]. Energy
Procedia,2011,13:

[15] Ahmad Wakar, Alam Bashir. An efficient list
scheduling algorithm with task duplication for scientific
big data workflow in heterogeneous computing
environments [J]. Concurrency and Computation:
Practice and Experience, 2020,33(5):

[16] Computing - Supercomputing; Findings in the Area of
Supercomputing Reported from Harbin Institute of
Technology (Linear and Dynamic Programming
Algorithms for Real-time Task Scheduling With Task
Duplication) [J]. Computer Weekly News,2019:

[17] Cao Zhebo, Li Qing. Research and design of multi-core
processor parallel programming model [J]. Computer
Engineering and Design, 2010, 31(13):
2999-3002+3056.

[18] Chen Gang, Guan Nan, Lu Mingsong, Wang Yi. A
review of real-time multi-core embedded systems [J].
Journal of Software, 2018, 29(07): 2152-2176.

