
International Journal of Advanced Network, Monitoring and Controls      Volume 06, No.04, 2021 

DOI: 10.21307/ijanmc-2021-038                            89 

Research on Hierarchical Multi-core Scheduling 

Algorithm Based on Task Replication 

 

Yin Haijing  

School of Computer Science and Engineering 

Xi’an Technological University 

Xi’an, China 

E-mail: 1391275494@qq.com 

 

Wang Jianguo 

School of Computer Science and Engineering 

Xi’an Technological University 

Xi’an, China 

E-mail: 2269261628@qq.com 

 

Huang Shujuan 

School of Computer Science and Engineering 

Xi’an Technological University 

Xi’an, China 

E-mail: 349242386@qq.com 

 

 

 

 

 

 

 

Abstract—The rapid development of multi-core systems 

makes task scheduling in multi-core systems a new 

research topic. While tasks are running in parallel, how 

to improve the efficiency of the system and maintain the 

load balance of the system is the focus of research in the 

new era. Aiming at the problem that the multi-core 

scheduling algorithm based on task duplication does not 

consider the load balance of each CPU, which leads to 

the problem of reduced CPU utilization. This paper 

combines a hierarchical idea on the basis of task 

replication, and proposes a new hierarchical multi-core 

scheduling algorithm TDLS algorithm based on task 

replication. This algorithm is based on the idea of 

hierarchical scheduling. According to the fact that there 

is no dependency relationship between tasks at the same 

layer after layering, the task scheduling sequence is 

adjusted to reduce the waste on the core, shorten the 

waste between cores caused by communication time, and 

reduce the number of processors. , Thereby greatly 

improving the CPU utilization rate, using the least time 

and the least number of cores to complete scheduling, 

making the load of multi-core scheduling more balanced. 

Experiments show that under the same experimental 

conditions, compared with the traditional multi-core 

scheduling algorithm based on task replication, the 

improved algorithm TDLS reduces the number of 

processor cores, and also shortens the scheduling length 

of the total task. Its performance is better than the 

traditional multi-core scheduling algorithm based on 

task replication. 

Keywords-Load Balancing; Task Scheduling; Task 

Duplication; Hierarchical Scheduling 

I. INTRODUCTION 

Multi-core processor technology mainly 

integrates two or more processor cores on a single 

chip to enhance computing performance. 

Multi-core processors improve system 

performance by distributing load on multiple CPU 
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cores, and relying on high-speed on-chip 

interconnection and high-bandwidth pipelines of 

memory and input/output (I/O). Under the same 

conditions, multi-core processors can bring more 

performance and productivity advantages than 

current single-core processors. Therefore, the 

research of scheduling algorithms under 

multi-core platforms is also a future development 

trend. 

Multi-core processor task scheduling refers to 

how to allocate multiple tasks to multiple cores for 

parallel execution through a scheduling algorithm, 

so as to minimize the total time for task 

completion. Multi-core task scheduling has long 

been proved to be an NP problem [1], and it is 

difficult to find the optimal solution in polynomial 

time. The most common task scheduling algorithm 

is based on heuristic scheduling algorithm. 

Heuristic scheduling algorithms mainly include 

table scheduling algorithm based on critical path 

[2-5], task duplication algorithm [6-8], processor 

allocation algorithm based on task duplication [9], 

improved multi-core scheduling based on task 

duplication Algorithm [10]，clustering algorithm 

[11-13] and so on. 

Since the communication overhead between 

tasks on the same processor can be ignored, 

scheduling based on task duplication is an 

effective strategy for reducing communication 

overhead. The characteristic of the task copy 

method is to reduce the communication time 

between processors by copying the predecessor 

tasks that have a communication relationship, 

thereby reducing the execution time of the system 

as a whole. 

When using reasonable and effective 

duplication rules and strategies, scheduling 

algorithms based on task duplication have been 

proven to have better scheduling effects than other 

scheduling algorithms. However, the scheduling 

algorithm does not consider the factor of load 

balancing, and in the DAG graph, there is no 

dependency between nodes in the same layer. 

According to the adjustment of the scheduling 

sequence between nodes in the same layer, the idle 

time is reduced and the CPU is increased. 

Utilization, while coordinating the load in each 

CPU to make it more balanced. Therefore, this 

paper proposes a hierarchical scheduling algorithm 

based on task duplication to solve the 

shortcomings of unbalanced load of traditional 

scheduling algorithms based on task duplication. 

II. TASK SCHEDULING MODEL 

The task scheduling problem is a kind of 

combinatorial optimization problem in 

mathematics, that is, an abstract task model of a 

computer application is established, and then 

based on the constraints of the task model, through 

a reasonable scheduling strategy, a scheduling 

sequence is generated and the tasks are assigned to 

the processing cores for calculations. Get the least 

total task execution time and maximize the parallel 

execution advantages of multi-core systems. 

The task scheduling model is mainly divided 

into two aspects: system model and task model. 

The system model is a mathematical abstraction of 

information such as the topological structure and 

computing capabilities of a multi-core system, and 

the task model is a mathematical abstraction of 

computer application programs. It mainly includes 

information such as the constraint relationship 

between tasks and the characteristics of the task 

itself. The following are two parts Detailed 

discussion. 

A. System model 

The system model is an abstraction of the 

actual computing system. The actual computing 

system in this article is a multi-core system, that is, 

a system composed of multiple processing cores. 
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The system is generally expressed as

}p,,p,,p,p{P 21 ni  . 

Among them, P represents a collection of 

processing cores in a multi-core system, which pi 

represents the i processing core, and n represents 

that the system contains a total of n cores. 

B. Mission model 

The relationship between multi-core tasks is 

generally represented by DAG (Directed Acyclic 

Graph), and when there is a dependency between 

tasks, a weighted DAG graph is used (as shown in 

Figure 1) 
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Figure 1.  DAG diagram 

Its mathematical description is: 

 },,,{ ctETG   

Among them, the formula 

},,,,,{ 21 ni TTTTT   represents the set of nodes 

in the graph, which is the first task; represents the 

set of nodes in the graph, which is the first task; 

}{ ijEE   Represents the set of directed edges 

that Eij is a communication relationship between 

task Ti and task Tj, otherwise, they cannot 

communicate directly. },,,,,{ 21 ni ttttt  . This Set 

represents the set of node weights in the graph，in 

other words，ti is execution time of the task i. 

Meanwhile, The set, }{ ijcc  ,is the set of weights of 

directed edges that cij Indicates the communication 

time between task Ti and task Tj. 

Since the communication time of tasks between 

different cores is much longer than the 

communication time between the same cores, 

when two tasks are on the same processor, the 

communication time is ignored, that is 
0ijc
 in 

two related tasks on the same processor. 

Definition: 

 The earliest start time Ti
begin of task i: it 

represents the smaller value between the 

predecessor time of task execution and the 

maximum associated predecessor time in 

the task predecessor set. which is: 

 }}max{,min{ __ prere
i

preexe
i

begin
i TTT   

 The completion time Ti
end of task i: the time 

when the task is executed on the processing 

core is equal to the start time plus the task 

execution time, which means the time it 

takes to complete the task. which is: 

 ibegin
i

end
i tTT   

 Associated predecessor j of task i: The set 

of tasks that must be completed before the 

task i is executed. That is, the task set on 

which the execution of the task depends. 

For example, the task set Ti, Tj in Figure 1 

is the associated predecessor of task T7. The 

associated predecessor time Ti
re_pre of task i 

is: if the associated predecessor task j and 

task i of the task are on the same core, the 

associated predecessor time is the 

completion time of the associated 

predecessor task j; if not on the same core, 

The associated predecessor The time is the 

completion time of the associated 

predecessor task j and the maximum value 

of the sum of communication values 
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between task i and its associated 

predecessor task j.  

 
coredifferent  ain  ,,

core same in the ,,
_

jicT

jiT
T

ijend
j

end
j

prere
i


 

Where task j is a predecessor task of task i. 

 The running result of a certain processor 

pi
end indicates the total time spent by the 

processor after all tasks on the processor are 

scheduled. 

 The running result of all processors Pend: it 

represents the final task scheduling result, 

namely: the total time for all tasks to 

complete. 

 The successor task next  of task i: the task 

related to task i, and it must be ensured that 

task i has been executed before it is 

executed. 

 Execution predecessor k of task i: On the 

same core, task k to be executed before task 

execution is the execution predecessor of 

task i. And the execution predecessor time 

Ti
re_pre of task i is: the completion time of 

the execution predecessor of task k, that is: 

 end
k

prere
i TT _  

 The idle time Ti
rest of task i: represents the 

wasted time slice on the same core when 

the task is executed. which is: 

 preexe
i

begin
i

rest
i TTT _  

 The communication start time Tnext
begin_comm 

between task i and the successor task next: 

It mainly represents the communication 

relationship between task i and its successor 

task next that are not on the same processor. 

That is: after the execution of task i is over, 

after the communication time between 

processor cores, the start time of the 

successor task next. 

C. Basic constraints of task scheduling 

For a certain task, when it meets the following 

two necessary conditions, it can be executed on a 

specific processing core. 

On one hand, All the predecessor tasks of the 

same processing core with which it is dependent 

have been executed, and the communication 

between the predecessor tasks that are not on the 

same processing core and this task has also been 

completed; 

On the other hand, the time period occupied 

between the task start time and the end time does 

not conflict with other tasks on the processing core 

where the task is located. 

 For task i, its earliest start execution time 

must not be less than the execution 

completion time of all predecessor tasks, 

which is:  

 }{max _ prere
i

begin
i TT   

 The start time of the communication 

between the task and the successor task 

must be after the end time of the task, 

because only the task execution is 

completed before the relevant data can be 

provided to the successor task, which is: 

 end
i

commbegin
i TT _  

 For a task graph, the final task scheduling 

result depends on the task that finishes 

executing at the latest. That is, the time 
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used by the processor with the longest 

scheduling length among all processors. 

which is: 

 }max{Pend end
ip  

III. TASK DUPLICATION SCHEDULING 

ALGORITHM 

The idea of task duplication scheduling 

algorithm is to generate copies of specific tasks 

through duplication. These copies will be allocated 

to the processing core according to a certain 

strategy. When the subsequent tasks of the copy 

are allocated to the same processing core, they can 

be offset. Consumption of communication 

between tasks to save time. 

Task duplication can be divided into single-task 

duplication and multi-task duplication according 

to the number of duplication tasks. Single-task 

duplication copies and allocates tasks that restrict 

the start time of the current task to the processing 

core; multi-task duplication copies and allocates 

multiple predecessor tasks of the task to the 

processing core. 

Taking Figure 1 as an example, the successor 

tasks of task T1 are T2, T3, T4, and T5. Therefore, 

when T1 and T2, T3, T4, and T5 are executed on 

different processing cores, there will be inter-core 

communication, in order to save inter-core During 

the communication time, a task duplication 

strategy is adopted to replicate T1, and all three 

copies are allocated to the processing cores where 

T2, T3, T4, and T5 are located. Through this task 

duplication method, the task scheduling result is 

finally optimized.  

As shown in Figure 2, if the T1 task is not 

copied, and assuming that the tasks T2 and T1 are 

not on the same core, the earliest start time of the 

task T2 is equal to the time W1 waiting for the 

completion of the predecessor task T1 and the task 

that is not on the same processor The sum of the 

communication time C1,2 between T1 and task T2, 

that is, the earliest start time of T2 is 6, and the 

scheduling result of task T2 is 9; and if the task 

duplication strategy is adopted for scheduling, a 

copy is made on the processor where T2 is located 

The copy of  T1, at this time, because the 

communication time is reduced by 4, the start time 

of T2 becomes 2, and the scheduling result of task 

T2 is reduced to 5 (as shown in Figure 3). At this 

time, the optimization effect is significant and the 

scheduling efficiency is greatly improved. 

 

Figure 2.  T1 does not use task duplication strategy T2 scheduling result 

diagram 

 

Figure 3.  T1 adopts task duplication strategy T2 scheduling result graph 

IV. TDLS SCHEDULING ALGORITHM 

In the DAG diagram, tasks can be classified by 

layer. The tasks in the same layer are independent, 

and the tasks in the same layer are not dependent 

on each other, that is, if there is no priority 
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difference, the tasks in the same layer, there is no 

difference in the execution of tasks. The TDLS 

algorithm mainly relies on hierarchical scheduling 

without dependencies between tasks on the same 

layer. By adjusting the scheduling sequence of 

tasks on the same layer, tasks with a smaller initial 

start time can be scheduled when the time slice 

comes, reducing the number of cores. At the same 

time, considering that the communication value 

between tasks with dependencies between 

different layers is too large, it will also affect the 

completion time of the task, so the predecessor 

tasks that have a greater impact on the task are 

adjusted to reduce the communication time 

between tasks, Thereby increasing the CPU 

utilization. 

A. Steps of hierarchical multi-core scheduling 

algorithm based on task replication 

Step 1: Calculate the in-degree of all tasks in 

the DAG graph; 

Step 2: Determine whether the in-degree of all 

tasks is 0, and put all tasks with in-degree of 0 into 

one layer, that is, the k layer is obtained; 

Step 3: Remove the tasks that have been 

layered in the DAG graph and their related edges 

to get a DAG graph, and make 1 kk , repeat 

steps 1~3, until the task in the DAG graph is 

empty, that is The DAG graph completes the 

layering operation. 

B. The Steps of TDLS Algorithm 

Step 1: According to the in-degree of the tasks 

in the DAG, use the hierarchical algorithm to 

perform hierarchical operations on all tasks; 

Step 2: According to the layering result, the 

scheduling sequence is initially obtained; because 

the tasks in the same layer do not have mutual 

dependence, the tasks of the same layer can be 

scheduled according to the earliest start time T
i
begin  

of the task in the order of scheduling from small to 

large to reduce idle time , Improve CPU 

utilization. 

Start
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tasks in the same layer, and adjust 

the scheduling sequence of each 
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Determine whether the last task 
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Figure 4.  TDLS algorithm flow chart 
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Step 3: Schedule each task in turn according to 

the adjusted task scheduling sequence sequence. 

The polling method assigns the task Ti to each core 

in turn, calculates and compares the earliest start 

time T
i
begin of the task on each core, so as to find 

out which core takes the least time, that is, allocate 

Ti to the core. 

If the task's earliest start time T
i
begin is not single, 

consider the core with the smaller idle time T
i
rest 

for priority allocation, and when the idle time T
i
rest 

is greater than 0, it means that the communication 

time between a predecessor task T
i
re_pre of the task 

and the task is relatively large. When they are not 

on a core, the earliest start time T
i
begin of the task is 

relatively large, so the precursor task T
i
re_pre that 

affects the start time of the task is adjusted to the 

core where the task is located for analysis and 

comparison. If the earliest start time of the task is 

not If it changes or becomes smaller, adjust the 

predecessor task T
i
re_pre of the task to the core 

where the task is located; otherwise, give up the 

adjustment. The final scheduling sequence is the 

optimal scheduling sequence (the algorithm flow 

chart is shown in Figure 4). 

C. Analysis of the time complexity of TDLS 

algorithm 

When selecting an algorithm for a task 

scheduling problem, it is usually necessary to 

evaluate the time complexity of the algorithm. 

Time complexity refers to the increasing trend of 

the execution time required by the algorithm when 

the scale of the problem expands. Generally, O is 

used to represent the time complexity. Among 

them, O(1) means that the time complexity of the 

algorithm is constant, that is, no matter how much 

the problem scale increases, the time consumed by 

the algorithm remains the same; O(n^2) means 

that the time complexity of the algorithm is square, 

that is, when the problem scale When the problem 

is enlarged by 2 times, the time required for the 

algorithm to solve the problem is 4 times; O(2^n) 

means that the time complexity of the algorithm is 

exponential of 2, and once the scale of the problem 

increases, the time consumed by the algorithm will 

be exponential increase. 

Assume that the DAG task graph has n nodes. 

By traversing the task graph to schedule each node, 

the time complexity required for each node is O(n). 

For each node of each layer, it is necessary to 

perform simulation scheduling before confirming 

the scheduling to determine whether the 

scheduling reduces idle time, reduces CPU waste, 

and improves CPU utilization. When planning to 

schedule, the scheduling sequence of each layer 

needs to be adjusted. At this time, assuming that 

there are m nodes in a certain layer, the time 

complexity required at this time is O(m), so the 

TDLS algorithm is extremely In this case, the time 

complexity of the algorithm is not greater than 

O(n^2). 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter will use the TDLS algorithm and 

the traditional task replication-based scheduling 

algorithm (CPTD and TDMC algorithm) to 

conduct experiments in the same environment to 

schedule the specific DAG graph (Figure 1), and 

use TDLS, CPTD and TDMC to perform the 

experiments respectively. The task scheduling 

distribution diagram of the three algorithms 

available for scheduling is shown in Figures 5~7, 

and the two performance indicators and the 

algorithm time complexity of the number of 

processors used and the CPU utilization rate are 

compared. Each of the three algorithms is the 

comparison of performance evaluation parameters 

is shown in Table 1. 
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A. Performance evaluation parameters 

The performance of the task scheduling 

algorithm can be evaluated with the following 

performance evaluation parameters: 

 The number of processors used to complete 

all tasks. After all tasks in the task graph are 

scheduled, the fewer processors are used, 

the more resources can be saved. 

 Scheduling length. After all tasks in the task 

graph are scheduled, the length of time used, 

the smaller the scheduling length, the better 

the explanation of resources, and the better 

the algorithm. 

B. Task diagram example analysis 

For a specific task graph example (Figure 1), 

call TDLS, CPTD, and the (TDMC algorithm for 

short) in Literature 14 (referred to as TDMC 

algorithm [14]) respectively based on task 

duplication scheduling algorithm, draw a 

scheduling diagram, and compare these 3 

algorithms Various performance indicators. 

The DAG graph shown in Fig. 1 has 4 layers, 

including 9 tasks T1 ~ T9. Among them, each circle 

in the figure represents a task node, and the nodes 

in the node represent the task and the time required 

to execute the task. The line segment with arrows 

in the figure represents the communication 

dependency between tasks. Where the start 

position of the arrow line segment is the 

predecessor task node, the end position is the 

successor task node, and the number on the 

straight line represents the communication time 

between tasks (because the execution time of two 

tasks on the same CPU is much shorter than that of 

different CPU The execution time of the two tasks 

between the two, therefore, when two dependent 

tasks are on the same CPU, the communication 

time can be ignored). 

TABLE I.  COMPARISON OF SCHEDULING RESULTS OF TDLS, CPTD, 

AND TDMC ALGORITHMS 

 

Use TDLS, CPTD and TDMC three algorithms 

to schedule the DAG graph respectively, and the 

task scheduling and distribution diagram 

corresponding to the three algorithms can be 

obtained, as shown in Figure 5~7, and the 

comparison of each performance evaluation 

parameter under the three algorithms the situation 

is shown in Table 1. 

 

Figure 5.  TDLS algorithm scheduling diagram 

 

Figure 6.  CPTD algorithm scheduling diagram 
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Figure 7.  TDMC algorithm scheduling diagram 

It can be seen from Figures 5 to Figures 7 and 

Table 1 that the TDMC algorithm is used to 

schedule the task graph. The total execution time 

is 24, and the number of processor cores is 5. The 

main reason why the CPU is not fully utilized is T7 

and T9. The communication time of the node is too 

long, resulting in waste between T9 and T8, thereby 

increasing the total length of task scheduling. The 

CPTD algorithm is used to schedule the task graph. 

The total execution time is 23, and the number of 

processor cores is 3. The algorithm first finds the 

critical path, and then adopts the early completion 

strategy of the preceding node group to merge the 

scheduling sequences of nodes T7 and T8 , So that 

the execution time of T9 can be advanced, and the 

communication time can be better controlled. The 

scheduling of T6 and T4 is completed through task 

replication, but the processors where these two 

tasks are located mainly complete the scheduling 

of T6 and T4, which greatly reduces the CPU 

Utilization rate makes the CPU load unbalanced. 

The total execution time used by the improved 

TDLS algorithm is 23, which only occupies 2 

processor cores. It is mainly used in the scheduling 

process of the third layer, by adjusting the 

scheduling sequence, according to the T7 and T8 

nodes are unrelated For nodes on the same layer, 

T7 is adjusted to T8 before scheduling, which 

shortens the waste of time caused by too long 

communication time, improves CPU utilization, 

and makes the load more balanced than the 

previous algorithm.  

Compared with the TDMC algorithm, the 

TDLS algorithm on the one hand shortens the total 

scheduling length of task execution (the 

scheduling length is reduced from 24 to 23), and 

on the other hand, it reduces the number of CPU 

required to complete all tasks (the number of CPU 

is reduced from 5 to 2), the algorithm reduces the 

waste of resources on the whole and improves the 

utilization of CPU; at the same time, compared 

with the CPTD algorithm, the TDLS algorithm 

reduces the number of redundant tasks on the one 

hand (such as: Reduction in the number of tasks T1 

and task T2 redundancy ). On the other hand, it 

also reduces the number of CPU required to 

complete the task (the number of CPU is reduced 

from 3 to 2). It also reduces the waste of time 

slices between tasks and greatly improves each 

CPU The utilization rate makes the load more 

balanced. Through the comparison and analysis of 

the above two groups of experiments, it can be 

seen that the TDLS algorithm has better 

scheduling performance than the CPTD algorithm 

and the TDMC algorithm. 

VI. CONCLUSION 

Aiming at the problem of load imbalance in the 

traditional multi-core scheduling algorithm based 

on task duplication under certain circumstances, 

this paper proposes a hierarchical scheduling 

algorithm based on task replication, TDLS. TDLS 

is based on no scheduling sequence between tasks 

in the same layer. The scheduling sequence of 

tasks in the same layer can shorten the idle time of 

the CPU, shorten the execution time of the 

program, and then improve the utilization of 

multiple CPU. It is proved through comparative 
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experiments that the TDLS algorithm is compared 

to the other two traditional scheduling algorithms 

based on task replication. The load is more 

balanced, and it also has a certain significance for 

the improvement of the scheduling performance of 

the multi-core parallel computer system. 

The hierarchical task scheduling algorithm 

based on task replication proposed in this paper 

overcomes some inherent shortcomings of 

traditional task replication-based algorithms in the 

experimental environment of simulated scheduling, 

and improves the efficiency of task scheduling and 

CPU utilization. The research of this algorithm is 

completely based on assumptions and simulated 

environment. However, the real situation is more 

complicated and changeable. For multi-core 

systems, its load balancing, power consumption, 

and communication congestion between cores 

need to be considered under actual conditions. 

Therefore, it is necessary to further expand the 

scope of research in future research, apply it to 

real-time systems, and make more comprehensive 

considerations for the problems in the actual 

situation. 
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