
International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

DOI: 10.21307/ijanmc-2021-034 44

Communication Architecture Design and Case Study of

Embedded Partition Real-Time Operating System

Penghui Ren

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, 710021, China

E-mail: rph_0290@163.com

Abstract—With the continuous development of

integrated modular avionics system, a large number of

applications have higher and higher requirements for

the operating system. However, the kernel and

application process of traditional embedded real-time

operating system often run at the same privilege level. A

wrong operation may cause the normal operation of the

whole kernel or other processes, resulting in system

crash, Embedded real-time partition operating system is

widely used because of its good protection ability of time

partition and space partition. Because partitions are

isolated, in order to carry out data communication

between partitions, it is necessary to adopt the way of

inter partition communication for information

transmission. This paper introduces the architecture of

partitioned embedded operating system, discusses the

communication principle and design process between

partitioned modules, and focuses on the communication

mechanism of sampling port and queue port. In addition,

a communication mechanism based on virtual port is

used to solve the problem that the port bound by the

application process in a partition cannot communicate

with the communication equipment between the

partition module and other partition application

processes. Finally, the design process of socket

communication in partitioned operating system and the

sending and receiving process of data under partitioned

operating system are proposed.

Keywords-Partition Operating System; Communication

Between Modules; Virtual Port; Socket Communication

I. INTRODUCTION

With the rapid development of science and

technology in China and the miniaturization and

specialization of embedded operating system,

embedded operating system is developing from a

relatively single weak function to a more

professional strong function. Embedded real-time

operation system (RTOS) is the core software of

airborne equipment. It is widely used by foreign

enterprises and companies because of its small

kernel, high stability, strong real-time and

tailorability. However, in these generally

applicable embedded operating systems, such as

VxWorks, wince, deltaos, etc., the application

process and the kernel are in the same operating

system at the same time. Therefore, the wrong call

of an application process may cause the wrong

response of the kernel or other application

processes, resulting in the failure of the system to

run normally. Therefore, in order to protect the

system resources and avoid the impact between

applications with different functions or security

levels, it is necessary to independently develop an

embedded real-time operating system with its own

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

45

independent address space and no mutual

influence in time cycle.

ARINC653 is the main operating system

specification to meet the requirements of

integrated avionics real-time operating system.

The most important thing is to put forward the

concept of partition [1]. Partition refers to the

collection of two or more application processes

with similar or related functions running on the

same processor module. The implementation of

partition mainly includes time partition and space

partition. Spatial partition means that each

partition in the operating system has its own

independent address space. By using the storage

manager to establish the mapping between the

partition address and the actual physical address

for each partition, each partition has its own

independent and unique storage address to ensure

that all partitions in the space are independent of

each other. Time partition means that each

independent partition is scheduled in rotation

according to a specific cycle. The priority of each

partition is the same. The operating system

provides a fixed time length, which can be divided

into multiple time fragments. In this fixed time,

Each partition will be allocated at least one time

fragment, and the partition can only be accessed

within the allocated time fragment, so as to ensure

the independence and correctness of application

processes in each independent partition[7].

The application process of partitioned operating

system is isolated from each other in time and

space, so the communication between partitioned

modules has become the main way of data

exchange between partitions. Section 1 introduces

the architecture of partitioned embedded operating

system; Section 2 describes the related contents of

inter partition communication, including the

concept of inter partition communication, the

communication mechanism of sampling port and

queue port; In Section 3, a simple design of port

communication between partition modules is

carried out; Section 4 mainly discusses and

designs the working principle, interface function

and data sending and receiving process of TCP

socket under partitioned operating system; Section

5 summarizes.

II. PARTITION EMBEDDED REAL-TIME

OPERATING SYSTEM

A. System architecture

The software structure of partitioned operating

system is usually divided into three layers,

including application layer, operating system layer

and hardware module support layer.

The application layer is a partition application

developed by users and runs on the operating

system.

The operating system layer mainly implements

hardware independent functional services,

including the basic core functions of the operating

system and various configurable components to

meet the needs of specific applications. The

operating system also includes partition operating

system and core operating system. The partition

operating system is the manager of resources in

the partition to realize process management,

scheduling and resource allocation in the partition.

The core operating system mainly realizes

partition management, scheduling, inter partition

communication, system fault monitoring, resource

management and equipment management in the

system.

The basic core of partition embedded real-time

operating system provides general control services

of real-time operating system, including task

management, inter partition communication,

interrupt / exception management, clock / timer

management, cache management, user expansion,

error handling, health monitoring, storage

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

46

management, device management, virtual file

system management and other functions.

Configurable components are components that

provide specific functional requirements for

different airborne software, mainly including C

runtime library, VxWorks compatible interface, bit

management and file system module.

The module support layer is composed of

specific hardware module support software

developed according to specific interface

specifications, which mainly realizes the isolation

between hardware and operating system layer. The

module support layer mainly includes structure

support package, board level support package,

MSL layer debugging agent and image

management.

The API for the interaction between the

operating system layer and the module support

layer interface is agreed by both of them. The

module support layer supports the hardware

support services required by the operating system

layer.

The architecture of partitioned embedded

real-time operating system is shown in Figure

1[2].

Partition
1

Process
management

Communication
management

Time
management

Partition
2

Partition
application 2

Partition
operating

system

Partition
5

Partition
application 5

Partition
operating

system

Partition
3

Partition
application 3

Partition
operating
system

Partition
4

Partition
application 4

Partition
operating

system

Task
management

Inter-zone
communication

Health
monitoring

Partition time/
space management

Memory
management

Interrupt/
exception

Core operating system

File system

Runtime library

BIT management

Configurable
components

Module support layer

IMA hardware platform

ASP BSP IM

Figure 1. Partition embedded real-time operating system architecture

B. Process management

Process management is mainly responsible for

the creation, scheduling and deletion of all

processes in the partition. There can be two types

of processes in the partition at the same time,

namely, periodic processes executed at a fixed

frequency and aperiodic processes triggered by

events. The process states include ready state,

running state and waiting state. The basic state and

its changes are shown in Figure 2.

Any process can be preempted by other

processes in this partition at any time. When the

partition is activated, the process in the ready state

is executed. Processes can lock some programs

through preemption control mechanism, that is,

CPU resources will not be preempted by other

processes in the partition until they are unlocked.

If a protected locked process in the partition is

interrupted due to the end of the partition time

window, ensure that the process is executed when

the partition time window arrives again.

Running state

Ready status Waiting state

Initial state

End of time
slice

dispatch

Wait for the
event to end

A wait event occurred

Get resource

All process
execution
completed

Figure 2. Process basic state and its transition diagram

C. Design objectives

The partition architecture design of separated

kernel is to design the partition operating system

from three aspects: partition isolation, reducing

coupling and adding an intermediate layer.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

47

1) Partition isolation

Considering the reliability design of separated

kernel, the basic unit of embedded real-time

operating system is task, and the resources

occupied by a task are memory space and CPU

time. Therefore, the kernel can be isolated from

these two aspects, and different tasks can be

placed in the partitions that have been isolated in

time and space, so that they do not affect each

other. Because each task runs in its own different

partition, it does not interfere with other tasks, so

as to enhance the reliability of the system.

2) Add intermediate layer

David Wheeler, a famous British computer

scientist, once said the famous saying "All

problems in computer science can be solved by

another level of indirection." it means that all

problems in the computer field can be solved by

adding an indirect middle layer. The idea of

adding an intermediate layer is to consider the

architecture of embedded real-time operating

system and provide the reliability of RTOS by

adding an intermediate layer.

3) Reduce coupling

Low coupling is an important design pattern

idea. On the one hand, low coupling reduces the

range of other modules affected by the change of

one module; On the other hand, it makes the

module more cohesive, simpler structure, stronger

tailor ability and easy to understand. The idea of

low coupling in the design of zoning system will

help to improve the reliability of the system.

Taking VxWorks as an example, its wind kernel

contains functions such as task management,

synchronous communication and memory

management. These functions are often cohesive

with the device driver. The error of any module

will lead to system crash. The reason is that the

coupling between RTOS kernel function modules

is too high, which leads to the reduction of its

reliability. Therefore, the idea of low coupling is

adopted to split each functional module and

reorganize the RTOS structure to make it

independent, so as to enhance its reliability.

In short, the core idea of partition system

design is "isolation". This idea is reflected in the

partition strategy of space-time isolation, the

middle layer of implementation isolation, or the

function block isolation to reduce coupling.

III. INTER MODULE COMMUNICATION

Communication between partition modules [8],

that is, data exchange between partition modules.

The only way of communication is through

messages, ports and channels. The communication

between partition modules is completed by

sending and receiving messages through ports.

Messages are sent from one source port to one or

more destination ports. The port is visible to the

user. Channel provides the interconnection

mechanism between ports. Each channel indicates

the port name and partition of sending messages,

as well as the port and partition of receiving

messages. The relationship between port and

channel is mapped through XML configuration

file. When using ports in the module, first call the

port creation service to complete the creation of

port objects in the partition module and realize the

connection with core communication resources.

The partitions communicating with each other can

be in the same processor module or in different

processor modules. The channel defines the

logical relationship between a source port and one

or more destination ports, and also defines the

transmission mode and characteristics of messages

from the source port to the destination port.

The communication service function between

partition modules provided by the partition

operating system that complies with the

ARINC653 standard, on the basis of meeting the

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

48

communication function between partition

modules on the same module, also needs to

provide support for the ability to communicate

between partitions on different modules [3].

There are two types of communication services

between partition modules: one is sampling mode,

and the other is queue mode. The sampling mode

is suitable for transmitting data messages that are

generally similar and constantly updated. There is

only one valid message buffer in the system, and

the message remains in the buffer until it is

overwritten by a newly sent message. Each

module of the zone can send messages to the

sampling source port at any time, or access the

destination port information at any time. The

queue mode is suitable for transmission that

contains different data information, and does not

allow the message to be overwritten, and the

message is generally not allowed to be lost. The

message remains in the source port until it is sent

successfully, or it remains in the destination port

until it is successfully received by the application

port.

A. Sampling port message communication

The message of the sampling port [5] does not

provide a queuing mechanism, that is to say, the

sending and receiving operations will not suspend

the user process, there is one and only one

effective message buffer in the system, and the

newly sent message will overwrite the previously

sent message. The communication process of the

sampling port message is shown in Figure 3.

process process process process

Queue

source port
Queue

destination port

System call System call

Message

buffer

send

messages

Partition 1 Partition 2

Message

buffer

receive

messages

WRITE_SAMPLING

_MESSAGE

READ_SAMPLING_

MESSAGE

Figure 3. Sampling port message communication process

For the sender, the process calls the

WRITE_SAMPLING_MESSAGE service to

initiate a request to write a sampled message. At

this time, the port service is checked for

legitimacy, including the port ID and the

legitimacy of the message. After it is legal, the

user sends data to the port. If the port has no data

at this time, the data is copied to the port's buffer

for data transmission; if there is data in the port at

this time, the original data is overwritten.

For the receiving end, the process needs to call

the READ_SAMPLING_MESSAGE service to

initiate a request to read the sampled message. At

this time, the legality of the service (port ID and

other parameters) of the destination port needs to

be checked. After it is legal, the user starts to

receive data from the receiving port. If there is no

message on the port at this time, the message is

copied to the receiving port buffer, and then the

current port is empty; if there is a new message at

this time, the original old message Cover, and then

calculate the age of the message based on the

current time and the time when the message

arrives at the port, determine whether the message

is valid, and finally return the validity of the

message to the user.

B. Queue port message communication

The message of the queue port[5] supports a

queue waiting mechanism. The operating system

will create a limited message queue depth

according to the situation of the message queue,

maintain the state of the source port and the

destination port, and then determine the processing

operations that need to be performed according to

the state of each port. The communication process

of the queue port message is shown in Figure 4.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

49

process process process process

Queue source

port

Queue

destination port

System call System call

Message

buffer

send

message

Module 1 partition Module 2 partition

Transmission

message

WRITE_QUEUI

NG_MESSAGE

READ_QUEUIN

G_MESSAGE

Determine

whether the port

is available

Channel control

message

distribution

Enter the

blocking queue

Determine

whether the port

is available

Are there any

messages to

receive

YES

NO

YES
Unblock

NO

Enter the

blocking queue

NO

YES

Figure 4. Queue port message communication process

For the sender, the user process calls the

WRITE_QUEUING_MESSAGE service to

initiate a request to send a queue message. At this

time, it starts to check the legitimacy of the port,

and then determines the processing strategy

according to the state of the source port. If the

sending port does not have a free buffer, the port is

in an unavailable state at this time, and the process

will enter the blocking queue; if the sending port

has a free buffer, that is, the current port is in an

available state, the system calls the channel control

program to carry out the message distribution. The

message to be sent is copied to the message buffer,

and the channel control program completes the

message sending operation according to the

mutual connection between the source port and the

destination port.

For the receiving end, the user process calls the

READ_QUEUING_MESSAGE service to receive

messages from the receiving port, and at the same

time checks the legitimacy of the port, and then

determines the subsequent operation according to

the state of the destination port. If there is no

message at the destination port at this time, the

process will enter the blocking queue of the

receiving message port; if there is a message, it

proves that the current port is available, and the

message is copied from the message buffer to the

message queue of the corresponding destination

port through a system call. Until all the destination

ports have received the message, the system buffer

is notified to release the space of the

corresponding message buffer and the message

queue of the source port.

IV. PORT COMMUNICATION DESIGN BETWEEN

PARTITION MODULES

A. Port communication between partitions

In the partitioned operating system, the ports

have the following types: the first is a local port,

which allows the application process to

communicate with other application processes on

the same module, and the local port is attached to

the partition of the module; the second is Virtual

port, through the virtual port can communicate

with the partition outside the partition module, by

connecting a port to the underlying driver; the

third type is direct access to the port, this port

implements a queue port without a software buffer,

and it can also It is directly used to communicate

with the partition outside the module. However, a

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

50

process process process process

Source

port

Virtual

port

Destination

port

Virtual

port

Low-level

driver

Channel control

message distribution

Channel control

message distribution

Module 1

partition

Module 2

partition

channel with a direct access port must have a

source address and a destination address. The

direct access port can be in a partition or other

partitions.

The communication between partition modules,

as the name suggests, is data exchange between

different partition modules, which determines that

the sending partition and the receiving partition

will not be in the same operating system, so the

concept of virtual port [4] is introduced.

Corresponding to the real port we are talking

about, we can regard the virtual port as a

temporary port in this module of the external

module that communicates with the real port, but

ultimately the message transmission between

modules is completed through the underlying

driver. The communication link between the

partition modules is shown in Figure 5.

Figure 5. Communication between partition modules

For the sender, the destination port is outside

the module, so we configure a virtual port for the

destination port, which corresponds to the external

device. After the user process sends data to the

destination port, the operating system calls the

underlying driver through the virtual port to send

the data.

For the receiving end, the source port is outside

the module, so we configure a virtual port for the

source port. The virtual port calls the underlying

driver to receive data, and then passes the received

data to the user process through the destination

port.

B. Virtual port

1) Virtual port function

The virtual port is a logical structure that

connects the partition application port and the

lower-layer network drive device. It connects the

upper-layer source port and destination port

through a channel. The function prototype is as

follows.

STATUS portVirtualDrvAdd

(PORT_DRV_FCT *pPortDrvFct,

unsigned char *name)

Name is the name of the connected underlying

drive device. The PORT_DRV_FCT structure

contains 6 function pointers for virtual port

creation (createRtn), virtual port read data

(readRtn), virtual port write data (writeRtn),

virtual port status acquisition (statusRtn), virtual

port for port attachment (attachRtn) and virtual

port validity check (availableRtn).

During the initialization of the inter-area

communication resources, for the virtual port, the

virtual port object is first attached to the virtual

port driver by calling attachRtn. The input

parameter of the attachRtn function is the related

information of the virtual port object, and the

output parameter is the ID assigned to the virtual

port object by the attached virtual port driver. Pass

this ID into the operating system as an input

parameter when calling createRtn, readRtn,

writeRtn, statusRtn, and availableRtn functions.

2) The logical structure of the virtual port

For the sending end, the virtual port logical

structure table is used to record the information of

all sending ports in the zone and provide

information about the sending port of the zone.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

51

PortID is the ID of the sending port; MsgName is

the topic information of the current port;

MsgMaxSize represents the maximum buffer

message size of the sending port Length;

MsgMaxNum represents the maximum number of

buffered messages; MsgQueueID is the message

queue ID of the buffered message;

DestMsgQueueID represents the ID of the buffer

message queue of the receiving port bound to the

sending port. There can be multiple message

queue IDs. When DestMsgQueueID is 0 When

represents that the sending port is not bound to any

receiving port; PsudoID represents the user

configuration number of the current virtual port;

DevHdr represents the device handle of the

underlying driver port; EmptyFlag is a flag for

judging whether the current virtual port message

buffer is empty. The core operating system sends

the data of the message queue of the sending port

buffer to the message queue of the receiving port

according to the information of the sending port

and the virtual port.

For the receiving end, the logical structure table

of the virtual port is used to record all the

receiving port information in the partition and

provide the information of the receiving port in the

partition. PortID is the ID of the receiving port;

MsgName is the subject information of the

receiving port; MsgMaxSize represents the

maximum length of messages buffered by the

receiving port; MsgMaxNum represents the

maximum number of buffered messages;

MsgQueueID is the message queue ID of the

receiving port buffer; IsAssign represents whether

the port is Bind to the sending port, 1 means

binding, 0 means unbound. The core operating

system binds the virtual port and the port

according to the information of the sending port

and the information of the receiving port to

establish a data channel for communication. The

partition application receives data from the port

buffer based on the PortID.

The logical structure of the virtual port is

shown in Table 1.

TABLE I. LOGICAL STRUCTURE OF VIRTUAL PORT

content Function

PortID Port ID (receive/send, the same below)

MsgName Subject information

MsgMaxSize Maximum length of buffered message

MsgMaxNum
Maximum number of buffered

messages

MsgQueueID Message queue ID

DestMsgQueueID

The ID of the buffer message queue of

the receiving port bound to the sending

port (sending)

PsudoID Virtual port user configuration number

DevHdr
Device handle of the underlying driver

port

EmptyFlag Whether the message buffer is empty

IsAssig
Whether to bind with the sending port

(receive)

V. COMMUNICATION EXAMPLE

A. Socket overview[6]

Socket provides three types of sockets, namely

streaming sockets, datagram sockets and raw

sockets. Streaming sockets provide a

connection-oriented, reliable data transmission

service. The data is sent without errors and

repetitions, and is received in the sending order,

using the TCP protocol. The datagram socket

provides a connectionless service. The data packet

is sent in the form of an independent packet

without error-free guarantee. The data may be lost

or duplicated, and the receiving sequence is

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

52

disordered. The UDP protocol is used. Raw

sockets are often used to test the implementation

of new protocols or access new devices configured

in existing services. This interface allows direct

access to lower-level protocols such as IP and

ICMP. This article mainly introduces the

streaming socket mode.

B. Socket layer design

In each partition operating system, the Socket

layer completes the communication between data

by calling the Socket interface [9] provided by the

kernel TCP/IP protocol stack [11]. The specific

interfaces and functions used are shown in Table

2.

TABLE II. INTERFACE FUNCTION AND CORRESPONDING FUNCTION

Interface function Function

socket() Create a socket descriptor

bind() Bind the socket to a specific TCP port

listen() Listening socket

connect() Send a connection request to the server

(client-only)

accept() Accept connection request (server

exclusive)

send() send data

recv() Receive data

close() Close socket

1) Create socket

Function prototype:int socket(int domain,

int type,int protocol);

Create a socket to complete the following tasks:

a) Set protocol family；

b) Specify the socket type；

c) Specify the protocol related to the socket

type.

2) Bind socket

Function prototype: int bind (int sockfd, const

struct sockaddr *addr, socklen_t addrlen);

The main task of binding a socket is to assign a

specific address (ip address + port number) in an

address family to the socket.

3) Listening socket

Function prototype: int listen (int sockfd, int

backlog);

The created socket is of an active type by

default. The task to be completed by the

monitoring socket is to change the socket to a

passive type and wait for the client's connection

request.

4) Send connection request

Function prototype: int connect (int sockfd,

const struct sockaddr *addr, socklen_t addrlen);

The client establishes a connection with the

TCP server by calling the connect function.

5) Accept connection request

Function prototype: int accept (int sosckfd,

struct sockaddr *addr, socklen_t *addrlen);

After the TCP server listens to the connection

request sent by the client, it will call the accept

function to receive the request, thereby

successfully establishing the connection. After that,

the network I/O operation is started.

6) Data sending

Function prototype: ssize_t send (int sockfd,

const void *buf, size_t len, int flags);

Data transmission completes the following

tasks:

a) Receive the data submitted by the virtual

port into the send buffer；

b) Determine the destination IP address；

c) Determine the destination port；

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

53

d) Send data。

7) Data reception

Function prototype: ssize_t recv (int sockfd,

void *buf, size_t len, int flags);

Data reception completes the following tasks:

a) Receiving data on the bound TCP port;

b) Submit the received data to the virtual port

first, and then submit it to the application buffer

through the virtual port buffer.

8) Close socket

Function prototype: int close (int socketfd);

After the client and the server complete the data

receiving and sending operations, the

corresponding socket descriptor is closed, and the

descriptor can no longer be used by the calling

process.

After the partition operating system is started,

task A of partition 1 enters the processing and

waiting, and waits for the response of the network

card driver and the IPC messages from other

partitions in turn. The tasks of other partitions start

to establish sockets to prepare for network

communication. First call v_socket, v_bind and

other interfaces to establish a socket connection,

and then call v_listen or v_connect to monitor or

establish a connection. If the application is a

server, after listening to the request information

Call v_accept to accept the request, send a socket

command request to the task of partition 1 through

SYN_SEND, call the v_recv/v_send function for

network communication, and call SYN_RECV to

wait for the result returned by task A. Other tasks

of partition 1 receive service requests such as

v_socket and v_bind from other partitions and are

activated to create socket devices and establish

communication, and then send and receive

network data with other partitions, and then send

socket handles and network addresses and other

information Reply to a certain task B of other

partitions through SYN_SEND, and the socket

communication enters the ready state at this time.

Task B sends and receives network information

through the socket. All the processes are the same

as the execution of task A. After receiving the

reply from task B, a socket communication is

completed.

C. Data sending and receiving process[10]

1) Data sending process

When sending data to the receiving end, the

application process first obtains a socket, searches

for the corresponding virtual port according to the

IP address and port number bound to the socket,

and then determines whether the connection is a

TCP connection. If so, submit the data to be sent

to the virtual port, and then call the send() function

to send the data on the virtual port to the virtual

port of the receiving end, Finally, judge whether

the transmission is successful. If successful, return

a parameter value of successful transmission. The

process is shown in Figure 6.

Start

Get the socket, that is, return the

address of the sth element of the

sockets array

Submit the data to be sent to the

virtual port

Call the send() function to send the data

that has been submitted to the virtual

port

Determine whether

 it is a TCP connection

Set the socket error code

(illegal parameter)

End

Y

N

Determine whether the

transmission is successful

Return the parameter value of the

successful transmission

Return error code (-1)
Y

N

Search for the corresponding virtual

port number according to the port

number bound to the socket

Figure 6. Data sending process in partitioned operating system

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

54

2) Data receiving process

When the application process receives data

from the sender, it first obtains the socket, that is,

selects the address of an element from the sockets

array, returns its socket structure, and judges

whether the connection is a TCP connection. If so,

according to the socket binding Search for the

corresponding virtual port number for the IP

address and port number, then call the recv()

function to receive data from the sender, and then

determine whether the data is received, if it is

received, submit the received data to the virtual

port buffer, and finally the virtual port The data on

the port is transferred to the port bound to the

socket to complete the data reception. The process

is shown in Figure 7.

Start

Get the socket, that is, return the

address of the sth element of the

sockets array

Submit the received data to the

virtual port

Transfer the data on the virtual

port to the port bound to the

socket

Determine whether it is a

TCP connection

Set the socket error code

(illegal parameter)

End

Y

N

Determine whether data

is received

Return the parameter value of

successful reception

Return error code (-1)

Y

N

Search for the corresponding virtual

port number according to the port

number bound to the socket

Call recv() function to

receive data

Figure 7. Data receiving process in partitioned operating system

VI. SUMMARIZE

Through the analysis of the embedded real-time

partition operating system architecture, this paper

discusses the process management mode in the

partition system and the design goals of the

partition operating system, introduces the

communication principle between partition

modules, and focuses on the message of the

sampling port and the queue port. Communication

principle, and then design the port communication

process between the partition modules, and realize

the port communication by introducing the virtual

port. At the same time, the virtual port function

and logical structure are introduced in depth, and

then the actual TCP socket layer of the partition

operating system is introduced. The

communication process is designed, using the

basic function interface used by the traditional

operating system, and finally a process of sending

and receiving data under the partition operating

system is proposed. Through an example to test

whether the socket communication based on the

virtual port mechanism of the partition operating

system can be carried out, a simple

communication result is obtained. In the future

research work, we will continue to optimize the

communication process of this design and the

process of sending and receiving data. Although

the communication between partitions has many

advantages, if we do not understand and avoid the

risks and problems that may be caused by the

communication between partitions, it will

inevitably bring many unforeseen problems in the

future design work. Therefore, it is necessary to

standardize and strictly design the communication

process between the partition modules to reduce

the risk, so that it can provide users with more

powerful communication support.

REFERENCES

[1] Tao Yongchao, Song Qilong, Piao Songhao. Design
and implementation of partition Operating System
based on ARINC653 standard [J]. Journal of Physics:
Conference Series, 2021, 1732(1).

[2] Tong Yan, Yuan Haofang, Xu Fei, Wu Zhiming, Wang
Manda. Research on partition operating system based
on ARINC653 [J]. Electronic Testing, 2020(13).

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.04, 2021

55

[3] Xu Xiaoguang, Ye Hong. Design and Implementation
of Interval Communication in Avionics System [J].
Aeronautical Computing Technology, 2005.

[4] Zhang Ming, Zhou Lin.Design and implementation of
IMA based on VxWorks653 partition operating system
[J]. Firepower and Command Control, 2014.

[5] Xu Xiaoguang, Yun Haishun, Xing Liang. The design
of inter-partition communication under partition
operating system [J]. Modern Electronic Technology,
2013.

[6] Zhang Xiaona, Chang Leran, Wu Wei, Liao Jinwei,
Shen Liwen. Realization of Socket Communication
under Linux System [J]. Electroacoustic Technology,
2020.

[7] Huang Runlong, Shen Qian, Gou Xiantai. Task
scheduling of ARINC653 multi-core and multi partition

operating system [J]. Telecommunications technology,
2020, 60(09):1108-1113.

[8] Yang juping. Research on partition technology based
on embedded real-time operating system [J]. Industrial
control computer, 2015, 28(05):29-30.

[9] Xiao Lei. Network communication design based on
socket under VxWorks [J]. Computer and network,
2013, 39 (12): 66-68

[10] Xing Liang, Zhao Yi. Application design of socket
communication under partitioned operating system [J].
Aviation computing technology, 2011, 41(05):88-90.

[11] Wang Xiaopeng. Socket and Winsock communication
mechanism under TCP / IP [J]. Aviation computing
technology, 2004 (02):126-128.

