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Abstract—In this paper, genetic algorithm (GA) is used 

to optimally determine the architecture of a 

convolutional neural network (CNN) that is used to 

classify handwritten numbers. The CNN is a class of 

deep feed-forward network, which have seen major 

success in the field of visual image analysis. During 

training, a good CNN architecture is capable of 

extracting complex features from the given training data; 

however, at present, there is no standard way to 

determine the architecture of a CNN. Domain 

knowledge and human expertise are required in order 

to design a CNN architecture. Typically architectures, 

The GA determine the exact architecture of a CNN by 

evolving the various hyper parameters of the 

architecture for a given application. The proposed 

method was tested on the MNIST dataset. The results 

show that the genetic algorithm is capable of generating 

successful CNN architectures. The proposed method 

performs the entire process of architecture generation 

without any human intervention. 

Keywords-Convolutional Neural Network; Genetic 

Algorithm; MNIST Data 

I. INTRODUCTION 

The idea that programmable computers will 

become intelligent was conceived over a hundred 

years before one was built. AI has tackled and 

solved many problems that are intellectually 

difficult for human beings but relatively 

straightforward for computers. Such problems are 

defined by a set of mathematical rules. The 

challenge for AI is to transform tasks which are 

easy and intuitive for humans into formal 

procedures that a computer can understand. For 

example, it is easy for humans to recognize a face, 

a piece of music even when the data is corrupted 

or incomplete.  

With the advancements in big data, Graphical 

Processing Unit (GPU) technology and algorithms 

there has been a lot of progress in the field of 

Deep Learning. Deep Learning is part of machine 

learning techniques and allows a machine to learn 

with experience and data. It makes use of artificial 

neural networks with more than one hidden layer. 

By implementing more layers and more neurons 

within a layer, it allows the network to understand 

complex ideas by building upon simpler ones. For 

example, a deep network can build the concept of 

an image of a car by combining simpler concepts, 

such as edges, corners, contour, and object parts 

[1]. 

Convolutional Neural Network (CNN) is one 

such type of deep networks. Yann LeCan carried 

out one of the first exercises on CNN. He taught a 

computer system how to recognize the differences 

between handwritten digits [2]. When the system 

chose incorrectly, he would correct it until the 

program figured out the mathematical operation 

called convolution. Convolution is a specialized 

kind of linear operation. Unlike conventional 

neural networks, CNN’s use this linear operation 

to obtain an intermediate output (feature) before 



International Journal of Advanced Network, Monitoring and Controls      Volume 06, No.03, 2021 

27 

using it as an input for the next layer. This is done 

in at least one of their layers. A typical CNN 

architecture consists of layers such as convolution 

layer, pooling layer, and fully connected layer. 

Each of these layers consists of hyper-parameters 

that are chosen by researchers using new 

theoretical insights or intuition gained from 

experimentation. In this paper, we achieved the 

following objectives: 

Automate the process of CNN architecture 

selection. 

Achieve the architecture by evolving the hyper 

parameters of CNN using Genetic Algorithm 

(GA) 

Discover CNN architectures without any 

human intervention that perform well on a given 

machine-learning task. 

GA is inspired by biological evolution, used to 

find globally optimal solutions and makes use of 

genetic operators such as selection, crossover, and 

mutation. 

The goal of the proposed algorithms is to 

discover CNN architectures that perform well on a 

given machine-learning task with no human 

intervention. Over the course of many generations, 

Genetic Algorithm picks out the layers and 

hyper-parameters to choose from, the algorithm is 

left with a finite but large space of model 

architectures to search from. It learns through 

random exploration and slowly begins to exploit 

its findings to select higher performing models. It 

receives the testing accuracy as a means of 

comparison between architectures and ultimately 

selects the best architecture. The entire process 

called an evolutionary experiment goes on for 

many generations until a fully trained suitable 

CNN model is generated. 

This paper is organized as follows. In Section 2, 

the dataset used for this analysis is introduced. 

Section 3 presents the mathematical model of 

CNN. GA is explained in section 4. Section 5 

talks about our proposed method to generate CNN 

architectures using GA. In Section 6, experiments 

and results are presented. Conclusions are 

presented in section 7. 

 

Figure 1. An example of CNN architecture [10] 

II. MNIST DATASET 

The MNIST Dataset is scanned images of 

handwritten digits and the associated labels 

describe which digit 0-9 is contained in each 

image. The “NIST” stands for National Institute of 

Standards and Technology, the agency that 

originally collected this data. The “M” stands for 

“modified,” since the data has been preprocessed 

for easier use with machine learning algorithms. 
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The data set consists of 50,000 labeled samples 

of handwritten digits which is to be used as 

training data. It also consists of an extra 10,000 

images that are unlabeled and used as testing data. 

It is one of the popular datasets as it allows 

researchers to study their proposed methods in a 

controlled environment. In our case, we will 

discover the best CNN architecture that classifies 

this data set using genetic algorithm (GA). 

III. CONVOLUTIONAL NEURAL NETWORK 

In machine learning, a CNN is a type of 

feed-forward artificial neural network in which the 

connectivity pattern between its neurons is 

inspired by the organization of the animal visual 

cortex [3]. This idea was expanded upon by a 

fascinating experiment by Hubel and Wiesel in 

1962 where they showed that some individual 

neuronal cells in the brain responded (or fired) 

only in the presence of edges of a certain 

orientation [4]. For example, some neurons 

respond when exposed to vertical edges and some 

respond when shown horizontal or diagonal edges. 

When all these neurons are arranged in a tilled 

manner, they were able to produce visual 

perception. The idea that different neurons in the 

visual cortex look for different features are the 

inspiration behind a CNN.  

In this paper, we use CNN for the task of 

image classification. CNN take advantage of the 

fact that the input consists of images and they 

constrain the architecture in a more sensible way 

[5]. In particular, the layers of a CNN have 

neurons arranged in three dimensions: width, 

height, depth. (Note that the word depth here 

refers to the third dimension of an image, not to 

the depth of a full Neural Network, which can 

refer to the total number of layers in a network). 

The neurons in a layer will only be connected to a 

small region of the layer before it, instead of all of 

the neurons in a fully-connected manner. 

A. Layers in a CNN 

A simple convolutional neural network is a 

sequence of layers. A CNN takes an image and 

passes it through a series of convolutional, 

nonlinear (activation), pooling (down sampling), 

and fully connected layers to get an output [5] [6]. 

This output can be a single class or a probability 

of classes that best describe the image. An 

example of a CNN architecture is shown in Figure 

1. Each of these layers is explained in the 

following subsections. 

1) Convolutional layer 

A convolutional layer is a core building block 

of any CNN architecture. It is always the first 

layer of the architecture. The input of this layers 

will always be a three-dimensional object (eg. 

400x400x3). The best way to understand 

convolution is to imagine a window of 

significantly lesser size (eg. 5x5) is being moved 

across all the areas of the input. In machine 

learning terms, this window is called a filter or 

neuron or kernel. Now, this filter is also an array 

of numbers (the numbers are called weights or 

parameters). 

Figure 2 illustrates the process of convolution 

on an image of dimensions 5x5x3. The filter used 

to convolve over this image is of the dimensions 

3x3x3. It can be noted that the depth of the filter is 

same as the depth of the image. The output 

generated after the process of convolution is 

calculated by performing elementwise 

multiplication. These multiplications across the 

width, height and depth of an image with the filter 

are all summed up in order to get a single value. 

Finally, the single value is averaged over the total 

number of values in the filter. It is computed as 

follows: 
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Now, we repeat this process for every location 

on the input volume. Every unique location on the 

input volume produces a number. After sliding the 

filter over all the locations, we are left with a 

two-dimensional array which is called an 

activation map or feature map. 

 

Figure 2. The process of convolution on the left-hand corner of an image 

The size of this feature map is governed by 

three parameters.  

These parameters need to be decided before 

convolution is performed. They are as follows: 

o Depth: The number of filters that 

convolve over the same image to get 

different two-dimensional feature maps 

corresponds to the depth of the output 

after the convolutional layer. 

o Stride: The step by which a filter is 

moved across an image, is called stride. 

o Zero-padding: The process of padding 

zeros around an input image is called as 

zero-padding. This is done so that we can 

slide the filter to the bordering elements 

of the input image matrix. This parameter 

allows us to control the size of the 

generated feature map. 

2) Non Linearity (Activation Layer) 

Most of the real world datasets are nonlinear in 

nature. The process of convolution (element-wise 

matrix multiplication and addition) is a linear 

operation. Due to this, there are no nonlinear 

properties in our network. In order to introduce 

nonlinearity in our network, the output feature 

maps obtained after the process of convolution in 

the convolutional layer is passed through a 

nonlinear function. 

One of the most popular nonlinear operation is 

the ReLU operation. Other nonlinear functions 

such as tanh or sigmoid can also be used instead 

of ReLU, but ReLU has been found to perform 

better in most situations. 

3) Pooling Layer 

Pooling is a way to take large images and 

shrink them down while preserving the most 

important information in them. It is common to 

periodically insert a Pooling layer in-between 

successive Convolutional layers in a CNN 

architecture. Maxpooling is one the most popular 

types of pooling. Maxpooling consists of stepping 

a small filter across an image and taking the 

maximum value from the filter at each step. The 

stride by which the filter steps across the image is 

usually the same as that of filter size. 
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The process of pooling has two main 

advantages. The first is that the amount of 

parameters or weights is reduced by 75%, thus 

lessening the computation cost. The second is that 

it will control overfitting as it reduces the number 

of parameters and computations in the network. 

4) Fully Connected Layer 

The Fully Connected layer is a traditional 

Multi-Layer Perceptron layer that uses a softmax 

activation function in the output layer. The 

softmax activation function generates the outputs 

in the range of 0 and 1. The output of the softmax 

function is equivalent to a categorical probability 

distribution, it tells you the probability that any of 

the classes are true. 

B. Training using Backpropagation 

As we have seen from the subsections above, 

the convolution and pooling layers act as Feature 

Extractors from the input image in a CNN 

architecture while a fully connected layer acts as a 

classifier generating probabilities for the different 

classes. This is the forward propagation step. 

Now we train the dataset using traditional 

back-propagation until it has converged and we 

obtain high classification accuracy. This 

classification accuracy will be used as a fitness 

value when the architecture is passed through the 

GA tuner. This is further explained in the 

following sections. 

IV. GENETIC ALGORITHM 

Genetic Algorithms were invented to mimic 

some of the processes observed in natural 

evolution. Many people, biologists included, are 

astonished that life at the level of complexity that 

we observe could have evolved in the relatively 

short time suggested by the fossil record [7]. The 

idea with GA is to use this power of evolution to 

solve optimization problems. Genetic Algorithms 

(GAs) are adaptive heuristic search algorithm 

based on the evolutionary ideas of natural 

selection and genetics [8]. As such, they represent 

an intelligent exploitation of a random search used 

to solve optimization problems. Although 

randomized, Gas are by no means random, instead, 

they exploit historical information to direct the 

search into the region of better performance 

within the search space. 

A. GA Overview 

Gas simulates the survival of the fittest among 

individuals over a consecutive generation for 

solving a problem. Each generation consists of a 

population of character strings that are analogous 

to the chromosome that we see in our DNA. Each 

individual represents a point in a search space and 

a possible solution. 

The individuals in the population are then 

made to go through a process of evolution based 

on the following foundations [8]: 

 Individuals in a population compete for 

resources and mates. 

 Those individuals most successful in each 

‘competition’ will produce more 

offspring than those individuals that 

perform poorly. 

 Genes from good individuals propagate 

throughout the population so that two 

good parents will sometimes produce 

offspring that are better than either 

parent. 

 Thus each successive generation will 

become more suited to their environment. 

A population of individuals is maintained 

within a search space for a GA, each representing 

a possible solution to a given problem. Each 

individual is coded as a finite length vector of 

components, or variables, in terms of some 

alphabet, usually the binary alphabet {0,1}. These 

individuals are analogous to chromosomes and the 
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variables are analogous to genes. Thus a 

chromosome (solution) is composed of several 

genes (variables). A fitness score is assigned to 

each solution representing the abilities of an 

individual to compete. The individual with the 

abilities of an individual to compete. The 

individual with the optimal (or generally near 

optimal) fitness score is sought. The GA aims to 

use selective breeding of the solutions to produce 

offspring better than the parents do by combining 

information from the chromosomes. Figure 3 

illustrates a population of chromosomes. In this 

figure, each chromosome consists of 8 genes. 

 

Figure 3. Population of three chromosomes 

Parents are selected to mate, on the basis of 

their fitness, producing offspring via a 

reproductive plan. Consequently, solutions with 

higher fitness are given more opportunities to 

reproduce so that offspring inherit characteristics 

from each parent. As parents mate and produce 

offspring, room must be made for the new arrivals 

since the population is kept at a static size. 

Individuals in the population die and are replaced 

by the new solutions, eventually creating a new 

generation once all mating opportunities in the old 

population have been exhausted. In this way, it is 

hoped that over successive generations better 

solutions will thrive while the least fit solutions 

die out [7]. 

New generations of solutions are produced 

containing, on average, more good genes than a 

typical solution in a previous generation. Each 

successive generation will contain better ‘partial 

solutions’ than previous generations. Eventually, 

once the population has converged and is not 

producing offspring noticeably different from 

those in previous generations, the algorithm itself 

is said to have converged to a set of solutions to 

the problem at hand.  

B. Genetic Operators 

A genetic operator is an operator used in 

genetic algorithms to guide the algorithm towards 

a solution to a given problem. There are three 

main types of operators 

 Selection 

 Crossover 

 mutation 

These operators must work in conjunction with 

one another in order for the algorithm to be 

successful. Genetic operators are used to creating 

and maintaining genetic diversity (mutation 

operator), combine existing solutions (also known 

as chromosomes) into new solutions (crossover) 

and select between solutions (selection). 

1) Selection 

Selection operators give preference to better 

solutions (chromosomes), allowing them to pass 

on their ‘genes’ to the next generation of the 

algorithm. The best solutions are determined using 

some form of objective function (also known as a 

‘fitness function’ in genetic algorithms), before 

being passed to the crossover operator [8]. 

Different methods for choosing the best solutions 

to exist, for example, Roulette wheel selection and 

tournament selection; different methods may 

choose different solutions as being ‘best’. The 

selection operator may also simply pass the best 

solutions from the current generation directly to 

the next generation; this is known as elitism or 

elitist selection. 

2) Crossover 

Crossover is the process of taking more than 

one parent solutions (chromosomes) and 

producing a child solution from them. By 

recombining portions of good solutions, the 
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genetic algorithm is more likely to create a better 

solution. As with selection, there are a number of 

different methods for combining the parent 

solutions, for example, single-point crossover and 

two-point crossover [8]. 

Figure 4 and Figure 5 illustrate the concept of 

single-point and two-point crossover respectively. 

 

Figure 4. Single-point crossover 

 

Figure 5. Two-point crossover 

3) Mutation 

The mutation operator encourages genetic 

diversity amongst chromosomes and attempts to 

prevent the genetic algorithm converging to a 

local minimum by stopping the chromosomes 

becoming too close to one another. In mutating 

the current pool of chromosomes, a given 

chromosome may change entirely from the 

previous chromosome. By mutating the 

chromosomes, a genetic algorithm can reach an 

improved solution solely through the mutation 

operator [8]. Again, different methods of mutation 

may be used; these range from a simple bit 

mutation (flipping random bits in a binary string 

chromosome with some low probability) to more 

complex mutation methods, which may replace 

genes in the chromosomes with random values 

chosen from the uniform distribution or the 

Gaussian distribution. 

V. PROPOSED METHOD 

Before training a deep neural network, it is 

necessary to determine the architecture of that 

network which is in turn done by choosing the 

hyper parameters associated with each layer of the 

network. Usually, the hyper parameters are 

determined by human intuition, experience or trial, 

and error. 

Table 1, shows all the hyper-parameters 

associated with the deep neural network and their 

ranges which are used for experiments in this 

paper. The focus of this paper is to use genetic 

algorithm to automatically determine these 

hyper-parameters for best performance. 

TABLE 1. THE VARIOUS HYPER PARAMETERS IN CNN WITH THEIR 

RANGES 

Hyper parameter Range 

No. of Epoch (0 - 127) 

Batch Size (0 - 256) 

No. of Convolution Layers (0 - 8) 

No. of Filters at each Convo layer (0 - 64) 

Convo Filter Size at each Convo layer (0 - 8) 

Activations used at each Convo layer (sigmoid, tanh, relu, linear) 

Maxpool layer after each Convo layer (true, false) 

Maxpool Pool Size for each Maxpool 

layer 
(0 - 8) 

No. of Feed-Forward Hidden Layers (0 - 8) 

No. of Feed-Forward Hidden Neurons at 

each layer 
(0 - 64) 

Activations used at each Feed-Forward 

layer 

(sigmoid, tanh, softmax, 

relu) 

Optimizer 
(Adagrad, Adadelta, RMS, 

SGD) 
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When tuning the hyper-parameters of a CNN 

architecture using genetic algorithm, the most 

crucial step is the problem representation. In other 

words, the problem should be formulated in such a 

way that it is suitable for the genetic algorithm. 

The variables involved in this tuning process are 

the various CNN hyper-parameters. 

Hyper-parameters, which are tuned to their 

optimal values, will generate the best CNN 

architecture and provide the highest classification 

and prediction accuracy for the given MNIST 

dataset. 

For the purposes of experimentation, a 

direct-encoding representation of the 

hyper-parameters is performed. Here the value of 

hyper-parameters is extracted from a GA 

chromosome, which is in the binary format. 

Figure 6 shows a random GA architecture in the 

binary format. 

 

Figure 6. Representation of a GA chromosome 

Figure 7 shows an illustration of the problem 

encoding process. The figure represents a random 

CNN architecture is obtained from a GA 

chromosome. Each hyper-parameter is shown 

with its corresponding binary interpretation. 

 

Figure 7. Representation of the hyper-parameters in binary format 
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A. Fitness Evaluation 

In this study, a population size of 10 

chromosomes (CNN architecture) is chosen. The 

fitness of each chromosome is evaluated using a 

fitness function. 

The fitness function used in this study is the 

classification accuracy, which determines the 

number of correctly classified digits in the MNIST 

dataset. In section 3 of this paper, it is seen how a 

CNN architecture can be trained to obtain its best 

classification accuracy. This classification 

accuracy (ranges between 0 and 1) is the fitness 

value of a particular CNN architecture. 

VI. EVALUATION 

In this section, the proposed GA 

hyper-parameters tuning technique is used to 

obtain the best CNN architecture for the MNIST 

dataset. 

In this paper tournament selection, single-point 

crossover and multiple point mutation are the 

genetic operations performed on the chromosomes. 

The parameters of the chosen genetic operations 

are listed in Table 2. 

TABLE 2. PARAMETERS OF THE GENETIC OPERATIONS 

Parameters Value 

Tournament selection size 2 

Crossover Probability 50% 

Mutation probability 80% 

Genes Mutated 10% 

A. Experimental Setup 

The Genetic Algorithm based CNN 

architecture generator has been implemented in 

python 2.7. Tests were carried on an AWS 

instance running Ubuntu Server 16.04 LTS. 

This instance is powered by an AWS-Specific 

version of Intel’s Broadwell processor, running at 

2.7 GHz. It incorporates up to 8 NVIDIA Tesla 

K80 Accelerators, each running a pair of 

NVIDLA GK210 GPUs. Each GPU provides 12 

GiB of memory (accessible via 240 GB/second of 

memory bandwidth), and 2,496 parallel 

processing cores [9]. 

The Genetic algorithm tuner was implemented 

with the MNIST dataset with 50,000 images as its 

training set and another 10,000 images as its 

testing set. The aim of the tuner was to generate a 

CNN architecture with the best architecture such 

that the classification accuracy of the testing set is 

very high. 

VII. RESULTS 

Genetic algorithm with 10 chromosomes 

generated randomly was executed 10 times, each 

time with randomly chosen chromosomes. It was 

noted that each run of GA tuner gave the best 

chromosome which represented a CNN 

architecture with an accuracy of greater than 90%. 

This can be seen in Table 3. However, the best of 

the 10 runs gave an accuracy of 99.2%. This 

particular architecture was chosen. 

TABLE 3. HIGHEST FITNESS VALUES OBTAINED DURING EACH OF THE 

10 EXPERIMENTS 

Exp. No. Highest Fitness Value 

1 0.984499992943 

2 0.973899998105 

3 0.988800008184 

4 0.991900001359 

5 0.947799991965 

6 0.949000005102 

7 0.983099997652 

8 0.979799999475 

9 0.956399999567 

10 0.972350000068 

The generated output after GA tuning in shown 

in Figure 8 
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Figure 8. Generated CNN architecture after GA tuning 

Figure 8 shows the best values for 

hyper-parameters shown in Table 2 reached by the 

algorithm. 

VIII. CONCLUSION 

In this paper, we carried out an experiment to 

see if genetic algorithm can be used to 

automatically generate good CNN architectures 

without any human intervention. The basic 

techniques of the Gas are designed to simulate 

processes in natural systems necessary for 

evolution and; especially those that follow the 

principles first laid down by Charles 

Darwin-“survival of the fittest.” 

Our simulation results for finding the best 

CNN architecture using GA to tune the 

hyper-parameters lead to the generation of 

architecture which yielded an accuracy rate of 

more than 90% for the classification of the 

MNIST dataset. The best of the 10 runs gave an 

accuracy of 99.2%. 

Therefore, it can be concluded that GA have 

the potential of generating successful CNN 

architectures automatically. 
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