
International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

DOI: 10.21307/ijanmc-2021-024 26

Designing Convolutional Neural Network Architecture

Using Genetic Algorithms

Ashray Bhandare and Devinder Kaur

Department of EECS, the University of Toledo, Toledo, Ohio, USA

Abstract—In this paper, genetic algorithm (GA) is used

to optimally determine the architecture of a

convolutional neural network (CNN) that is used to

classify handwritten numbers. The CNN is a class of

deep feed-forward network, which have seen major

success in the field of visual image analysis. During

training, a good CNN architecture is capable of

extracting complex features from the given training data;

however, at present, there is no standard way to

determine the architecture of a CNN. Domain

knowledge and human expertise are required in order

to design a CNN architecture. Typically architectures,

The GA determine the exact architecture of a CNN by

evolving the various hyper parameters of the

architecture for a given application. The proposed

method was tested on the MNIST dataset. The results

show that the genetic algorithm is capable of generating

successful CNN architectures. The proposed method

performs the entire process of architecture generation

without any human intervention.

Keywords-Convolutional Neural Network; Genetic

Algorithm; MNIST Data

I. INTRODUCTION

The idea that programmable computers will

become intelligent was conceived over a hundred

years before one was built. AI has tackled and

solved many problems that are intellectually

difficult for human beings but relatively

straightforward for computers. Such problems are

defined by a set of mathematical rules. The

challenge for AI is to transform tasks which are

easy and intuitive for humans into formal

procedures that a computer can understand. For

example, it is easy for humans to recognize a face,

a piece of music even when the data is corrupted

or incomplete.

With the advancements in big data, Graphical

Processing Unit (GPU) technology and algorithms

there has been a lot of progress in the field of

Deep Learning. Deep Learning is part of machine

learning techniques and allows a machine to learn

with experience and data. It makes use of artificial

neural networks with more than one hidden layer.

By implementing more layers and more neurons

within a layer, it allows the network to understand

complex ideas by building upon simpler ones. For

example, a deep network can build the concept of

an image of a car by combining simpler concepts,

such as edges, corners, contour, and object parts

[1].

Convolutional Neural Network (CNN) is one

such type of deep networks. Yann LeCan carried

out one of the first exercises on CNN. He taught a

computer system how to recognize the differences

between handwritten digits [2]. When the system

chose incorrectly, he would correct it until the

program figured out the mathematical operation

called convolution. Convolution is a specialized

kind of linear operation. Unlike conventional

neural networks, CNN’s use this linear operation

to obtain an intermediate output (feature) before

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

27

using it as an input for the next layer. This is done

in at least one of their layers. A typical CNN

architecture consists of layers such as convolution

layer, pooling layer, and fully connected layer.

Each of these layers consists of hyper-parameters

that are chosen by researchers using new

theoretical insights or intuition gained from

experimentation. In this paper, we achieved the

following objectives:

Automate the process of CNN architecture

selection.

Achieve the architecture by evolving the hyper

parameters of CNN using Genetic Algorithm

(GA)

Discover CNN architectures without any

human intervention that perform well on a given

machine-learning task.

GA is inspired by biological evolution, used to

find globally optimal solutions and makes use of

genetic operators such as selection, crossover, and

mutation.

The goal of the proposed algorithms is to

discover CNN architectures that perform well on a

given machine-learning task with no human

intervention. Over the course of many generations,

Genetic Algorithm picks out the layers and

hyper-parameters to choose from, the algorithm is

left with a finite but large space of model

architectures to search from. It learns through

random exploration and slowly begins to exploit

its findings to select higher performing models. It

receives the testing accuracy as a means of

comparison between architectures and ultimately

selects the best architecture. The entire process

called an evolutionary experiment goes on for

many generations until a fully trained suitable

CNN model is generated.

This paper is organized as follows. In Section 2,

the dataset used for this analysis is introduced.

Section 3 presents the mathematical model of

CNN. GA is explained in section 4. Section 5

talks about our proposed method to generate CNN

architectures using GA. In Section 6, experiments

and results are presented. Conclusions are

presented in section 7.

Figure 1. An example of CNN architecture [10]

II. MNIST DATASET

The MNIST Dataset is scanned images of

handwritten digits and the associated labels

describe which digit 0-9 is contained in each

image. The “NIST” stands for National Institute of

Standards and Technology, the agency that

originally collected this data. The “M” stands for

“modified,” since the data has been preprocessed

for easier use with machine learning algorithms.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

28

The data set consists of 50,000 labeled samples

of handwritten digits which is to be used as

training data. It also consists of an extra 10,000

images that are unlabeled and used as testing data.

It is one of the popular datasets as it allows

researchers to study their proposed methods in a

controlled environment. In our case, we will

discover the best CNN architecture that classifies

this data set using genetic algorithm (GA).

III. CONVOLUTIONAL NEURAL NETWORK

In machine learning, a CNN is a type of

feed-forward artificial neural network in which the

connectivity pattern between its neurons is

inspired by the organization of the animal visual

cortex [3]. This idea was expanded upon by a

fascinating experiment by Hubel and Wiesel in

1962 where they showed that some individual

neuronal cells in the brain responded (or fired)

only in the presence of edges of a certain

orientation [4]. For example, some neurons

respond when exposed to vertical edges and some

respond when shown horizontal or diagonal edges.

When all these neurons are arranged in a tilled

manner, they were able to produce visual

perception. The idea that different neurons in the

visual cortex look for different features are the

inspiration behind a CNN.

In this paper, we use CNN for the task of

image classification. CNN take advantage of the

fact that the input consists of images and they

constrain the architecture in a more sensible way

[5]. In particular, the layers of a CNN have

neurons arranged in three dimensions: width,

height, depth. (Note that the word depth here

refers to the third dimension of an image, not to

the depth of a full Neural Network, which can

refer to the total number of layers in a network).

The neurons in a layer will only be connected to a

small region of the layer before it, instead of all of

the neurons in a fully-connected manner.

A. Layers in a CNN

A simple convolutional neural network is a

sequence of layers. A CNN takes an image and

passes it through a series of convolutional,

nonlinear (activation), pooling (down sampling),

and fully connected layers to get an output [5] [6].

This output can be a single class or a probability

of classes that best describe the image. An

example of a CNN architecture is shown in Figure

1. Each of these layers is explained in the

following subsections.

1) Convolutional layer

A convolutional layer is a core building block

of any CNN architecture. It is always the first

layer of the architecture. The input of this layers

will always be a three-dimensional object (eg.

400x400x3). The best way to understand

convolution is to imagine a window of

significantly lesser size (eg. 5x5) is being moved

across all the areas of the input. In machine

learning terms, this window is called a filter or

neuron or kernel. Now, this filter is also an array

of numbers (the numbers are called weights or

parameters).

Figure 2 illustrates the process of convolution

on an image of dimensions 5x5x3. The filter used

to convolve over this image is of the dimensions

3x3x3. It can be noted that the depth of the filter is

same as the depth of the image. The output

generated after the process of convolution is

calculated by performing elementwise

multiplication. These multiplications across the

width, height and depth of an image with the filter

are all summed up in order to get a single value.

Finally, the single value is averaged over the total

number of values in the filter. It is computed as

follows:

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

29

Now, we repeat this process for every location

on the input volume. Every unique location on the

input volume produces a number. After sliding the

filter over all the locations, we are left with a

two-dimensional array which is called an

activation map or feature map.

Figure 2. The process of convolution on the left-hand corner of an image

The size of this feature map is governed by

three parameters.

These parameters need to be decided before

convolution is performed. They are as follows:

o Depth: The number of filters that

convolve over the same image to get

different two-dimensional feature maps

corresponds to the depth of the output

after the convolutional layer.

o Stride: The step by which a filter is

moved across an image, is called stride.

o Zero-padding: The process of padding

zeros around an input image is called as

zero-padding. This is done so that we can

slide the filter to the bordering elements

of the input image matrix. This parameter

allows us to control the size of the

generated feature map.

2) Non Linearity (Activation Layer)

Most of the real world datasets are nonlinear in

nature. The process of convolution (element-wise

matrix multiplication and addition) is a linear

operation. Due to this, there are no nonlinear

properties in our network. In order to introduce

nonlinearity in our network, the output feature

maps obtained after the process of convolution in

the convolutional layer is passed through a

nonlinear function.

One of the most popular nonlinear operation is

the ReLU operation. Other nonlinear functions

such as tanh or sigmoid can also be used instead

of ReLU, but ReLU has been found to perform

better in most situations.

3) Pooling Layer

Pooling is a way to take large images and

shrink them down while preserving the most

important information in them. It is common to

periodically insert a Pooling layer in-between

successive Convolutional layers in a CNN

architecture. Maxpooling is one the most popular

types of pooling. Maxpooling consists of stepping

a small filter across an image and taking the

maximum value from the filter at each step. The

stride by which the filter steps across the image is

usually the same as that of filter size.

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

30

The process of pooling has two main

advantages. The first is that the amount of

parameters or weights is reduced by 75%, thus

lessening the computation cost. The second is that

it will control overfitting as it reduces the number

of parameters and computations in the network.

4) Fully Connected Layer

The Fully Connected layer is a traditional

Multi-Layer Perceptron layer that uses a softmax

activation function in the output layer. The

softmax activation function generates the outputs

in the range of 0 and 1. The output of the softmax

function is equivalent to a categorical probability

distribution, it tells you the probability that any of

the classes are true.

B. Training using Backpropagation

As we have seen from the subsections above,

the convolution and pooling layers act as Feature

Extractors from the input image in a CNN

architecture while a fully connected layer acts as a

classifier generating probabilities for the different

classes. This is the forward propagation step.

Now we train the dataset using traditional

back-propagation until it has converged and we

obtain high classification accuracy. This

classification accuracy will be used as a fitness

value when the architecture is passed through the

GA tuner. This is further explained in the

following sections.

IV. GENETIC ALGORITHM

Genetic Algorithms were invented to mimic

some of the processes observed in natural

evolution. Many people, biologists included, are

astonished that life at the level of complexity that

we observe could have evolved in the relatively

short time suggested by the fossil record [7]. The

idea with GA is to use this power of evolution to

solve optimization problems. Genetic Algorithms

(GAs) are adaptive heuristic search algorithm

based on the evolutionary ideas of natural

selection and genetics [8]. As such, they represent

an intelligent exploitation of a random search used

to solve optimization problems. Although

randomized, Gas are by no means random, instead,

they exploit historical information to direct the

search into the region of better performance

within the search space.

A. GA Overview

Gas simulates the survival of the fittest among

individuals over a consecutive generation for

solving a problem. Each generation consists of a

population of character strings that are analogous

to the chromosome that we see in our DNA. Each

individual represents a point in a search space and

a possible solution.

The individuals in the population are then

made to go through a process of evolution based

on the following foundations [8]:

 Individuals in a population compete for

resources and mates.

 Those individuals most successful in each

‘competition’ will produce more

offspring than those individuals that

perform poorly.

 Genes from good individuals propagate

throughout the population so that two

good parents will sometimes produce

offspring that are better than either

parent.

 Thus each successive generation will

become more suited to their environment.

A population of individuals is maintained

within a search space for a GA, each representing

a possible solution to a given problem. Each

individual is coded as a finite length vector of

components, or variables, in terms of some

alphabet, usually the binary alphabet {0,1}. These

individuals are analogous to chromosomes and the

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

31

variables are analogous to genes. Thus a

chromosome (solution) is composed of several

genes (variables). A fitness score is assigned to

each solution representing the abilities of an

individual to compete. The individual with the

abilities of an individual to compete. The

individual with the optimal (or generally near

optimal) fitness score is sought. The GA aims to

use selective breeding of the solutions to produce

offspring better than the parents do by combining

information from the chromosomes. Figure 3

illustrates a population of chromosomes. In this

figure, each chromosome consists of 8 genes.

Figure 3. Population of three chromosomes

Parents are selected to mate, on the basis of

their fitness, producing offspring via a

reproductive plan. Consequently, solutions with

higher fitness are given more opportunities to

reproduce so that offspring inherit characteristics

from each parent. As parents mate and produce

offspring, room must be made for the new arrivals

since the population is kept at a static size.

Individuals in the population die and are replaced

by the new solutions, eventually creating a new

generation once all mating opportunities in the old

population have been exhausted. In this way, it is

hoped that over successive generations better

solutions will thrive while the least fit solutions

die out [7].

New generations of solutions are produced

containing, on average, more good genes than a

typical solution in a previous generation. Each

successive generation will contain better ‘partial

solutions’ than previous generations. Eventually,

once the population has converged and is not

producing offspring noticeably different from

those in previous generations, the algorithm itself

is said to have converged to a set of solutions to

the problem at hand.

B. Genetic Operators

A genetic operator is an operator used in

genetic algorithms to guide the algorithm towards

a solution to a given problem. There are three

main types of operators

 Selection

 Crossover

 mutation

These operators must work in conjunction with

one another in order for the algorithm to be

successful. Genetic operators are used to creating

and maintaining genetic diversity (mutation

operator), combine existing solutions (also known

as chromosomes) into new solutions (crossover)

and select between solutions (selection).

1) Selection

Selection operators give preference to better

solutions (chromosomes), allowing them to pass

on their ‘genes’ to the next generation of the

algorithm. The best solutions are determined using

some form of objective function (also known as a

‘fitness function’ in genetic algorithms), before

being passed to the crossover operator [8].

Different methods for choosing the best solutions

to exist, for example, Roulette wheel selection and

tournament selection; different methods may

choose different solutions as being ‘best’. The

selection operator may also simply pass the best

solutions from the current generation directly to

the next generation; this is known as elitism or

elitist selection.

2) Crossover

Crossover is the process of taking more than

one parent solutions (chromosomes) and

producing a child solution from them. By

recombining portions of good solutions, the

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

32

genetic algorithm is more likely to create a better

solution. As with selection, there are a number of

different methods for combining the parent

solutions, for example, single-point crossover and

two-point crossover [8].

Figure 4 and Figure 5 illustrate the concept of

single-point and two-point crossover respectively.

Figure 4. Single-point crossover

Figure 5. Two-point crossover

3) Mutation

The mutation operator encourages genetic

diversity amongst chromosomes and attempts to

prevent the genetic algorithm converging to a

local minimum by stopping the chromosomes

becoming too close to one another. In mutating

the current pool of chromosomes, a given

chromosome may change entirely from the

previous chromosome. By mutating the

chromosomes, a genetic algorithm can reach an

improved solution solely through the mutation

operator [8]. Again, different methods of mutation

may be used; these range from a simple bit

mutation (flipping random bits in a binary string

chromosome with some low probability) to more

complex mutation methods, which may replace

genes in the chromosomes with random values

chosen from the uniform distribution or the

Gaussian distribution.

V. PROPOSED METHOD

Before training a deep neural network, it is

necessary to determine the architecture of that

network which is in turn done by choosing the

hyper parameters associated with each layer of the

network. Usually, the hyper parameters are

determined by human intuition, experience or trial,

and error.

Table 1, shows all the hyper-parameters

associated with the deep neural network and their

ranges which are used for experiments in this

paper. The focus of this paper is to use genetic

algorithm to automatically determine these

hyper-parameters for best performance.

TABLE 1. THE VARIOUS HYPER PARAMETERS IN CNN WITH THEIR

RANGES

Hyper parameter Range

No. of Epoch (0 - 127)

Batch Size (0 - 256)

No. of Convolution Layers (0 - 8)

No. of Filters at each Convo layer (0 - 64)

Convo Filter Size at each Convo layer (0 - 8)

Activations used at each Convo layer (sigmoid, tanh, relu, linear)

Maxpool layer after each Convo layer (true, false)

Maxpool Pool Size for each Maxpool

layer
(0 - 8)

No. of Feed-Forward Hidden Layers (0 - 8)

No. of Feed-Forward Hidden Neurons at

each layer
(0 - 64)

Activations used at each Feed-Forward

layer

(sigmoid, tanh, softmax,

relu)

Optimizer
(Adagrad, Adadelta, RMS,

SGD)

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

33

When tuning the hyper-parameters of a CNN

architecture using genetic algorithm, the most

crucial step is the problem representation. In other

words, the problem should be formulated in such a

way that it is suitable for the genetic algorithm.

The variables involved in this tuning process are

the various CNN hyper-parameters.

Hyper-parameters, which are tuned to their

optimal values, will generate the best CNN

architecture and provide the highest classification

and prediction accuracy for the given MNIST

dataset.

For the purposes of experimentation, a

direct-encoding representation of the

hyper-parameters is performed. Here the value of

hyper-parameters is extracted from a GA

chromosome, which is in the binary format.

Figure 6 shows a random GA architecture in the

binary format.

Figure 6. Representation of a GA chromosome

Figure 7 shows an illustration of the problem

encoding process. The figure represents a random

CNN architecture is obtained from a GA

chromosome. Each hyper-parameter is shown

with its corresponding binary interpretation.

Figure 7. Representation of the hyper-parameters in binary format

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

34

A. Fitness Evaluation

In this study, a population size of 10

chromosomes (CNN architecture) is chosen. The

fitness of each chromosome is evaluated using a

fitness function.

The fitness function used in this study is the

classification accuracy, which determines the

number of correctly classified digits in the MNIST

dataset. In section 3 of this paper, it is seen how a

CNN architecture can be trained to obtain its best

classification accuracy. This classification

accuracy (ranges between 0 and 1) is the fitness

value of a particular CNN architecture.

VI. EVALUATION

In this section, the proposed GA

hyper-parameters tuning technique is used to

obtain the best CNN architecture for the MNIST

dataset.

In this paper tournament selection, single-point

crossover and multiple point mutation are the

genetic operations performed on the chromosomes.

The parameters of the chosen genetic operations

are listed in Table 2.

TABLE 2. PARAMETERS OF THE GENETIC OPERATIONS

Parameters Value

Tournament selection size 2

Crossover Probability 50%

Mutation probability 80%

Genes Mutated 10%

A. Experimental Setup

The Genetic Algorithm based CNN

architecture generator has been implemented in

python 2.7. Tests were carried on an AWS

instance running Ubuntu Server 16.04 LTS.

This instance is powered by an AWS-Specific

version of Intel’s Broadwell processor, running at

2.7 GHz. It incorporates up to 8 NVIDIA Tesla

K80 Accelerators, each running a pair of

NVIDLA GK210 GPUs. Each GPU provides 12

GiB of memory (accessible via 240 GB/second of

memory bandwidth), and 2,496 parallel

processing cores [9].

The Genetic algorithm tuner was implemented

with the MNIST dataset with 50,000 images as its

training set and another 10,000 images as its

testing set. The aim of the tuner was to generate a

CNN architecture with the best architecture such

that the classification accuracy of the testing set is

very high.

VII. RESULTS

Genetic algorithm with 10 chromosomes

generated randomly was executed 10 times, each

time with randomly chosen chromosomes. It was

noted that each run of GA tuner gave the best

chromosome which represented a CNN

architecture with an accuracy of greater than 90%.

This can be seen in Table 3. However, the best of

the 10 runs gave an accuracy of 99.2%. This

particular architecture was chosen.

TABLE 3. HIGHEST FITNESS VALUES OBTAINED DURING EACH OF THE

10 EXPERIMENTS

Exp. No. Highest Fitness Value

1 0.984499992943

2 0.973899998105

3 0.988800008184

4 0.991900001359

5 0.947799991965

6 0.949000005102

7 0.983099997652

8 0.979799999475

9 0.956399999567

10 0.972350000068

The generated output after GA tuning in shown

in Figure 8

International Journal of Advanced Network, Monitoring and Controls Volume 06, No.03, 2021

35

Figure 8. Generated CNN architecture after GA tuning

Figure 8 shows the best values for

hyper-parameters shown in Table 2 reached by the

algorithm.

VIII. CONCLUSION

In this paper, we carried out an experiment to

see if genetic algorithm can be used to

automatically generate good CNN architectures

without any human intervention. The basic

techniques of the Gas are designed to simulate

processes in natural systems necessary for

evolution and; especially those that follow the

principles first laid down by Charles

Darwin-“survival of the fittest.”

Our simulation results for finding the best

CNN architecture using GA to tune the

hyper-parameters lead to the generation of

architecture which yielded an accuracy rate of

more than 90% for the classification of the

MNIST dataset. The best of the 10 runs gave an

accuracy of 99.2%.

Therefore, it can be concluded that GA have

the potential of generating successful CNN

architectures automatically.

REFERENCES

[1] Y. B. a. A. C. Ian Goodfellow, Deep Learning, 2016.

[2] Y. J. L. D. B. B. D. J. S. G. H. P. G. I. H. D. H. R. E. a.
H. W. LeCun, “Handwritten digit
recognition:Applications,” IEEE Communications
Magazine, pp. 41-46, 1989.

[3] M. Matusugu, M. Katsuhiko, M. Yusuke and K. Yuji,
“Subject independent facial expression recognition with
robust face detection using a convolutional neural
network,” Neural Networks, vol. 16, pp. 555-559, 2003.

[4] D. H. Hubel and T. N. Wiesel, “Receptive fields and
functional architecture of monkey striate cortex,” The
Journal of Physiology, vol. 195, pp. 218-243, 1968.

[5] A. karpathy, “CS23In Convolutional Neural Networks
for Visual Recognition,” 2016. [Online]. Available:
http://cs23In. github.io/convolutional-networks/.

[6] ujjwalkarn, “An Intuitive Explanation of Convolutional
Neural Networks,” 11 August 2016. [Online].
Available:https://ujjwalkarn.me/2016/08/11/intuitive-ex
planation-convnets/.

[7] “Genetic Algorithms,” [Online]. Available:
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/voll/
hmw/article.html#top.

[8] L. N. d. Castro, “Genetic Algorithms,” in Fundamentals
of Natural Computing; Basic Concepts, Algorithms,
and Applications, Chapman and Hall/CRC, 2006, pp.
88-91.

[9] J. Barr, “New P2 Instance Type for Amazon EC2-Up to
16 GPUs,” 29 September 2016 [Online]. Available:
https://aws.amazon.com/blogs/aws/new-p2-instance-typ
e-for-amazon-ec2-up-to-16-gpus/.

[10] A. Gibiansky, “Convolutional Neural Networks,” 24
February 2014. [Online]. Available:
http://andrew.gibiansky.com/blog/machine-learning/co
nvolutional-neural-networks/.

