
International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

15

Radix-8 Design Alternatives of Fast Two Operands

Interleaved Multiplication with Enhanced Architecture
With FPGA implementation & synthesize of 64-bit Wallace Tree CSA based Radix-8

Booth Multiplier

Mohammad M. Asad

King Faisal University, Department of Electrical

Engineering, Ahsa 31982, Saudi Arabia

e-mail: asadmosab@gmail.com

Ibrahim Marouf

King Faisal University, Department of Electrical

Engineering, Ahsa 31982, Saudi Arabia

e-mail: i.marouf@outlook.com

Qasem Abu Al-Haija

Department of Computer Information and Systems

Engineering

Tennessee State University, Nashville, USA

e-mail: qabualha@my.tnstate.edu

Abstract—In this paper, we proposed different comparable

reconfigurable hardware implementations for the radix-8 fast

two operands multiplier coprocessor using Karatsuba method

and Booth recording method by employing carry save (CSA)

and kogge stone adders (KSA) on Wallace tree organization.

The proposed designs utilized

family with target chip device along

with simulation package. Also, the proposed

designs were synthesized and benchmarked in terms of the

maximum operational frequency, the total path delay, the total

design area and the total thermal power dissipation. The

experimental results revealed that the best multiplication

architecture was belonging to Wallace Tree CSA based Radix-

8 Booth multiplier () which recorded: critical path

delay of , maximum operational frequency of

 , hardware design area (number of logic elements)

of , and total thermal power dissipation estimated

as . Consequently, method can be

efficiently employed to enhance the speed of computation for

many multiplication based applications such embedded system

designs for public key cryptography.

Keywords-Cryptography; Computer Arithmetic; FPGA

Design; Hardware Synthesis; Kogge-Stone Adder (KSA); Radix-

8 Booth Recording; Karatsuba Multiplier; Wallace Tree

I. INTRODUCTION

Recently, the vast promotion in the field of
information and communication technology (ICT) such
as grid and fog computing has increased the inclination
of having secret data sharing over the existing non-
secure communication networks. This encouraged the

researches to propose different solutions to ensure the
safe access and store of private and sensitive data by
employing different cryptographic algorithms
especially the public key algorithms [1] which proved
robust security resistance against most of the attacks
and security halls. Public key cryptography is
significantly based on the use of number theory and
digital arithmetic algorithms.

Indeed, wide range of public key cryptographic
systems were developed and embedded using hardware
modules due to its better performance and security.
This increased the demand on the embedded and
System-on Chip () [2] technologies employing
several computers aided () tools along with the
configurable hardware processing units such as field
programmable gate array () and application
specific integrated circuits (). Therefore,
considerable number of embedded coprocessors design
were used to replace software based (i.e. programming
based) solutions of different applications such as image
processors, cryptographic processors, digital filters,
low power application such as [3] and others. The
major part of designing such processors significantly
encompasses the use computer arithmetic techniques in
the underlying layers of processing.

Computer arithmetic [4] or digital arithmetic is the
science that combines mathematics with computer
engineering and deals with representing integers and
real values in digital systems and efficient algorithms

DOI: 10.21307/ijanmc-2019-043

mailto:asadmosab@gmail.com
mailto:i.marouf@outlook.com
mailto:qabualha@my.tnstate.edu

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

16

for manipulating such numbers by means hardware
circuitry and software routines. Arithmetic operations
on pairs of numbers x and y include addition (
 y), subtraction (–), multiplication
(), and division (). Subtraction
and division can be viewed as operations that undo the
effects of addition and multiplication, respectively.
Multiplication operation is considered as a core
operation that affect the performance of any embedded
system. Therefore, the use of fast multiplier units will
result in enhancements in the overall performance of
the system. Recently, several solutions were proposed
for multiplication algorithms while few of them were
efficient [5].

A multiplication algorithm [6] is method to find the
product of two numbers, i.e. . Multiplication
is an essential building block for several digital
processors as it requires a considerable amount of
processing time and hardware resources. Depending on
the size of the numbers, different algorithms are in use.
Elementary-school grade algorithm was multiplying
each number digit by digit producing partial sum with
complexity of). [5]For larger numbers, more
efficient algorithms are needed. For example, let
 integers to be multiplied with equal to
1k bits, thus multiplications.
However, more efficient and practical multiplication
algorithms will be discussed in the following
subsections.

In this paper, we report on several fast alternative
designs for Radix-8 based multiplier unit including:
Radix-8 CSA Based Booth Multiplier, CSA Based
Radix-8 Booth, Wallace Tree Karatsuba Multiplier,
CSA Based Radix-8 Booth, KSA Based Karatsuba
Multiplier, CSA Based Radix-8 Booth, With
Comparator Karatsuba Multiplier, Sequential 64-Bit
CSA Based Radix-8 Booth Multiplier, 64-bit Wallace
Tree CSA based Radix-8 Booth multiplier (WCBM).
The remaining of this paper is organized as follows:
Section 2m discusses the core components of efficient
multiplier design. Section 3,provides the proposed
design alternatives of Radix-8 based multiplier, Section
4, presents the synthesizing results and analysis, and,
finally, Section 5 concludes the paper.

II. CORE DESIGN COMPONENTS-REVIEW

Two operands-multiplication is a substantial
arithmetic operation since it plays a major role in the
design of many embedded and digital signal processors
[7]. Therefore, the efficient design and implementation
of a fast multiplier unit is on demand. In this paper, we
propose a competitive reconfigurable multiplier design

using scalable and efficient modules. Thus, the
following subsections reviews the core design
components for the proposed multiplier
implementation unit.

Figure 1. Carry save Adder: (a) Top View Design (b) Internal

Architecture

A. Carry save Adder (CSA)

CSA [4] is a fast-redundant adder with constant
carry path delay regardless of the number of operands’
bits. It produces the result as two-dimensional vectors:
sum vector (or the partial sum) and carry vector (or
partial carry). The advantage of CSA is that the speed
is constant regardless the number of bits. However, its
area increases linearly with the number of bits. The top
view of the CSA unit along with its internal logic
design architecture are provided in Fig.1 below.

In this work, we have implemented the CSA adder
using VHDL code for different bit sizes ranges from 8-
bits through 64-bits [8]. The synthesize results of total
delay in () and area in Logic Elements (LEs) were
analyzed and reported in [8] and they are illustrated in
Fig.2. These results were generated using
 software [9], simulated for
 model [10] and they
highly conform theoretical evaluation of CSA
operation since the delay time is almost equal for all
bits. However, the area is almost double for each
number of bits. Also, the timing estimation of
 CSA was generated via Time
Analyzer tool provided in the package.
Accordingly, the critical path delay is which
is data arrival time while the data delay is only 2.866
ns which provide a frequency of .Finally, to
verify the performance of CSA, we have compared it
with the well-known Carry LockAhead Adder (CLA)
in terms of area and delay. CLA is a carry propagation

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

17

adder (CPA) with logarithmic relation between the
carry propagation delay and the number of bits in
operands.

Figure 2. Delay-Area analysis of CSA vs CLA implementations (8–64 bit)

The simulation results of both CSA and CLA is
provided in Fig.2 shows that CSA is superior in both
Area and speed. It has almost a constant time delay and
relatively less area than CLA. Whereas CLA time
delay increases as the number of bit increases but not
much as the area size.

B. Kogge-Stone Adder (KSA)

KSA is a fast two operands parallel prefix adder
(PPAs) [11] that executes addition on parallelized
manner. PPAs are just like CLA but with an
enhancement in the carry propagation stage (called the
middle stage). There are five different variations of
PPAs namely: Ladner-Fischer Adder (LFA), Brent-
Kung Adder (BKA), Kogge-Stone Adder (KSA),
Hans-Carlson Adder (HCA), and Sklansky Adder
(SkA). These adders differ by the tree structure design
to optimize certain aspects such as, performance,
power, area size, and fan in/out.

To verify the performance of all PPAs, we have
implemented them on FPGA and the experimental
results [6] showed that KSA utilizes larger area size to
achieve higher performance comparing among all other
five PPAs. Thus, we decided to consider KSA as our
basic carry propagation adder (CPA) to finalize the
redundant results and to build up many other units that
are in-need for conventional adder. In short, the
simulation results of [6] showed that KSA leading the
other adders as it has the smallest time delay with only
4.504. This result is very useful and conforms the
theatrical modeling of KSA which has the least number
of logic levels. Like all PPAs, KSA functionality
consists of three computational stages as illustrated in
Fig.3, as follows:

 Pre-processing stage: The computation of
generate and propagate of each bit from A and B
are done in this step. These signals are given by
the logic equations: and

 Carry generation network: PPA differentiates
from each other by the connections of the
network. It computes carries of each bit by using
generate and propagate signals from previous
block. In this block two blocks are defined group
generation and propagation (GGP), in addition to
group generation only (GGO), as shown in Fig.3.
Logic blocks used for the calculation of generate
and propagate bits can be describe by the
following logic equations: and
), Where the
generation group have only logic equation for
carry generation: .

 Post processing (Calculating the Sum):This is
the last step and is common to all adders of this
family (carry look ahead). It involves
computation of sum bits. Sum bits are computed
by the logic given in: . The top
view and the internal logic circuit is provided in
the Fig.3.

C. Fast Multi-Operands Addition

Addition operation is not commonly used to add
two operands only, instead, it is more involved with
multiplication and inner product computations [12].
The use of regular two operands adders leads to
intermediate results before getting the last answer
which affect the performance or the time delay of a
system. Therefore, Multi-operand adders are manly
studied to reduce this problem. Wallace and Dadda
trees [13] are considered as two variations of high-
performance multi-operands addition. Fig.4. shows the
dot notation to represent the digit positions or

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

18

alignments (instead of using the value which is quite
useful) for the use of Multi-operand addition in
multiplication and inner-product computation.

Figure 3. Kogge Stone Adder: (a) Top View Design of KSA (c) KSA
Stages (c) Group generation and propagation

In this work, we have adopted a CSA based
Wallace tree since it confirmed better operands
organization to improve the total addition delay [8].
We have implemented two CSA Wallace Trees: 10-
operands addition and 22-operands addition. The
structure logic diagram of 10 operands is given in Fig.5.
It’s clearly seen that the Wallace tree unit is designed
behaviorally (FSM is generated).

Figure 4. Dot notation of Multi-operand addition for multiplication and

inner-product computation

D. Karatsuba Multiplier

To enhance the performance of multiplication for
large operands (i.e. 1024-bit size), a re-organization
process can be adopted for the multiplication operands
to utilize the maximum possible parallelism to enhance
the multiplication time. Karatsuba algorithm [14] is
pipelined multiplication process used mainly to
construct the high precision multipliers form multiple
small precision multiplier blocks by exploiting the
maximum available parallelism between the
multiplication blocks. The basic idea of Karatsuba
algorithm is illustrated in fig.6 and Karatsuba
algorithm can be defined as follows:

Let be integers and is the base (Radix_2)
and where n: the number of digits, then:

1) Re-write as follows:

 and

2) Calculate Product as follows:

 , where:
 ,

 , ,

A more efficient implementation of Karatsuba
multiplication can be accomplished as:

Figure 5. Multi-operand addition for 10 operands.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

19

Figure 6. Aligning Partial Products.

E. Magnitude Comparator

The magnitude (or digital) comparator is a
hardware electronic device that takes two numbers as
input in binary form and determines whether one
number is greater than, less than or equal to the other
number. Like that in binary addition, the efficient
comparator can be implemented using G (generate) and
P (propagate) signal for comparison. Basically, the
comparator involves two 2-bits: & can be
realized by:

 1 1 1 1 0 0().()BigB A B A B A B  
 (1)

 1 1 0 0EQ ().()A B A B  
 (2)

For A<B, “BBig, EQ” is “1,0”. For A=B, “BBig,
EQ” is “0,1”. Hence, for A>B, “BBig, EQ” is “0,0”.
Where BBig is defined as output A less than B
(A_LT_B).Comparing Eq. (1) and (2) with carry signal
(3):

(). .out in inC AB A B C G P C    

 (3)

Where A & B are binary inputs Cin is carry input,
Cout is carry output, and G & P are generate &
propagate signals, respectively. Now, after comparing
equations (1) & (3), we got:

 1 1 1G A B
, 1 1 1()EQ A B 

, 0 0inC A B
 (4)

Cin can be considered as G0. For this, encoding
equation is given as:

 [] [] []i i iG A B
 (5)

 [] [] []()i i iEQ A B 
 (6)

Substituting the two values from equations (5) & (6)
in (1) & (2) results in:

 [2 j 1:2 j] [2 j 1] [2 j 1] [2].Big jB G EQ G   
 (7)

 [2 j 1:2] [2 j 1] [2 j].jEQ EQ EQ 
 (8)

 & signals can be further combined to form group
 & signals. For instance, for 64-bit comparator,
 & can be computed as:

6362

[63:0] 63

0 1

.Big k m

k m k

B G G EQ
  

 
   

 
 

 (9)

63

[63:0]

0

m

m

EQ EQ



 (10)

Fig 7. Shows the complete design of an 8-bit
comparator as an example of this techniques where: i=
0…7, j = 0…3.

III. PROPOSED MULTIPLIER DESIGN ALTERNATIVES

Fundamentally, multiplication operation (along
with fast addition) is a significant unit in almost all
cryptographic coprocessors. For instance, in the design
of SSC Crypto-processor[15], the multiplication
primarily used to compute the square parameter
the public key (and the modulus (. Also, in
the design of RSA Crypto-processor, the multiplier is
used to compute the modulus (and the Euler
function [16]. One more
example, is the need for fast multipliers at several
computation stages of ECC cryptosystem [17]. Indeed,
wide range of methods have been proposed to address
the efficient design of fast two operands arithmetic

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

20

multiplier. In this paper, we have spent an extensive
time to design an efficient multiplier by trying several
variations of different multiplier design specifications.
The first design was the implementation of Radix-8
Booth Encoding Multiplier. Then, we tried many

variations to employ this multiplier with different
design methods. In the next subsections, we provide
six design alternatives of the proposed multiplier to
come up with the most cost-effective multiplier design.
We finally report on the final implemented design.

Figure 7. The complete design of8- Bit Comparatorincluding Pre- Encoding circuit and Comp circuit

A. Radix-8 CSA Based Booth Multiplier

Unlike Binary radix booth encoder, Radix-8 booth
encodes each group of three bits as shown in table 1.
The encoding technique uses shift operation to produce
2A and 4A while 3A is equal to 2A+A. The logic
diagram of implementing CSA based Radix-8 booth
multiplier is shown in Fig. 8. The use of CSA provides
very powerful performance with limited area cost. The
partial products for radix-2 is n (where n is the number
of operand bits). However, for radix 8 the number of
partial products is only n/3.

TABLE I. RADIX-8 BOOTH ENCODING.

Inputs (bits of M-bit multiplier) Partial Product

 PPRi

0 0 0 0 0

0 0 0 1 A

0 0 1 0 A

0 0 1 1 2A

0 1 0 0 2A

0 1 0 1 3A

0 1 1 0 3A

0 1 1 1 4A

1 0 0 0 -4A

1 0 0 1 -3A

1 0 1 0 -3A

1 0 1 1 -2A

1 1 0 0 -2A

1 1 0 1 -A

1 1 1 0 -A

1 1 1 1 0

As can be seen from fig.8, the multiplier accepts
two 32-bit operands (and) and stores the operand ()
in a shift register to select the group bits used in
encoding whereas the operand () processed with the

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

21

booth encoder. The output of encoding stage is added
via the sequential CSA adder and the result is provided
in a redundant representation (vector sum and vector
carry).

Radix-8 Booth

Encoder

X

Shift Register

A

CSA_64bit

Partial SumPartial Carry

6464

64

32

3

32

Figure 8. Design of Radix-8 Booth 32-bit multiplier

Reset

Mul_Gen

CSA
Store

Data

Output

Start

Enable

i<=11

i>11

Figure 9. State machine diagram for 32-bit Booth multiplier.

Also, Fig.9 illustrates the FSM diagram of 32-bit
booth multiplier. It starts with Reset_State, where all
signals and variables are cleared (i.e. reset). Next state
is Mul_Gen, where encoding is occurred. After that,
the generated vector is added to the previous results of
CSA state. Fourth, results are stored in Store_State and
moves back to Mul_Gen state in loop until all the bits
are selected and encoded. Finally, the output results are
provided in Output state.Note that in Radix-8 encoding

the number of generated partial product vectors are
computed by dividing the number of bits over 3, since
each three bits are selected and used for encoding.

B. CSA Based Radix-8 Booth, Wallace Tree
Karatsuba Multiplier

In this method, we combine the benefits of the bit
reduction of radix 8 booth along with the parallelism of
CSA based Wallace tree as well as the pipelining
process of Karatsuba multiplication. Thus, this design
achieved minimum path delay and minimized area (i.e.
the best performance). However, redundancy in this
design produced one critical problem regarding the
middle carry at the edges of blocks that affects the
results. Fig.10 illustrates the flow diagram for this
design. Here, we first designed a 64-bit Karatsuba
Multiplier using a 32-bit CSA based radix-8 Booth for
partial products calculation (as for our target design
and since we are implementing 64-bit multiplier; m
was chosen to be 32 bits (half size)). First, the entered
two operands are divided into halves .
Next, they are fed into the Booth multiplier to compute
the partial products as given in Karatsuba formula.
Since the results are redundant and we have 5 partial
products according to Karatsuba:

 .

Thus, 10 partial products are generated. In the final
stage, a CSA based Wallace tree was implemented to
be used for adding the resulted partial products. Final
result is represented redundantly as vector sum and
vector carry. This design achieves minimum path delay
with limited area.

However, redundancy in this design produces one
critical problem that affects the results. As a rule-of-
thumb, if we multiply two numbers (i.e. p and
q), the multiplication result will be increased to
 . However, this is not the case when using
redundant systems since the result is stored as two
 vectors and adding the two vectors to we tend
to obtain the conventional product might result in
 . This additional bit brings up a new
problem in the preliminary design. Now, this problem
can be solved by discarding the last carry when
converting back to conventional representation.
However, in Karatsuba algorithm the numbers are split
into 32-bit (original size is 64). The result must be 128-
bit, but in Karatsuba case will be 10 partial product
vectors of 64-bit shifted in such a way that adding
those vectors will result in 128-bit. Thus, discarding all
the generated carry when converting back to
conventional system leads to error since only the carry
generated of adding the two vectors corresponding to

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

22

the same variable (or the same partial product in this
case) needs to be discarded. Other generated carries

must be considered. Fig.11. demonstrate this problem
graphically.

Generate Karatsuba

operands

32 bit Rad.8 Booth

Multiplication

Four Levels CSA Tree

Input Two 64 Bit operands

Output 128 Bit Sum and Carry

Vectors

6 operands 32 Bit

8 Vectors 64 Bit

Figure 10. Design of 64-bit CSA Based Radix-8 Booth, Wallace Tree Karatsuba multiplier.

32-bit Booth

Radix-8

32-bit Booth

Radix-8

32-bit Booth

Radix-8

X=x1B+x2, 64-bit (32-bit each)

Y=y1B+y2, 64-bit (32-bit each)

x1 y1 x0 y0 (x1-x0) (y1-y0)

ps1 pc1 ps2 pc2 ps3 pc3

B2(ps1, pc1) B(ps1, pc1) B(ps2, pc2) 1(ps2, pc2)
B(ps3, pc3)

Figure 11. Graphical approaches to demonstrate the carry error (the mid-carry problem), here we have two cases:Case I- ps1+ pc1 = might result in carry,
result = 65-bit (wrong). Carry must be discarded and Case II- ps1+ ps2 = might result in carry, result = 65-bit (correct). Carry must be considered.

Eventually, the mid-carry problem was solved by
either using 64-bit CSA Based Radix-8 Booth, KSA
Based Karatsuba multiplier or using 64-bit CSA Based
Radix-8 Booth, with comparator Karatsuba multiplier.
However, both solutions have added more overhead to
design cost; therefore, this solution has been excluded.

Both solutions are discussed in the following
subsections.

1) CSA Based Radix-8 Booth, KSA Based
Karatsuba Multiplier.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

23

Since the carry to be eliminated is the generated one
from booth multiplier, a first thought is to exchange the
CSA adder with KSA adder to convert back the two
vectors into one 64-bit number and discard any
generated carry. All the 8 vectors are reduced into five
64-bit vectors in parallel. This stage helps to eliminate
the false carry without the need to do any further
examination. KSA is a fast adder, thus this design
maintains its high performance utilizing more logic
elements. The logic diagram of the design is shown in
Fig.12.

2) CSA Based Radix-8 Booth, With Comparator
Karatsuba Multiplier.

Another noticeable design option can solve the mid-
carry problem is to use a 64-bit comparator to test if
the two vectors will generate a carry if yes, then do the
correction step before input the 10 vectors to CSA Tree.
After Booth multiplication stage, connect the vector
sum and vector carry that may produce carry error to
the inputs of 64-Bit comparator unit, then perform
correction if needed. Finally, all vectors added using
CSA tree. The complete solution is depicted in fig.13.

Generate Karatsuba

operands

32 bit Rad.8 Booth

Multiplication

64 Bit KSA Adder

Input Two 64 Bit operands

Output 128 Bit Sum and Carry

Vectors

Three Levels CSA Adder

6 operands 32 Bit

8 Vectors 64 Bit

5 Operands 64 Bit

Figure 12. Design of 64-bit: 64-bit CSA Based Radix-8 Booth, KSA Based

Karatsuba multiplier.

Generate Karatsuba

operands

32 bit Rad.8 Booth

Multiplication

64 Bit Carry Generate

and Kill

Input Two 64 Bit operands

64 Bit Comparator Correction circuit

Five Levels CSA Tree

Output 128 Bit Sum and Carry

Vectors

6 operands 32 Bit10 Vectors 64 Bit

10 Vectors 64 Bit

10 Vectors 64 Bit

Figure 13. Karatsuba multiplication based on CSA and comparator.

Note that the 64-bit comparator can be built with 8
stages in total recording a total delay of 13 level gate
delay and area of 317 gates (like the design of 8-bit
comparator discussed in section.2.5). To predict
whether the carry will be generated or not, then we
need to generate 64-Bit G (generate) and K (kill)
vectors. Thus, we have three cases which might happen
as follows:

 Case I: when 0. The carry is
propagated. Here we need to define the first carry
state before . If the state is , then
the vector does not need any correction. But, if the
state is a state, then we need to subtract
one from the highest bit (MSB) of any vector to
prevent the carry to .

 Case II:when . Here we
have a state, so that no need to correction.

 Case III:when .Here is
a state and a correction is needed. If this
happed at highest bit (MSB), then it needs to
subtract 2 ones. But if it after some ,
then this is Case I.

To define the first case, we have used a comparator
to compare the two vectors as the comparator
results:

 : Generate state happened first or it is the
first state after propagation

 : kill state happened first or it is the first
state after propagation

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

24

 All states are propagating states, no need
for correction because we do not have input carry

3) Comparisons between Design II & Design III
We investigated both proposed design alternatives

of Karatsuba based multiplication theoretically in
terms of critical path delay (using gate delay unit) and
the area of the multiplier (how many gates used in the
implementation). The results are shown in table 2
below.

TABLE II. COMPARISON BETWEEN DESIGN II & DESIGN III.

Design

Solutions #

Delay (gate

delay)

%

Optimization

Area (#

of gates)
% Optimization

Solution I:

using KSA

Adder.

23 +15% 6130

Solution II:

using

Comparator unit.

27 3712 +50%

C. Sequential 64-Bit CSA Based Radix-8 Booth
Multiplier

This design is accomplished by expanding the 32-
bit booth to 64-bit. The two modules (i.e. 64-bit and
32-bit Booth) differ only in the number of generated
partial products. Since radix-8 is used, 22 partial
products are generated in the new module instead of 11
while other logic components remained the same.
Fig.14 shows the logic diagram of new 64-bit
implementation. This design was implemented and was
simulated on Altera FPGA Kit recording a path delay
of 10.701 ns for one loop and since the program runs
22 times(i.e. 22 partial products), thus the total path
delay is 235.422 nS. Also, this multiplier requires 3330
logic elements (LEs).

Radix-8 Booth

Encoder

X

Shift Register

A

CSA_64bit

Partial SumPartial Curry

128128

128

64

3

64

Figure 14. Design of CSA based Radix-8 Booth 64-bit multiplier.

IV. SYNTHESIZE RESULTS AND ANALYSIS

To speed up the performance of sequential 64-Bit
CSA Based Radix-8 Booth Multiplier, we parallelized
the addition of partial products produced in the same
level by using Wallace CSA tree instead of sequential
CSA to exploit the maximum possible parallelism
between the partial products to gain in speed and
enhance the design performance. That’s it, we end up
with implementing a 64-bit Wallace Tree CSA based
Radix-8 Booth multiplier (WCBM). The block
diagram for the proposed design is shown in Fig.15. (a).
The comparison with the other design alternatives
showed that Wallace Tree CSA Based Radix-8 Booth
Multiplier (WCBM) has decreased the total delay and
increased the operational speed for the multiplication
operation. Also, the design is modified to increase the
frequency be dividing the program to three main states.

The top view of our implemented WCBM unit is
given in Fig.15. (b). It’s clearly seen that WCBM unit
is triggered by CLK signal along with enable line. The
generated number can be obtained from the output
portliness “sum” which is 128 bits. Besides the unit
encompasses three control input signals (enable, reset,
clk) and two control output signals (Ack and Ready).
Moreover, the finite state machine (FSM) diagram for
the implemented WCBM is shown in Fig.15. (c). FSM
consists of three main phases: Partial product
generation (Initially, 22 partial products are generated
by using radix-8 Booth encoding), Wallace tree phase
(these partial products are added by using 7 levels
Wallace Tree CSA based) and KSA phase (because the
result is redundant, KSA is used in the last phase to
convert it to conventional result). Finally, Fig.16.
Illustrates a sample numerical example of the proposed
WCBM that is generated from Quartus II simulation
tool.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

25

Generate Booth Partial

Products

CSA Tree (7 Levels)

Input Two 64 Bit operands

Output 128 Bit Sum and Carry

Vectors

22 PP 128 Bit

2 Vectors 128 Bit

Figure 15. (a) Design Architecture of WCBM (a) Top Level DiagramWCBM (C) FSM Diagram for WCBM.

Figure 16. Sample run example of WCBM process of two 64-bit numbers

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

26

The proposed multiplier implementation has been
synthesized using Altera Cyclone EP4CGX-22CF19C7
FPGA kit to analyze several design factors such as
design area, the total delay of the multiplication unit
and the thermal power consumption of FPGA
implementation. We have evaluated the performance of
the 64-bit Wallace Tree CSA based Radix-8 Booth
multiplier WCBM module for different data path sizes.
Timing analysis of the critical clock cycle for the
implemented WCBM is

illustrated in Fig.17. It can be seen from the graph
that the critical path delay is 14.103 ns in which 3.094
ns for the clock delay and 11.009 ns for the data delay.
This give a maximum frequency for the circuit of
90.83 MHz.In addition, the area of the design has
recorded a constant number of logic elements (i.e.
14249 LEs) with the total thermal power dissipation
estimated by using PowerPlay Power analyzer tool of
Quartus II software of 217.56 mW.

Figure 17. Waveform sample of the proposed WCBM data delay

V. CONCLUSIONS AND REMARKS

Multiplication operation is a core operation that
domineer the performance of several public
cryptographic algorithms such as RSA and SSC. In this
paper, we have thoroughly discussed several design
alternatives of radix-8 based multiplier unit by
employing the Karatsuba method and Booth recording
method with carry save and Kogge stone adders on
Wallace tree organization. The proposed designs were
evaluated in terms of many aspects including:
maximum frequency and critical path delay, design
area, and the total FPGA power consumption. The
proposed hardware cryptosystem design is conducted
using Altera Cyclone FPGA design technology along
with the help of CAD package of Altera such as
Quartus II and Modelsim 10.1. To sum up, we have
successfully implemented and synthesized the Wallace
Tree CSA Based Radix-8 Booth Multiplier (WCBM)
module via the target FPGA technology for 64-bits.

The synthesizer results showed an attractive results in
terms of several design factors that can improve the
computation performance for many multiplication
based applications.

REFERENCES

[1] A.J. Menezes, P.C. Van Oorschot and S.A. Vanstone. (1996).
Handbook of Applied Cryptography”, CRC Press, Boca Raton,
Florida.

[2] K. Javeed, X. Wang and M. Wang, 'Serial and Parallel Interleaved
Modular Multiplierson FPGA Platform', IEEE 25th International
Conference on Field Programmable Logic and Applications (FPL),
2015 https://doi.org/10.1109/FPL.2015.7293986

[3] D. J Greaves, System on Chip Design and Modelling, University of
Cambridge, Computer Laboratory, Lecture Notes, 2011.
http://www.cl.cam.ac.uk/teaching/1011/SysOnChip/socdam-
notes1011.pdf.

[4] M. D. Ercegovac and T. Lang, (2004) 'Digital Arithmetic', Morgan
Kaufmann Publishers, Elsevier, vol.1, p.p.51-136.
http://www.sciencedirect.com/science/book/9781558607989

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.02, 2019

27

[5] Qasem Abu Al-Haija, Sharifah M. S. Ahmad, "Fast Radix-2
Sequential Multiplier Using Kintex-7 FPGA Chip Family", The Open
Cybernetics & Systemics Journal, Bentham Open, Vol. 12, 2018.

[6] Mohammed Mosab Asad, Ibrahim Marouf, Qasem Abu Al-Haija,
"Review Of Fast Multiplication Algorithms For Embedded Systems
Design", International Journal Of Scientific & Technology Research
Volume 6, Issue 08, 2017.

[7] Heath, Steve (2003). Embedded systems design. EDN series for
design engineers (2 ed.). Newnes. p. 2. ISBN 978-0-7506-5546-0. An
embedded system is a microprocessor based system that is built to
control a function or a range of functions.

[8] I. Marouf, M. M. Asad, A. Bakhuraibah and Q. A. Al-Haija, "Cost
analysis study of variable parallel prefix adders using altera cyclone
IV FPGA kit," 2017 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), Ras Al
Khaimah, 2017, pp. 1-4.doi: 10.1109/ICECTA.2017.8252011

[9] Altera Co., “Introduction to Quartus II Software: Ver 10.0”, Intel
Quartus II MNL-01055-1.0, 2012.

[10] Altera Corporation, “Cyclone IV Device Handbook”, Vol. 1, CYIV-
5V1-2.2, https://www.altera.com/, 2012.

[11] S. Butchibabu, S. Kishore Bab (2014). Design and Implementation of
Efficient Parallel Prefix Adders on FPGA, International Journal of
Engineering Research & Technology, Vol. 3 Issue No.7.

[12] B. Parhami, (1999), “Computer Arithmetic: Algorithms and
Hardware Designs”, Oxford University Press, Oxford.

[13] D. Purohit, H. Joshi, (2014), ‘Comparative Study and Analysis of
Fast Multipliers’, International Journal of Engineering and Technical
Research (IJETR), Vol. 2, No.7, 2014.

[14] A. Karatsuba and Y. Ofman, (1963) ‘Multiplication of Multidigit
Numbers on Automata’, Soviet Physics, Doklady, p.p.595-596.
https://www.researchgate.net/publication/234346907_Multiplication_
of_Multidigit_Numbers_on_Automata

[15] Qasem Abu Al-Haija, Mohamad M.Asad, Ibrahim Marouf,"A
Systematic Expository Review of Schmidt-Samoa Cryptosystem",
International Journal of Mathematical Sciences and
Computing(IJMSC), Vol.4, No.2, pp.12-21, 2018.DOI:
10.5815/ijmsc.2018.02.02

[16] Qasem Abu Al-Haija, Mahmoud Smadi, Monther Al-Ja’fari,
Abdullah Al-Shua’ibi, "Efficient FPGA implementation of RSA
coprocessor using scalable modules", Procedia Computer Science,
Elsevier, Vol 34, 2014.

[17] Qasem Abu Al-Haija, Mohammad Alkhatib, Azmi B Jaafar, "Choices
on Designing GF(P) Elliptic Curve Coprocessor Benefiting from
Mapping Homogeneous Curves in Parallel Multiplications",
International Journal on Computer Science and Engineering, Engg
Journals Publications, Vol. 3, No. 2, 2011.

