
International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

40

Implementation of Pan-Tilt System for Locating Based on ARM

Xu Shuping

School of Computer Science and Engineering

Xi'an Technological University

Xi’an, 710032, China

e-mail: 563937848@qq.com

Chen Yiwei

School of Computer Science and Engineering

Xi'an Technological University

Xi’an, 710032, China

Zhang Zhiyong

School of Computer Science and Engineering

Xi'an Technological University

Xi’an, 710032, China

Li Hao

School of Computer Science and Engineering

Xi'an Technological University

Xi’an, 710032, China

Abstract—The purpose of this paper was to implement a

cheaper Pan-Tilt System than the traditional one which based

on servo. The hardware platform consisted of the module of

locating perception, the s3c2440 controller and the driver of

stepper, and the Pan-Tilt System could stabilize at positions at

arm/Linux circumstances controlled by software we

programmed. The Pan-Tilt System had higher stability of

dynamic under the condition of low frequency of pulse or high

subdivision, and higher precise under high subdivision. This

solution of Pan-Tilt System, suited for the place of low speed or

loose real time, owns values of use and reference. The strategy

was put forward for improving.

Keywords-Stabilized Platform; PID Control Algorithm; ARM

Controller

I. INTRODUCTION

Recently, it’s common to use PTZ cameras in many

fields. The application of the inspection robot has solved the

problems caused by the lack of human or unattended

substations in a certain extent[1-3]. The UAVsare applied to

the transmission line inspection, which can greatly alleviate

the increase of the total mileage of the transmission line, and

the operation and maintenance difficulties caused by it can

break the weak link of human inspection and save manpower

[4]. Security monitoring provides an effective way for public

security and judicial organs to prevent and crack down on

illegal and criminal acts and maintain social stability. It is

also important for promoting a harmonious society and

safeguarding people's stability and life [5-7]. The key is that

how to make the PTZ stabilize quickly.

In this passage, a two-degree-of-freedom Pan/Tilt System

is designed and implemented, which adopts stepper motor.

The stepper motor has lower cost, simpler circuitry and

easier control than using a servo motor. By reading the

position feedback of the attitude sensing module and directly

controlling the rotation of the stepping motor, the pan/tilt is

stabilized at the designated posture, and can meet the

application requirements in low-speed or real-time

applications. To further introduce the control process based

on the stepper motor control curve to lay the foundation for

the rapid and stable positioning of the PTZ[8-10].

II. SYSTEM ACTUALIZE PROJECT

A. Framework and Composition

As shown in Figure 1, the entire system consists of a

controller, an execution module, and an attitude perception

module. The solid line arrows represent the control output

direction, which is the open-loop control mechanism of the

stepper motor composed of the controller and the execution

module. The dotted arrow represents the direction of the

DOI: 10.21307/ijanmc-2019-020

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

41

information flow and is a closed-loop attitude feedback

mechanism composed of a controller and an attitude sensing

module.

The pan-tilt system adopts a ring frame structure, and a

stepping motor is arranged at both ends of the X and Y axes.

The stepping motor is rigidly connected with the inner and

outer frames through a coupling to ensure good transmission

and real-time performance. The X-axis stepping motor is

fixed to one end of the outer frame shaft, and the other end is

fixed with a load of metal block to make it balanced. The

Y-axis stepping motor is fixed on the base. The X-axis

controls the tilt of the inner frame, and the Y-axis controls

the outer frame axis to roll over.

S3C2440
controller

 motor
driven 0

Stepping
Motor 0

 motor
driven 1

Stepping
Motor 1

RS-232
Transceiver

51
controller

Attitude
sensor

Pulse
direction

Serial
comunication

Attitude perception module

Executive moule

PTZ

Data flow

Control flow

Figure 1. PTZ system frame diagram

Figure 2. PTZ control drive wiring Diagram

In the system, 57HS09 stepper motor is used for X-axis

and 57HS22 stepper motor is used for Y-axis. They are all

mixed 2-phase and 8-wire. They are connected in series with

the motor driver. They all use M542 stepper motor driver.

The driver supports 15 The subdivision setting is dialed with

a 4-digit dial switch, with a minimum of 400 and a

maximum of 25600. A driver has two leads for receiving the

pulse signal and the direction signal, respectively. However,

it is required that the duration of the pulse high and low

levels should be greater than 1.5us, that is, one cycle is

greater than 3us and the maximum frequency is 330kHZ.

As shown in Figure 2, the controller uses a total of 4 pins

connected to the stepper motor driver (M542). The GPB0

and GPB1 pins are used as Timers. The PWM function of

Timer0 and Timer1 is used to form the pulse signal for

stepping motor rotation. The GPF0 and GPF1 pins are set to

output mode, and the output high or low controls the

direction of rotation of the stepper motor. The P542+ and

DIR+ of the M542 are connected to a +5V power supply.

The enable signals ENA- and ENA+ are empty, and the

stepper motor is always enabled.

The inner frame has a hollow cuboid shape (box body),

the top is open and the inner and middle fixed attitude

sensing module (XGZT-II) is composed of a 51 controller

(c8051F350) and an attitude sensor as the core, and the

controller outputs information. The sp3232 is converted into

a level suitable for the rs232 interface as the output of the

module. In response to the angle, the lower end of the box

leads to two lines, one power supply and one serial port for

outputting sampling data.

This article uses the FRIENDLY ARM mini2440

development board, which uses ARM920T-based s3c2440

controller, which is Samsung's product, is a widely used

arm9 processor. The development board uses NAND Flash

as a storage device.

B. Software Platform Composition

The Linux operating system has gradually grown from

the 90s of the last century. It follows the design principle of

"short and hard" and follows the GPL protocol, with its

portability, cutability, security, stability, openness, open

source, etc. It is widely used in embedded field.

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

42

Generally, a cross-compilation environment refers to

compiling and installing a compiler that can be run directly

on this platform to generate code for other platforms (such as

ARM) on a PC-installed Linux platform. Here,

arm-linux-(gcc, ld, objcopy, etc.) The tool chain is used to

generate code that runs on the arm platform.Usually the

embedded operating system needs to build bootloader, kernel,

file system 3 parts.

The Linux kernel starts. In addition to the kernel image

must be in the right place in the memory, the CPU must also

have certain conditions [4], and these early preparations

require the bootloader. This paper selects u-boot because of

its status in the industry and its ability to support many

hardware platforms and Linux operating systems.

The Linux kernel selected in this article is provided by

the development board vendor (version 2.6.32.2), which

provides good board-level support. The compiled kernel

image can be used directly and is convenient. If you

download from the official website, you must write the

appropriate driver for the hardware platform and add it to the

kernel source code.

The file system is a software organization responsible for

managing and storing file information. In the embedded field,

JFFS, YAFFS, UBIFS, etc. are more common. These are

applicable to NAND Flash. This article uses the YAFFS file

system.The file system is constructed by first creating a

Linux tree directory under an empty directory (written as

$path); building the busybox tool in a dynamically linked

format and installing it in the $path directory; then through

NFS. Debug, install the required software and libraries, write

appropriate configuration files to achieve the required

functions; Finally, use the mkyaffs2image tool to make the

directory where $path resides as the YAFFS file system,

which is recorded as rootfs.

Get_coordinates
Read_coordinate()

Check whether the coordinates
are legal Test_coordinate()

Pretreatment
Trans_string_to_dig()

Simple control

Stepper motor control interface
Motor_start()

Motor_diretion()
Motor_stop()

Whether to achieve the target posture

end

Y

N

N

initialization

start

Y

Figure 3. PTZ control software flowchart

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

43

III. STABLE PLATFORM SYSTEM CONTROL SOFTWARE

A. Data Acquisition

This module obtains angle information about X, Y

coordinate strings from RS-232 interface (serial port). The

attitude information data read out from the angle sensor

module is a character string whose pattern is "X: - 00.000, Y:

- 00.000", and the negative sign indicates the direction of

rotation. The A function is used to read data from the serial

port. Because the angle will change after the stepper motor

rotates, the angle sensor data acquisition is set when the

stepper motor rotates.

Since the collected angle information is in the form of a

character string, each data packet is composed of a plurality

of character strings, and it is necessary to check the integrity

of the data packet to ensure the correctness of the collected

data. If the collected data fails the test, then accept the data

again.

Preprocessing module is used to convert accepted string

data to attitude angle data. The trans_string_to_digit function

is used to convert the pose data in a string to a float type

value, which is returned in the form of an address. At this

point, numerical data that can be used for attitude position

feedback has been obtained.

B. Stepper motor drive module

As shown in Figure 3, the interface function is motor_*,

and each function corresponds to a control command. There

are 3 commands in total. Both have int fd and ioctl_data

control parameters. Fd is the file descriptor, which refers to

the device file; the ioctl_data type is defined as follows.

typedefstruct { intport; intfreq; int direction; } ioctl_data;

Port is used to specify the control port, T0 corresponds to

the X-axis stepper motor, and T1 corresponds to the Y-axis

stepper motor. Freq is used to set the transmit frequency of

the PWM wave, if the frequency of the pulses received by

the stepper motor driver. The direction is used to set the

direction of rotation of the stepper motor.

Linux drivers can be used in two ways, compiled into the

kernel and loaded modules. Compiling the kernel is a bit

difficult and inconvenient, so the compilation into modules is

more common.

A key data structure file_operations is defined in the

kernel. As shown below, it defines the corresponding

function pointer, which needs to be associated with the

function that controls the hardware, to ensure that the

hardware works properly when we call the open, close, and

ioctl system calls.

structfile_operationspwm_fops=

{.open=pwm_open,.release=pwm_close, .unlocked_ioctl

=pwm_ioctl };

For the stepper motor, the functions of starting, changing

direction, and stopping need to be realized. In the pwm_ioctl

function, the control logic of the stepping motor driving

module program is implemented. The general structure is

shown as follows.

staticintpwm_itcol(struct file *file, unsignedintcmd,

unsigned long arg)

{

ioctl_data data;

 …

 //Check the validity of the parameters, if not legal

return -EINVAL;

 //Copy user space data with arg address to kernel

space with data address

switch(cmd){

case MOTOR_SPEED; //Set frequency, start

motor

 case MOTOR_DIRECTION; //Change the direction

of motor rotation

 case MOROR_STOP; //Stop the motor

return 0;

 }

}

The entrance and exit of the kernel module.

Themodule_init() and module_exit() macros are the

entrances and exits of the kernel module. The parameters are

function names, which are used to initialize the resource

when the module is loaded (call dev_init) and release the

resource when the module is unloaded (call dev_exit). Some

of the codes and comments are shown in Figure 4.

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

44

Static int __init dev_init(void) static void __exit dev_exit(void)
{ {
 dev_init(...); cdev_del(...);
 //Initialize the device //Remove device from system
 alloc_chrdev_region(…,“motor”); unregister_chrdev_region(...);
 // dynamically allocate the device number, motor //deregister the device number
 //is a string that identifies the device }
 // and can be specified as another
 cdev_add(...);
 //Add a word device to the system module_init(dev_init);
 return 0； module_exit(dev_exit);
}

Figure 4. DriverEntry

C. Hardware drivers

Call the stepper motor driver. Take motor_start as an

example. It calls the ioctl system call interface, places the

system call number in the system call with the R7 register,

and then calls the swi (or svc) instruction to move from user

mode to kernel mode.After the CPU responds to the interrupt,

the PC jumps to the swi of the interrupt vector table and then

jumps to the swi interrupt routine. Then save the site, take

the system call number, take the system call table base

address, jump to sys_ioctl. Sys_ioctl does not have a direct

interface in the kernel. It is generated by

SYSCALL_DEFINE3(ioctl, ...) when the kernel is

preprocessed, followed by do_vfs_ioctl, vfs_ioctl,

filp->f_op->unlocked_ioctl. Unlocked_ioctl is a function

pointer to pwm_ioctl, which calls the code implemented in

the driver.

D. System operation

Compile the code and generate two files: the application

layer program and the stepper motor driver for the stable

platform system control software, denoted as main and

driver.ko. First copy the two files to the development board's

file system/directory via NFS or scp commands. Then

execute the following command in the development board

Linux shell.

… .# cd /

… .#in smod driver. ko //Load the driver into the kernel

 # cat /proc/devices | grep motor // Look at the device

number assigned to the driver, motor is the ID specified in

the driver. Its output is:

253 motor //253 is the major device number assigned to

the drive motor by the system and is used in the next

command.

mknod /dev/motor0 c 253 0 //The device file motor0 is

created. This is a Linux VFS application that is used to mask

the underlying implementation and provide a uniform

interface. 0 is the minor device number, and c is the

character device.

./main //Running the program, stepper motor

movement, the system can reach equilibri.

IV. RESULT AND ANALYSIS

Stepper motor drive fine fraction increase, it can

obviously improve the stability of the system, but prolong

the execution time, its pulse frequency is small, the output

torque is big, it is advantageous to load ability, the stability

degree is higher than the pulse frequency, however, too large

and too little pulse frequency faces the problem of long

execution time, and It is not reasonable to control the stepper

motor directly with a given pulse, the characteristics of

stepper motor can not be well played, resulting in the failure

of stepping motor, overshoot, oscillation and so on. The

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

45

existence of these problems makes it difficult for the system

to meet the demand of high real-time.

In order to reduce the execution time and increase the

dynamic stability, it requires that the fine fraction of the

drive is as small as possible when the precision is satisfied,

and that the output torque of the stepper motor is large

enough and the speed is fast enough, so it is necessary to

study the step motor control process deeply. In the process of

stepping motor acceleration, the torque is fully utilized to

ensure the load and acceleration, so as to improve the

running speed of stepper motor, reduce the execution time

and improve the dynamic stability of the system.

TABLE I. IMPACT OF PAN-TILT BY SUBDIVISION

Motor drive fine fraction Frame ring oscillation amplitude. Find appearance time

2000 Little Short

10000 Little Middle

20000 Little, hard to see. Long

TABLE II. IMPACT OF PAN-TILT BY FREQUENCY OF PULSE

Impulse

frequency
Output torque

Carrying

capacity

Frame ring

oscillation amplitude.
Find appearance time

3125 Large Powerful Little Long

31250 Middle Middle Middle Middle

312500 Little Powerless Long
It's very long, and it swings back and

forth across the end.

V. CONCLUSION

This passage designs and implements a 2-DOF PTZ

attitude-finding system based on arm/Linux. The hardware is

an open-loop actuator composed of an s3c2440 controller, a

stepper motor driver, and a stepper motor, and a closed-loop

attitude feedback mechanism formed by an s3c2440

controller and an attitude sensing module. The software is a

PTZ system control program that includes data acquisition,

algorithm control, and stepper motor drivers in a

Linux-based cross-compilation environment.

In order to improve system performance, strategies can

be taken: cropping the Linux kernel, removing unnecessary

functions to improve the real-time performance of the system,

studying the control curve of the stepper motor, and

introducing corresponding control processes to improve the

real-time performance of the system and the dynamic

stability of the system; The existing PID controller is

designed, improved and optimized for this system to

improve the dynamic stability of the system.

ACKNOWLEDGMENT

The authors wish to thank the cooperators. This

research is partially funded by the Project funds in shaanxi

province department of education(17JK0381) and the Project

funds in national university student innovation project

(201710702006).

REFERENCES

[1] Melman S, Moses Y, Medioni G, et al. The multi-strand graph for a
PTZ tracker[J]. Journal of Mathematical Imaging and Vision, 2017,
6(1):1-15.

[2] Liu N, Wu H, Lin L. Hierarchical ensemble of background models for
PTZ-based video surveillance[J]. IEEE Transactions on Cybernetics,
2015, 45(1):89.

[3] Konda Kr, Conci N, De Natale F. Global Coverage Maximization in
PTZ-Camera Networks Based on Visual Quality Assessment[J]. IEEE
SENSORS JOURNAL,2016,16(16):6317-6332.

International Journal of Advanced Network, Monitoring and Controls Volume 03, No.04, 2018

46

[4] Xu Y, Song D. Systems and algorithms for autonomous and scalable
crowd surveillance using robotic PTZ cameras assisted by a
wide-angle camera[J]. Autonomous Robots, 2010, 29(1):53-66.

[5] Yu JJ, Lu DF, Hao GB.Design and analysis of a compliant
parallel pan-tilt platform[J]. MECCANICA,2016,51(7):1559-1570.

[6] Evren S, Yavuz F, Unel M. High Precision Stabilization of Pan-Tilt
Systems Using Reliable Angular Acceleration Feedback from a
Master-Slave Kalman Filter[J]. Journal of Intelligent & Robotic
Systems, 2017(3):1-31.

[7] Mercader P, Åström K J, Baños A, et al. Robust PID Design Based
on QFT and Convex-Concave Optimization[J]. IEEE Transactions on
Control Systems Technology, 2017, PP(99):1-12.

[8] Li B. An optimal PID controller design for nonlinear constrained
optimal control problems[J]. Discrete and Continuous Dynamical
Systems - Series B (DCDS-B), 2017, 16(4):1101-1117.

[9] Kim J H, Hur S M, Oh Y. Performance analysis for bounded
persistent disturbances in PD/PID-controlled robotic systems with its
experimental demonstrations[J]. International Journal of Control,
2017:1-30.

[10] Saab S S. An optimal stochastic multivariable PID controller: a direct
output tracking approach[J]. International Journal of Control,
2017:1-29.

