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Abstract—In this paper an Adaptive Neuro-Fuzzy Controller 

was designed to adaptively adjust the parameters of a power 

Oscillation Damper as the power system operating point 

changes due to change in operating point in a large 

interconnected Network fitted with FACTS device and Power 

Oscillation Damper. As a foundational work the generalized 

mathematic model of multi-machine power system with 

embedded FACTS was developes. The results obtained clearly 

reveals the effectiveness of this approach. 
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I. INTRODUCTION 

Most of the FACTS based damping controllers belong to 
the PI (Proportional + Integral) type and work effectively in 
single machine system [1]. However, the performance of the 
above mentioned damping controllers deteriorates in multi-

machine power systems. The damping performance of the 
FACTS based damping controllers in multi-machine power 
systems can be improved by using fuzzy coordinated design 
[2]. Furthermore Power Oscillation Damper are designed for 
specific operating point, but operating point changes as 
demand changes for optimal performance the parameter of 
power oscillation damper must continually change with 
changes in operating point for this reason ANFIS is 
deployed to predict the future values of POD parameters 
based on large population of such parameters obtained from 
all possible operating scenarios. The structure of the 
proposed Adaptive Neuro Fuzzy coordinated controller is 
shown in Figure 1, where the inputs are speed deviation of 
synchronous machines and their acceleration. Thus, the 
conventional damping controllers are adaptively tuned by 
using ANFIS controllers.  
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Figure 1. Proposed Adaptive POD Controller 

II. LITERATURE REVIEW 

An attempt has been made to apply hybrid neuro-fuzzy 
approach for the coordination between the conventional 
power oscillation damping (POD) controllers for multi-
machine power systems. With the help of MATLAB, a class 
of adaptive networks, that are functionally equivalent to 
fuzzy inference systems, is proposed. The proposed 
architecture is referred to as ANFIS (Adaptive Neuro-Fuzzy 
Inference System) [2]-[6]. An adaptive fuzzy inference 
system (ANFIS) based UPFC supplementary damping 
controller to superimpose the damping function on the 

control signal of UPFC for damping of power system 
electromechanical oscillations was proposed in [7]-[8]. 

The acronym ANFIS derives its name from adaptive 
neuro-fuzzy inference system. Using a given input/output 
data set, the toolbox function ANFIS constructs a fuzzy 
inference system (FIS) whose membership function 
parameters are tuned (adjusted) using either a back 
propagation algorithm alone, or in combination with a least 
squares type of method. This allows fuzzy systems to learn 
from the data they are modeling [8]. It has a network-type 
structure similar to that of a neural network. Thus, it maps 
inputs through input membership functions and associated 
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parameters and then through output membership functions 
and associated parameters to outputs, can be used to 
interpret the input/output map. The parameters associated 
with the membership functions will change through the 
learning process. The computation of these parameters (or 
their adjustment) is facilitated by a gradient vector, which 
provides a measure of how well the fuzzy inference system 
is modeling the input/output data for a given set of 
parameters [9]-[10]. Once the gradient vector is obtained, 

any of several optimization routines could be applied in 
order to adjust the parameters so as to reduce some error 
measure (usually defined by the sum of the squared 
difference between actual and desired outputs) [11]-[12].  

III. PROPOSED METHOD 

A. Fuzzy System Modeling and Controller Philosophy 
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Figure 2. An unknown System as a Black Box 

In the unknown system in Figure 2 only a set of 
input,        and output        can be measured. The 
mathematical description relating the input to the output can 
be a mathematical formula, such as a mapping or a function 
that relates the input to the output in the form 

                      

   

            

or a set of differential equations in the form 

                     

  

                      

or a logical linguistic statement which can be quantified 
mathematically in the form: 

             IF (input    ) AND … AND (input    ) (3) 

THEN (output   ) AND …. AND (output   ) 

Fuzzy systems modeling is to quantify the logical form 
of equation (3.51) by using Fuzzy logic and the 
mathematical functional model of equation (3.49) or by 
using Fuzzy logic together with the differential equation 
model of equation (3.50). 

The fuzzy logic controller comprises of four stages: 
fuzzification, a knowledge base, decision making and 
defuzzification. The fuzzification interface converts input 
data into suitable linguistic values that can be viewed as 
label fuzzy sets. To obtain a deterministic control action, a 
defuzzification strategy is required. Defuzzification is a 
mapping from a space of fuzzy control actions defined over 
an output universe of discourse into a space of nonfuzzy 
(crisp) control actions. The defuzzification of the variables 
into crisp outputs is tested by using the weighted average 
method. 

After generating the fuzzy inference, the generated 
information describing the model’s structure and parameters 
of both the input and output variables are used in the ANFIS 
training phase. This information will be fine-tuned by 
applying the hybrid learning or the backpropagation 
schemes. The algorithm employed for ANFIS training is 
shown in Figure 3. 
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Figure 3. Flowchart of ANFIS Training 

 

IV. RESULTS AND DISCUSSIONS 

Power Oscillation Dampers were designed for UPFC 
embedded in two test case study systems: 

a) Kundur Two Area System 
b) Nigerian 330kV National Grid 
However the optimal performance of these PODs are 

only guaranteed at the particular operating points under 
consideration, but at any other operating points, different 
values of time constant must be determined for the damping 
to be effective 

A. Result of ANFIS Training (Test System 1) 

The training data and check data are generated by 
randomly varying the load (multiplying the load with a 
factor of 0.1) in the two areas of the test system. At each 
operating point the actual values of POD parameters 
          were calculated. The ANFIS parameter settings 

are as shown in Table 1. Fig 4 is the plot of training data and 
ANFIS output for lead time constant while Figure 5 is the 
graph of check data and ANFIS output for lead time constant. 
The plot of the error associated with the training is shown in 
Figure 6 for both the check data and training data. The 
corresponding plots for lag time constant are shown in 
Figures 7 to Figure 9. 

TABLE I. ANFIS PARAMETER SETTINGS 

numMFs 5 

mfType 'gbellmf' 

epoch_n 20 
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Figure 4. Training Data and ANFIS Output: Lead Time Constant 

 

 
Figure 5. Check Data and ANFIS Output: Lead Time Constant 

 

 
Figure 6. Prediction Error for Training Data and Check Data: Lead Time Constant 
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Figure 7. Training Data and ANFIS Output: Lag Time Constant 

 
Figure 8. Check Data and ANFIS Output: Lag Time Constant 

 
Figure 9. Prediction Error for Training Data and Check Data: Lag Time Constant 

B. Result of ANFIS Training (Test System 2) 

The data for training were obtained by randomly varying 
the load in different areas by a factor of 0.01 from low to 
medium and high values for about 500 scenarios, the data 
were divided into training data and check data. The lead-lag 
time constants were recorded as they change with operating 
conditions as well as the lead and lag time constants that 
provide the best damping under different operating 

conditions. The results obtained for lag time constant are as 
shown in Figures 10 to 12. Figure 13 to 14 are the 
corresponding results for lead time constant. Figure 15 is the 
graph of the input membership function while Figures 16 
and 17 are the graphs of the ANFIS adjusted membership 
function that gives the exact simulation of the training data 
for the lag time constant and lead time constant respectively. 

3.79 3.8 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

MODULUS OF EIGENVALUE

LA
G 

TI
M

E 
CO

NS
TA

NT

PLOT OF TRAINING DATA AND ANFIS OUTPUT:LAG TIME CONSTANT

 

 

ANFIS OUTPUT

TRAINING DATA

3.7 3.72 3.74 3.76 3.78 3.8 3.82 3.84 3.86 3.88 3.9
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

MODULUS OF EIGENVALUE

LA
G 

TIM
E C

ON
ST

AN
T

PLOT OF CHECK DATA AND ANFIS OUTPUT:LAG TIME CONSTANT

 

 

ANFIS OUTPUT

CHECK DATA

3.79 3.8 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88
-1

-0.5

0

0.5

1
x 10

-3 TRAINING DATA ERROR FOR LAG TIME CONSTANT

ER
RO

R

MODULUS OF EIGENVALUE

3.7 3.72 3.74 3.76 3.78 3.8 3.82 3.84 3.86 3.88 3.9
-5

0

5

10
x 10

-4 CHECK DATA ERROR FOR LAG TIME CONSTANT

ER
RO

R

MODULUS OF EIGENVALUE



International Journal of Advanced Network, Monitoring and Controls          Volume 03, No.04, 2018 

22 

 

 
Figure 10. Plot of ANFIS Data and Training Data: Lag Time Constant 

 

 
Figure 11. Plot of ANFIS Data and Check Data: Lag Time Constant 

 

 
Figure 12. Prediction Error for Training Data and Check Data 
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Figure 13. Plot of ANFIS Output and Training Data: Lead Time Constant 

 
Figure 14. Plot of ANFIS Data and Check Data: Lead Time Constant 

 
Figure 15. Prediction Error for Training Data and Check Data 

 
Figure 16. Input Membership Function 
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Figure 17. ANFIS Adjusted Membership Function: Lag Time Constant 

 

Figure 18. ANFIS Adjusted Membership Function: Lead Time Constant 

 

V. CONCLUSION 

In this work an adaptive neuro fuzzy controller has been 
developed for the purpose of coordinating the changes in 
power oscillation damper parameters with variation in power 
system operating point. The accuracy with which the 
controller was able to predict the values of POD parameters 
clearly reveals the effectiveness of the proposed approach. 
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