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Abstract—Considering the fact that the exponential 

synchronization of neural networks has been widely used in 

theoretical research and practical application of many 

scientific fields, and there are a few researches about the 

exponential synchronization of fractional-order 

memristor-based neural networks (FMNN). This paper 

concentrates on the FMNN with time-varying delays and 

investigates its exponential synchronization. A simple linear 

error feedback controller is applied to compel the response 

system to synchronize with the drive system. Combining the 

theories of differential inclusions and set valued maps, a new 

sufficient condition concerning exponential synchronization is 

obtained based on comparison principle rather than the 

traditional Lyapunov theory. The obtained results extend 

exponential synchronization of integer-order system to 

fractional-order memristor-based neural networks with 

time-varying delays. Finally, some numerical examples are 

used to demonstrate the effectiveness and correctness of the 

main results. 

Keywords-Exponential Synchronization; Memristor-based 

Neural Networks; Fractional-order; Linear Error Feedback 

Control; Time-varying Delays. 

I. INTRODUCTION 

Chua already supposed the existence of memristor in 

1971 [1], however, the practical device of memristor in 

electronics is obtained in [2] until 2008. In addition to the 

existing three kinds of circuit elements, memristor is 

regarded as the fourth basic circuit element and is defined by 

a nonlinear charge-flux characteristic. As everyone knows, 

resistors can be used to work as connection weights so that it 

can emulate the synapses in artificial neural networks. 

However, in the neural networks of biological individual, 

long-term memories is essential in the synapses among 

neurons, but for the general resistors, it is impossible to have 

the function of memory. Recently, due to the memory 

characteristics of memristor, memristor can replace the 

resistor to develop a new neural networks that is 

memristor-based neural networks (MNN) [3-6]. 

In recent years, more and more attentions have been put 

on the dynamical analysis of memristor-based neural 

networks, such as the investigation of stability [7-10], 

periodicity [11-13], system synchronization [14-22], 

passivity analysis [23], dissipativity [24-25] and attractivity 

[26]. Particularly, the stability and synchronization of MNN 

has been widely studied in [27-30]. In fact, synchronization 

means the dynamics of nodes share the common time-spatial 

property. Therefore we can understand an unknown 

dynamical system by achieving the synchronization with the 

well-known dynamical systems [18]. Moreover, in the 

transmission of digital signals, communication will become 

security, reliable and secrecy by achieving synchronization 

between the various systems. Therefore, the synchronization 

of MNN is still worth further research.  

Moreover, the fractional-order models can better 

describe the memory and genetic properties of various 
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materials and process, so the fractional-order models have 

received a lot of research attentions than integer-order 

models. In recent years, with the improvement of 

fractional-order differential calculus and fractional-order 

differential equations, it is easy to model and analyze 

practical problems [31, 32]. Therefore, there have been a lot 

of researches about the dynamical analysis and 

synchronization of fractional-order memristor-based neural 

networks (FMNN) [34-39]. Finite-time synchronization, 

hybrid projective synchronization and adaptive 

synchronization of FMNN have all been researched [34-36]. 

However, there are only a very few research results on 

exponential synchronization of FMNN. In fact, the 

exponential synchronization of neural networks has been 

widely used in the theoretical research and practical 

application of many scientific fields, for example, 

associative memory, ecological system, combinatorial 

optimization, military field, artificial intelligence system and 

so on [40-43]. So the exponential synchronization of FMNN 

is still worth further studying as it is a significant academic 

problem. 

On the other hand, the stability and synchronization of 

FMNN without time delay have been deeply studied such as 

in [33]. However, in hardware implementation of neural 

networks, time delay is unavoidable owing to the finite 

switching speeds of the amplifiers. And it will cause 

instability, oscillation and chaos phenomena of systems. So 

the investigation for stability and synchronization of FMNN 

cannot be independent on the time delay. 

Motivated by the above discussion, this paper studies the 

exponential synchronization of FMNN with time-varying 

delays. The main contributions of this paper can be listed as 

follow. (1) This is the first attempt to achieve exponential 

synchronization of FMNN with time-varying delays by 

employing a simple linear error feedback controller. (2) The 

sufficient condition for exponential synchronization of 

FMNN with time delays is obtained based on comparison 

principle instead of the traditional Lyapunov theory. (3) 

Some previous research results of exponential 

synchronization for integer-order memristor-based system 

are the special cases of our results. Furthermore, some 

numerical examples are given to demonstrate the 

effectiveness and correctness of the main results. 

The rest of this paper is organized as follows. 

Preliminaries including the introduction of Caputo 

fractional-order derivative, model description, assumptions, 

definitions and lemmas are presented in Section 2. Section 3 

introduces the sufficient condition for exponential 

synchronization of the FMNN. In Section4, the numerical 

simulations are presented. Section5 gives the conclusion of 

this paper. 

II. PRELIMINARIES  

Compared to the integer-order derivatives, we know the 

distinct advantage of Caputo derivative is that it only 

requires initial conditions from the Laplace transform of 

fractional derivative, and it can represent well-understood 

features of physical situations and making it more applicable 

to real world problems [36]. So in the rest of this paper, we 

apply the Caputo fractional-order derivative for the 

fractional-order memristor-based neural networks (FMNN) 

and investigate the exponential synchronization of FMNN. 

A. The Caputo fractional-order derivative 

Definition1 [32] The Caputo fractional-order derivative is 

defined as follows: 



where
q

is the order of fractional derivative, m is the 

first integer larger than 
q

,
 1 ,m q m    

 

is the Gamma function, 
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Particularly, when
0 1,q 

  



B. Model description 

In this paper, referring to some relevant works on FMNN 

[35,36], we consider a class of FMNN with time-varying 

delays described by the following equation, 

 

where
 ix t

is the state variable of the i th neuron (the 

voltage of capacitor iC
), 

q
is the order of fractional 

derivative, 
0ic 

is the self-regulating parameters of the 

neurons,
 0 j t  

and ( is a constant ) represents the 

transmission time-varying delay.
, :j jf g R R

are 

feedback functions without and with time-varying 

delay.
  ij ja x t

and 
   ij j jb x t t 

are memristive 

connective weights, which denote the neuron 

interconnection matrix and the delayed neuron 

interconnection matrix, respectively. ijW
and ijM

denote the 

memductances of memristors ijR
and ijF

respectively. 

And ijR
represents the memristor between the feedback 

function
  i if x t

and
 ix t

, ijF
represents the memristor 

between the feedback function 

   i i ig x t t
and

 ix t
. iI

represents the external 

input. According to the feature of memristor, we denote 

                        (5) 

C. Assumptions, Definitions and Lemmas 

In the rest of paper, we first make following assumption 

for system (4) . 

Assumption1: For 1 2, ,j N s s R   , the neuron 

activation functions ,j jf g bounded,    0 0 0j jf g  and 

satisfy 
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where 1 2s s
and

,j j 
are nonnegative constants. 

We consider system (4) as drive system and 

corresponding response system is given as follows:3 

 

                 1 1 ,

0, ,

q n n

i i i j ij j j j j ij j j j j j i iD y t c y t a y t f y t b y t t g y t t I u

t i N

          

 

 

         (7) 

Where 

                       (8) 

and
 iu t

is a liner error feedback control function which 

defined by 
      i i i iu t y t x t 

, 

where
,i i N 

are constants, which denotes the control 

gain. Next, we define the synchronization error
 e t

as 

        1 2, ,...., ,
T

ne t e t e t e t
where

     i i ie t y t x t 
. According to the system (4) and 

system (7), the synchronization error system can be 

described as follows: 

               

               

1 1

1 1

( ), 0,

q n n

i i i j ij j j j j ij j j j

n n

j ij j j j j j j ij j j j j j

i

D e t c e t a y t f y t a x t f x t

b y t t g y t t b x t t g x t t

u t t i N

 

 

    
 

          
 

  

 

 



where

             , , ,ij j ij j j ij j ij j ja y t b y t t a x t b x t t 

are the same as those defined above, 

       ( )i i i i i iu t y t x t e t   
, where

,i i N 
 

are constants, which denotes the control gain. 

According to the theories of differential inclusions and 

set valued maps [40], if
 ix t

and
 iy t

are solutions of (4) 

and (7) respectively, system (4) and system (7) can be 

written as follow: 
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And 



Where 

          (12) 

And 

                                   () 

where 
{ , }co u v

denotes the closure of convex hull generated by real numbers u and v or real matrices u and v . 

Then the synchronization error system can be described as follows: 
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Definition2 [8] For 
0,t 

the exponential 

synchronization of system (4) and system (7) can be 

transformed to the exponential stability of the error system 

(9) (error approaches to zero). The error system (9) is said to 

be exponentially stable, if there exist 

constant
0,iQ  0,iP 

such that the solution 

        1 2, ,..., T

ne t e t e t e t
of error system (9) with 

initial condition 
      0 0, , ne s s t t R   

 

satisfies  

      
0 0

0 0
1
max sup exp , 0,i i i i

i n t s t

e t Q s P t t t t



    

 
     

 

1,2,...,i n
, where iP

is called the estimated rate of 

exponential convergence. 

Lemma1 [14] Under the assumption1, the following 

estimation can be obtained: 

(i)
              ij j j j ij j j j ij j jco a y t f y t co a x t f x t A F e t    

    , 

(ii)
               ij j j j j j ij j j j j jco b y t t g y t t co b x t t g x t t         

     

   ij j j jB G e t t  
, 

where
   max , , max , , , ,ij ij ij ij ij ijA a a B b b i j N  

  

 

                    , , .j j j j j j j j j j j j j j jF e t f y t f x t G e t t g y t t g x t t j N         

 

Proof: If 
   0, 0,i iy t x t i N  

we can easily have part(i) hold. From (9) and(10), we can get 

(1) For
   0, 0i iy t x t 

, then 

                 ij j j j ij j j j ij j j ij j jco a y t f y t co a x t f x t a f y t a f x t     
   

 
 

     .ij j j ij j ja F e t A F e t 


 

(2) For
   0, 0i iy t x t 

, then 

                 ij j j j ij j j j ij j j ij j jco a y t f y t co a x t f x t a f y t a f x t     
   

 
 



International Journal of Advanced Network, Monitoring and Controls          Volume 03, No.03, 2018 

7 

     .ij j j ij j ja F e t A F e t 


 

(3) For
   0i ix t y t 

or
   0i iy t x t 

, then 

           

     

               

( (0)) ( (0) )

(0) ( (0) ) ( ) .

ij j j j ij j j j

ij j j ij j j

ij j j ij j j ij j j j j ij j j

co a y t f y t co a x t f x t

a f y t f a f f x t

A f y t f A f f x t A f y t f x t A F e t

   
   

   

      

 

 

Then complete the proof of part (i). In the similar way, 

part(ii) can be easily hold. 

III. MAIN RESULTS 

We present the exponential stability results for the 

synchronization error system of FMNN，when the error 

system (9) is exponentially stable, the system (4) and system 

(7) will achieve the exponential synchronization. 

Theorem1 If there exist positive constant 

1 2, , ,..., n   
such that for any 

 0 0, 1,2,...,t t i n  
 

                              () 

then the error system (9) is globally exponentially stable. 

Proof: Consider
    , 1,2,...,i i iW t e t i n 

, according to the error system (9) or (14) and lemma1, we can get the 

following inequality 

                 (16) 

Evaluating the fractional order derivative of 
 iW t

along the trajectory of error system, then 

             

Define
        0 0 0exp , 0, 1,2,...,i iW t W t W t t t t t i n      

, where 



International Journal of Advanced Network, Monitoring and Controls          Volume 03, No.03, 2018 

8 

   
0 0

0
1
max sup .i i

i n t s t

W t e s



    

 
  

   

We will prove that 
  0, 1,2,...,iW t i n 

, for any 0 0t t 
. Otherwise, since

  0,iW t  1,2,...,i n
 

for 
 0 0,t t t 

, there must exist 1 0t t
and some


such that

 1 0qD W t 
and

 1 0W t 
. Then 

          

    

1 1 1 11 1

0 1 0

1

exp

n nq

j j j j j j j j jj j
D W t c W t A W t B W t t

W t t t

            

 

 
      
 

  

 

 

           

          

0 1 0 0 1 01

0 1 1 0 0 1 01

exp 1 exp

exp exp

n

j j jj

n

j j j jj

c W t t t A W t t t

B W t t t t W t t t

   



     

     





       


      





 

           

     

      

         

0 1 0 0 1 01

0 1 1 01

0 1 0

0 0 1 1 01 1

exp 1 exp

exp

exp

1 exp exp .

n

j j jj

n

j j j jj

n n

j j j j j j jj j

c W t t t A W t t t

B W t t t t

c W t t t

A W t B W t t t t

   



 

  

      

   

  

      





 

        


   


     

    
 





 


Moreover, from inequality(15), we have 

   01 1
( ) 1 exp 0, 0, 1,2,..., ,

n n

i i i ij j j ij j j jj j
c A B t t t i n       

 
         
  

 

Therefore 



so it is easy to find that
 1 0qD W t 

, which contradicts  1 0qD W t 
. That shows 

        0 0 0exp 0, 0, 1,2,...,i iW t W t W t t t t t i n       
.  Thus 

      
0 0

0 0
1
max sup exp , 0, 1,2,..., .i i i i

i n t s t

e t e s t t t t i n


  
    

 
      

   

It shows 
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0 0

0 0
1
max sup exp , 0, 1,2,..., .i i i i

i n t s t

e t e s t t t t i n


  
    

 
      

  

This completes the proof.  

IV. NUMERICAL RESULTS 

In this section, we will give two numerical examples to 

demonstrate our analysis on exponential synchronization of 

FMNN. 

 

Example1 Consider two-dimension fractional-order 

memristor-based neural networks 

 

               

               
               

               

1 1 1 11 1 1 1 12 2 2 2

11 1 1 1 1 1 12 2 2 2 2 2 1

2 2 2 21 1 1 1 22 2 2 2

21 1 1 1 1 1 22 2 2 2 2 2 2

q

q

D x t c x t a x t f x t a x t f x t

b x t t g x t t b x t t g x t t I

D x t c x t a x t f x t a x t f x t

b x t t g x t t b x t t g x t t I

   

   

    

      


   

       

where
     1 2 11 1 22 21, 1, 1.8,c c a x t a x t   

 

  
 

 
  

 

 

2 1

12 2 21 1

2 1

12, 0, 0.1, 0,

14, 0, 0.05, 0,

x t x t
a x t a x t

x t x t

   
  

     

   
  

  
   

  

  

   
  

  
   

  

  

1 1 2 2

11 1 1 12 2 2

1 1 2 2

1 1 2 2

21 1 1 22 2 2

1 1 2 2

1.2, 0, 0.8, 0,

1.5, 0, 1.0, 0,

0.05, 0, 1.6, 0,

0.1, 0, 1.4, 0,

x t t x t t
b x t t b x t t

x t t x t t

x t t x t t
b x t t b x t t

x t t x t t

 
 

 

 
 

 

      
    

      

      
    

        

 

where
  1 21 , ( , ) (0,0) ,t t T T

j t e e I I I    

0.92q 
and take the activation function as 

  sin( ),i i if x x

   0.5 1 1 , , 1,2.i i i ig x x x i j    
The model 

(21) has chaotic attractors with initial values 

 0x   0.45,0.65
T

which can be seen in Figure1. 

We consider system (21) as the drive system and 

corresponding response system is defined as Eq.(7). And for 

the controller
       ,i i i iu t y t x t 

the parameter i is 

chosen as 1 9.5,  
2 10.5.  

From Theorem1, when 

we take 
 0.7, 1,j t  

1 2 1 2      
 

1 2 0.1,   we can easily know 
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1 1

( ) exp 0
n n

i i i ij j j ij j j jj j
c A B t       

 
      

is true when 1 21.703, 0.232    
. So when  

1 29.5, 10.5,    
 we can get 

     

     

1 1 1 11 1 1 12 2 2 11 1 1 1 12 2 2 2

2 2 2 21 1 1 22 2 2 21 1 1 1 22 2 2 2

( ) exp exp 0.798 0,

( ) exp exp 1.027 0.

c A A B t B t

c A A B t B t

           

           

         

         
 

 

It satisfies the condition of Theorem 1, then the 

exponential synchronization of drive-response system is 

achieved.  

When the response system with this controller, we get 

state trajectories of variable    1 1,x t y t  and 

   2 2,x t y t
 are depicted in Figure2a and 2b. Moreover, 

Figure3a and 3b depict the synchronization error 

curves
   1 2,e t e t

 between the drive system and response 

system. These numerical simulations show the state 

trajectories of variable
   1 1,x t y t

and    2 2,x t y t are 

synchronous and synchronization error 
   1 2,e t e t

are 

converge to zero. These prove the correctness of the 

Theorem1. 
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Figure 1. The chaotic attractors of fractional-order memristor-based 

neural networks(18) 
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Figure 2. Exponential synchronization of state variable with 

cntroller
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Figure 3. Synchronization error between the drive and response system
    1 2: , :a e t b e t

 

Example2 Consider three-dimension fractional-order memristor-based neural networks 

                     

               

       
                     

               

1 1 1 11 1 1 1 12 2 2 2 13 3 3 3

11 1 1 1 1 1 12 2 2 2 2 2

13 3 3 3 3 3 1

2 2 2 21 1 1 1 22 2 2 2 23 3 3 3

21 1 1 1 1 1 22 2 2 2 2 2

q

q

D x t c x t a x t f x t a x t f x t a x t f x t

b x t t g x t t b x t t g x t t

b x t t g x t t I

D x t c x t a x t f x t a x t f x t a x t f x t

b x t t g x t t b x t t g x t t

   

 

   

    

     

   

    

     

        
                     

               

       

23 3 3 3 3 3 2

3 3 3 31 1 1 1 32 2 2 2 33 3 3 3

31 1 1 1 1 1 32 2 2 2 2 2

33 3 3 3 3 3 3

q

b x t t g x t t I

D x t c x t a x t f x t a x t f x t a x t f x t

b x t t g x t t b x t t g x t t

b x t t g x t t I

 

   

 













  


    

     

   
 

where 1 2 3 1,c c c  
 

  
 

 
  

 

 
  

 

 

  
 

 
  

 

 
  

 

 

  
 

 

1 1 1

11 1 21 1 31 1

1 1 1

2 2 2

12 2 22 2 32 2

2 2 2

3

13 3

3

1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0,

1, 0,

1, 0,

x t x t x t
a x t a x t a x t

x t x t x t

x t x t x t
a x t a x t a x t

x t x t x t

x t
a x t

x t

      
    

         

        
    

       

 
 


  

 

 
  

 

 

3 3

23 3 33 3

3 3

1, 0, 1, 0,

1, 0, 1, 0,

x t x t
a x t a x t

x t x t
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1 1 2 2

11 1 1 12 2 2

1 1 2 2

1 1 2 2

21 1 1 22 2 2

1 1 2 2

2 2

31 2 2

2 2

1, 0, 1, 0,

1, 0, 1, 0,

1, 0, 1, 0,

1, 0, 1, 0,

1, 0,

1, 0,

x t t x t t
b x t t b x t t

x t t x t t

x t t x t t
b x t t b x t t

x t t x t t

x t t
b x t t

x t t

 
 

 

 
 

 






      
    

      

     
    

       

 
 

  
   

  

  

   
  

  

   
  

  

   
  

  

2 2

32 2 2

2 2

3 3

13 3 3

3 3

3 3

23 3 3

3 3

3 3

33 3 3

3 3

1, 0,

1, 0,

1, 0,

1, 0,

1, 0,

1, 0,

1, 0,

1, 0.

x t t
b x t t

x t t

x t t
b x t t

x t t

x t t
b x t t

x t t

x t t
b x t t

x t t





















    
  

   

  
  

 

  
  

  

  
  

  

 

 

And 
  1 2 31 , ( , , ) (0,0,0)t t T T

j t e e I I I I    
 

0.92q 
and take the activation function as 

   i i i if x g x  tanh( ), 1,2,3ix i 
.We consider 

system(22) as the drive system and the corresponding 

response system is defined in Eq.(7). And for the controller 

       ,i i i iu t y t x t 
 i is chosen as 

1 2 39.5, 10.5, 11       
. From Theorem1, we take 

 0.7, 1j t  
and choose 1 2 0.1  

 

1 2 1 2 0.1.      
 According to 

   max , , max ,ij ij ij ij ij ijA a a B b b 
  

 

, 1,2,3i j  1,ij ijA B 
we can easily know 

  
1 1

( ) exp 0
n n

i i i ij j j ij j j jj j
c A B t       

 
      

is true when
0.604.i  

So when 

1 9.5,   2 310.5, 11    
we can get 

 

    

    

1 1 1 11 1 1 12 2 2 13 3 3 11 1 1 12 2 2 13 3 3

2 2 1 21 1 1 22 2 2 23 3 3 21 1 1 22 2 2 23 3 3

3 3 1 31 1 1 32 2 2 33 3 3 31 1 1 32

( ) exp 0.89 0,

( ) exp 0.99 0,

( )

j

j

c A A A B B B t

c A A A B B B t

c A A A B B

              

              

         

           

           

           2 2 33 3 3 exp 1.04 0.jB t       
 

 

It suggests the condition of Theorem 1 is satisfied, then 

drive-response system achieves the synchronization.  

When the response system with this controller, we get 

state trajectories of variable
   1 1,x t y t

and 
   2 2,x t y t
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and 
   3 3,x t y t

are depicted in Figure 4a,4b,4c. Moreover, 

Figure 5a,5b,5c depict the synchronization error curves 

     1 2 3, ,e t e t e t
between the drive system and response 

system. It’s easy to see that the state trajectories of variable 

   1 1, ,x t y t    2 2,x t y t
and

   3 3,x t y t
are synchronous 

and synchronization error 
     1 2 3, ,e t e t e t

 are converge 

to zero. So the Theorem1 is proved to be correct. 

In addition, we choose 1 9.5,  
 

2 310.5, 11     , according to the Theorem1, it needs 

the following inequalities to hold:  

1 117 10
ln

3 3

1 112 10
ln

3 3

1 102 10
ln

3 3

 


 


 


  
  

 
  

   
 

  
   

  

So, we just need 

1 102 10
ln

3 3
 



 
  

 holds. We have 

the exponential convergence rate 0 1  , figure 6 

depicts the relation of time-varying delay and exponential 

convergence rate  . 
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Figure 4. Synchronization of state variable with 

controller
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Figure 5. Synchronization error between the drive and response 

system
      1 2 3: , : , :a e t b e t c e t
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Figure 6. The relation of time-varying delay and exponential 

convergence rate  . 

V. CONCLUSION 

This paper achieves the exponential synchronization of a 

class of FMNN with time-varying delays by using linear 

error feedback controller. Based on comparison principle, 

the new theorem is  derived to guarantee the exponential 

synchronization between the drive system and response 

system. The methods proposed for synchronization is 

effective and it is easy to achieve than other complex control 

methods. Moreover, it can be extended to investigate other 

dynamical behaviors of fractional-order memristive neural 

networks, such as realizing the lag synchronization or 

anti-synchronizaton of this system based on the suitable 

controller. These issues will be the topic of future research. 

Finally, numerical examples are given to illustrate the 

effectiveness of the proposed theory.  
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