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Abstract—In this paper, the periodic motions of local 

dynamics of time-delayed oscillators near a single Hopf 

bifurcation have been investigated by means of the homotopy 

analysis method (HAM). With this technique, analytical 

approximations with high accuracy for all possible solutions 

are captured, which match the numerical solutions in the 

whole time regions. Two examples of dynamic systems are 

considered, which focus on the periodic motions near a Hopf 

bifurcation of an equilibrium point. It is found that the current 

technique lead to higher accurate prediction on the local 

dynamics of time-delayed systems near a Hopf bifurcation than 

the energy analysis method or the traditional method of 

multiple scales with strongly nonlinear examples. We studied 

the temporal dynamics of time-delayed systems in various 

regimes characterized by the parameters of the oscillator and 

the time delay parameter. The results given in this paper show 

that the time delay plays very important role in the analysis of 

multiply periodic motions with time-delayed systems. This 

paper is presented a general approach to the analysis of 

periodic motions of time-delayed systems. Although here we 

only consider a non-autonomous Duffing system with linear 

and nonlinear time-delayed position feedback, HAM can be 

extended to solve other time-delayed systems, such as coupled 

oscillators with time-delayed, feedback control which may have 

significance for the control of some physical or engineering 

systems. 
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I.  INTRODUCTION  

In many applications, the time delays involved in 
nonlinear dynamics systems have to be considered even if 
they are very short. It is shown that the study of dynamic 
behavior usually get wrong conclusions because of simply 
ignoring small delays, moreover, some mechanical 
phenomena can be explained reasonably only considering the 
existence of time delay. The evolution of a time-delayed 
system depends on both the current and previous state of the 
system. So it is reasonable to describe the time-delayed 
dynamic systems by delayed differential equations (DDEs). 
On the other hand, the dynamics of time-delayed systems has 
also obtained great attention from the researchers in other 
fields such as machine tool dynamics, neural networks and 
biology, medicine and population dynamics [1-3]. 

Many studies [4,5] on the time-delayed systems have 
been done over the past several decades. Among these 
researches, the Van der Pol-Duffing oscillator has drawn 
considerable attention since it serves as a simple model in 

various engineering fields. For instance, some Van der Pol-
Duffing oscillators with delayed feedback show the 
extremely simple dynamics if the time delay disappears, 
while infinite number of periodic motions even for very 
small time delays [6,7]. Furthermore, it is proved that the 
delayed feedback control is one of the most effective and 
flexible strategies in the fields of controlling chaos of 
nonlinear dynamics systems [8]. Obviously, the time-delay 
systems may exist abundant dynamics which involves 
chaotic motion and Hopf bifurcation [9-12]. However, the 
research on periodic motions is of special interest in 
engineering applications. Perturbation approaches, such as 
the method of multiple scales, the method of harmonic 
balance, are widely used to reveal the complex dynamics of 
nonlinear systems [13-16]. 

H. Khan et al. [17] investigated a nonlinear model in 
biology by means of HAM. A new discontinuous function is 
defined so as to express the piecewise continuous solutions 
of time-delay differential equations. It is shown that the 
proposed HAM method seems to be applicable to general 
systems that can be described using a general delay 
differential equation (DDE) of the form 

  ' ,x f x x t   . The objective of this paper is to 

develop an effective analytical technique based on the 
homotopy analysis method (HAM, Refs.[18-23]) to give 
analytical approximations for periodic motion of Duffing 
system with delayed feedback. A Duffing oscillator with 
time-delayed feedback described by the second-order DDEs 
is used as an example to propose a general analytic approach 
for nonlinear time-delayed dynamic systems. 

II. ANALYTICAL APPROXIMATIONS 

Adding the terms of time-delayed position feedback in a 
Duffing system 

    


txBtxAxxxx 332

0
ˆˆˆˆˆ      

Where ̂  is damping coefficient, 0̂  is system 

natural frequency, ̂  is rigidity coefficient, Â  is the 

feedback-gain coefficient and   is time-delay. 

0ˆ,ˆ BA denotes positive feedback and 0ˆ,ˆ BA denotes 

negative feedback. 
The initial conditions of Eq.(1) are 
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
    0,0,0 



ttxatx 


The system to be considered is the time-delayed position 
feedback control system, here we assume that the system has 
no signal feedback when t<0. 
Under the transformations 


    autxt  ,



Where   is frequency. Eq.(1) becomes 

       

   








3

322

0

2

ˆˆ

ˆˆˆ

uBuA

uauuu
       

Subject to the initial conditions 

     00,10 


uu 

Where the prime represents differentiation with respect to 

  and  /2T  is period of system. 

From the physical point of view, periodic motions of 
time-delayed dynamics systems can be expressed by periodic 

functions. Obviously,  u  may be expressed in this form: 

  





1

0 )]sin(
~

)cos(~[~

n

nn nbnaau 
       

Where na~  and nb
~

 are coefficients. This provides us 

with the rule of solution expression for  u . 

We choose the initial guess of  u based on the initial 

conditions (5) as 

 
   cos0 u

                         (7) 
Besides, we choose 

f
f

fL 





2

2

][
 

As the auxiliary linear operator, which has the following 
property 


0]cossin[ 21   CCL


Where 1C  and 2C  are integral constants and f  is a 

real function. The nonlinear operators are defined based on 
Eq.(4) as 
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Where ]1,0[q is the embedding parameter,  qU ;  

is a real function of   and q , )(q  and )(qA  are 

the real function of q  respectively. 

Then, let denote an auxiliary parameter. We construct 
the HAM deformation equation 

   

   ]),(),;([)(;

]);([];1[
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
      

Subject to the conditions 

0
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

Where 0  and   1H . Obviously, when 

0q  and 1q , it is clear from Eq.(4) and the above 

zero-order deformation equation that 

   

aAaA

uUuU







)1(,)0(

)1(,)0(
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0

0

0







So, as q  increases from 0 to 1,  qU ;  varies from 

the initial guess  0u  to the exact solution  u , so do 

)(q and  qA  from the initial guesses 0  and 0a  

to the corresponding exact values   and a . 

Expanding    qqU ,; and  qA  in Taylor’s series 

with respect to q. Differentiating the HAM deformation 
equation (11) m times with respect to q, then setting q=0, 
and finally dividing them by m!, the mth-order deformation 
equations can be used, then the analytical approximations for 

au ,,  can be obtained. 
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III. RESULTS ANALYSIS 

 Many researchers have been made great efforts to 
investigate the stability of time-delayed dynamics systems 
over the past decades and many encouraging results have 
been obtained. However, most of these investigations were 
given by perturbation methods, which can hardly give results 
with high accuracy owing to its inherent limitation. Here, we 
re-examine the system of Duffing oscillator with time-
delayed feedback by means of the homotopy analysis method. 
It is found the proposed technique can improve the accuracy 
for all captured solutions which are obtained from the 
analysis of periodic motions near a Hopf bifurcation of an 
equilibrium point. 

When 1ˆ,0,0ˆ
0  A , as an illustrative 

example is following 

    


txtxBxx 3ˆˆ


By means of the homotopy analysis method, the accurate 

analytical approximation of  tx  is obtained, and the 10th-

order approximation given by ,2ˆ,9.0-ˆ  B  

2 and 01.0-  reads 

 
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



















    


Where the frequency   equals to 0.51545 in this case. 

As shown in Fig. 1, the 10th HAM approximation of periodic 
motion agrees well with the numerical results in the large 
region of time t. With 4-order Runge-Kutta numerical 
method, the computational domain of t, ranged from 0 to 
1000, is divided into 1000000 intervals, namely fixed time 
step is 0.001. The convergence criterion used is based on the 

Root Mean Square error (RMS) which is 
6-101 in the 

present work. It is worth noting that the approximate solution 

by using HAM contains an auxiliary parameter  , which 
provides a simple way to adjust and control the convergence 

region and rate of series solution. Mathematically,  tx  is 

dependent on both of the physical variable t and the auxiliary 

parameter when other parameters are given. So, from 

mathematical view points, given a value of t,  tx  is a 

power series of   and thus its convergence is determined 

by  . For example, in the case of 

,0ˆ,0ˆ,9.0-ˆ
0    

2,2ˆ,1ˆ  BA , regarding   as a variable, we 

can plot the curves of   ~tx  when t=0, as shown in Fig. 

1. 

As shown in TABLE I, the 10th HAM approximations of 
the amplitude of the bifurcation periodic solutions are in a 
very good agreement with numerical solutions. It can be 
found that the nonlinear becomes stronger and the amplitude 
becomes smaller as the value of parameters increasing. 
Furthermore, the approximate solutions are only more 
reliable with small parameters. As the value of parameters 
increases, the approximate solutions are gradually inaccurate. 
And the formula of approximation prediction is applied, 
which is a local method and it may fail for some DDEs. For 
example, the amplitude a simply equals to 

 sinˆ3/)sinˆ(2 B  in this case. 

IV. CONCLUSION 

In this paper, the periodic motions of the local dynamics 
of time-delayed oscillators near a single Hopf bifurcation 
have been investigated by means of the homotopy analysis 
method. With this technique, analytical approximations with 
high accuracy for all possible solutions are captured, which 
match the numerical solutions in the whole time regions. We 
studied the temporal dynamics of time-delayed systems in 
various regimes characterized by the parameters of the 
oscillator and the time delay parameter. The results given in 
this paper show that the time delay plays very important role 
in the analysis of multiply periodic motions with time-
delayed systems. 

It is well known that the time-delayed systems exhibit 
complex dynamics, including periodic, quasi-periodic and 
chaotic motions. This paper is presented a general approach 
to the analysis of periodic motions of time-delayed systems. 
Although here we only consider a non-autonomous Duffing 
system with linear and nonlinear time-delayed position 
feedback, the homotopy analysis method can be extended to 
solve other time-delayed systems, such as coupled oscillators 
with time-delayed, feedback control which may have 
significance for the control of some physical or engineering 
systems. 

A. Figures and Tables 

TABLE I.  AMPLITUDE OF THE BIFURCATED PERIODIC SOLUTION OF 

EQ.(14) 

Bifurc.param. Approx.sol. Numer.sol. 
S10th 

HAM sol. 

1.0ˆ,05.0ˆ,1.0  B
 

2.5798 2.7044 2.7045 

5.0ˆ,05.0ˆ,1.0  B
 

1.1537 1.2094 1.2094 

0.2ˆ,05.0ˆ,1.0  B
 

0.5769 0.6047 0.6047 

1.0ˆ,5.0ˆ,0.1  B
 

2.3261 2.5944 2.5945 

5.0ˆ,5.0ˆ,0.1  B
 

1.0403 1.1602 1.1602 
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Bifurc.param. Approx.sol. Numer.sol. 
S10th 

HAM sol. 

0.2ˆ,5.0ˆ,0.1  B
 

0.5201 0.5801 0.5801 

1.0ˆ,9.0ˆ,0.2  B
 

0.3692 2.5530 2.5530 

5.0ˆ,9.0ˆ,0.2  B
 

0.1651 1.1417 1.1417 

0.2ˆ,9.0ˆ,0.2  B
 

0.0826 0.5709 0.5710 

 

                    a. Sample of a Table footnote. (Table footnote) 

 

Figure 1. The curves of averaged residual error ~  in the case of 

2,2ˆ,9.0ˆ   B
. Solid line: 8th-order HAM solution; Dashed 

line: 6th-order HAM solution; Dash-dotted line: 4th-order HAM solution. 
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