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Abstract—The modal truncation problem of non-classically 

damped systems is constantly encountered in the dynamic 

analysis of engineering. The present study is designed to 

calculate the frequency response functions of the non-

classically damping systems accurately on account of the 

Neumann expansion theory and the frequency shifting 

technique. Considering the first and the second term influence 

of the Neumann expansion equations in the frequency response 

analysis of the viscoelastic systems, we could correct the modal 

truncation problem of model displacement method. The 

property given in the study shows that this correcting method 

can reduce the high-order modes that can’t be calculated to the 

lower-order modes that are easier to be computed. And the 

proposed method can also solve the problem causing by the 

singularity of stiffness matrix. The result of case given in the 

article shows that it can improve the accuracy of harmonic 

response effectively compared model displacement. 

Keywords-harmonic response analysis; frequency shifting 

technique; model displacement method 

I. INTRODUCTION 

In many engineering problems, dynamic analysis, 
vibration control, structural design and damage detection is 
always an important part of it. Thus, the design of the 
algorithm and error control during the process to calculate 
the frequency response function plays an important role. The 
design needs to be quick and accurate for calculating the 
system frequency response function and has a great practical 
significance. With the amount of degrees of the modes 
considered in dynamic response analysis increasing, the 
process of computing all the frequencies response functions 
can be extraordinarily time consumption. However, in fact, 
the only modes considered in the frequencies response 
analysis are the modes located in the range of frequencies of 
interest. Unfortunately, since the method neglect the 
contribution of the higher-order modes and the viscoelastic 
modes, there will be some error existing in the modal 
truncation. Thus, many modified methods are proposed to 
solve the error accounting in the modal truncation. In recent 
decades, lots of studies have been done centered on the 
model reduction by using dimensionality reduction 
techniques in many research orientations.  

Mode displacement method is the most basic method to 
solve statically indeterminate structures for its simple 
calculating process and accurate calculation results. In 

addition, model superposition methods also have an 
extensively use in structural field. Since 19th century, model 
reduction technique is hot spot in the computing of 
frequency response functions and the structural dynamics 
response analysis, the most common method is mode 
superposition method (MSM) that was presented by 
Rayleigh [1]. However, this method can have some 
improvements of the original MSM by using different 
vectors in the procedure of Neumann expansion [2]. Craig 
and Bampton [3] also gave a method to increase the accuracy 
by analyzing the nonlinear dynamic stability of an actual 
large-scale rotor-bearing system, which is called the fixed-
interface reduction method for the fixing boundary of mode 
of system. Based on the free vibration modes and the 
available modes of the engineering structure, the mode 
displacement method [4] have been proposed by representing 
the displacement in a harmonic way. But this condition will 
not be always satisfied, so this kind of will not be suitable for 
the forced system. Mode acceleration method (MAM) is put 
forward to solve this problem by considering the 
superposition of the available modes and the free vibration 
modes.  

Therefore, the MAM is a static correction method 
because of zero frequency. The experiments showed that 
mode acceleration method can really enhance the accuracy of 
the frequency response and simplify calculation of the FRF. 
But in the real situation, these constraint conditions will not 
be always satisfied. It’s means that the error of modal 
truncation still exists. To solve this problem, many scholars 
struggle for it year after year, and have achieved gratifying 
successes. For example, Mario and Giuseppe [5] proposed a 
modified method for dynamic frequency response analysis of 
the systems in the reference. And the numerical applications 
are also showing that the proposed method can improve 
calculating efficiency. Certainly, some other corrections 
method can also have a good performance in improving the 
accuracy of dynamic response including dynamic correction 
method [6], high-precision modal superposition methods, 
self-adapting superposition method, correction continuous 
systems methods and so on. 

With the widely use of non-viscous damping to analyze 
mechanical systems and dynamic frequency response 
calculating. The calculating of frequency response of non-
viscously damped system has become increasingly important. 
To enhance the accuracy of the frequency response functions 
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matrix, the articles proposed a method, which tries to 
estimate the influence of the modes that used to be 
irrespective and consider the nonviscously systems by taking 
the first one or two terms of Neumanm expansion into 
consideration. It’s clear that with the number of modes used 
in the modal analysis of viscoelastic system increasing, the 
modal truncation error will accumulate gradually. A method 
is present to solve this problem by considering the lower 
mode and the firs terms’ contribution in Neumann expansion. 
As to the non-proportionally systems, a method basing on the 
hybrid expansion is proposed to compute the response 
functions of the systems. 

This study is devised to compute the harmonic responses 
of the available modes accurately. From the property 
obtained in the study on account of the Neumann expansion 
theorem and the frequency shifting technique, it’s evident 
that the higher modes’ frequency response function can 
express as equations consisting of the lower available modes 
and system matrices. We can use this property to simplify 
the higher modal truncation error. Certainly, we can use this 
method to improve the accuracy of frequency responses 
functions by dividing the frequency range into several sub-
frequency ranges of interest and selecting different values for 
per sub-frequency range. 

II. BACKGROUND OF THEORY 

The equations of motion for a linear non-viscously 
damped system with zero Initialization, obeys the governing 
equation  


( ) ( ) ( ) ( )Mu t Cu t Ku t f t   



where M , C and N NK R  are, the mass damping and 

stiffness matrices, )(tf  is the forcing vector. )(tu  is the 

displacement vector. In the sensitivity analysis of damped 

systems, )(tu can also be called as the response vector.  

In order to more aptly describe the phenomenon of 

“memory” of solid material or hysteresis effect, in 1874, 

Boltzmann put forward Boltzmann’s superposition principle 

of linear viscoelastic materials. Later, in 1928, Volterra give 

the theory of hysteretic or memory in viscoelastic hereditary 

materials. So the damping force can be expressed as 

 0
( ) ( ) ( )

t

df t g t u t d    


where ( )g t is a matrix of kernel function. Different places 

and areas have different choices of kernel function. 

Certainly, the theoretically how to choose kernel function 

remains unsolved. . 

The equations of motion of a linear non-classically 

damped system with zero initial condition is 


0

( )
( ) ( ) ( ) ( )

t

v

u t
Mu t K g t dt Ku t f t


    




where 
vK  which is the damping coefficient matrix. ( )g t is a 

kernel function that has different names in the different 

places. 

If the loading function is harmonic, that is 

( ) ( )exp( )hf t F s st with s iw  and N

hF R , the steady-

state frequency response will also be harmonic, i.e. 

( ) ( )exp( )hu t U s st . Taking the places of ( )u t and ( )f t  in 

(3), we can obtain 


2( ( ) ) ( )h hs M sG s K U s F  


( ) ( )h hD s U s F



Here ( ) [ ( )]VG s K L g t and []L denotes the Laplace 

transform, we know that ( )G s  can also be expressed as 

 1

( )
n

k

v

k k

c
G s K

s









Here c  and 
k  are the relaxation parameters. And for the 

dynamic stiffness matrix, it can be expressed as 


2( ) ( )D s s M sG s K  



The accurate steady-state frequency response that we 

want to get can be acquired by utilizing the direct frequency 

response method. For the characteristic equation 



2det ( ) 0s M sG s K  


The eigenvalue j are the roots of it. And where j  

denotes the j th eigenvector and can be rewritten in another 

way 


2( ( ) ) 0j j j jM G K     



In addition, asymmetric-matrices problem may also arise 

for using the state-space approaches. However, these normal 

modes based on those approaches still have some error 

when computing the frequency response functions 

particularly for high-dimensionality damped systems. 

Furthermore, we can avoid the convergence problem by 

considering iterative strategy. 

The complex FRF matrix and the response vector hU  

can be obtained by 


1

( )
( )

Tm
j j

j j j

H s
s

 


 



1

( )
( )

Tm
j h j

h

j j j

F
U s

s

 


 



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where 
( )

j

T

j j j

s

D s

s 


   


 

and 
( ) ( )

2 ( )
j js j j s

D s D s
M G s

s s
 

 
   

 
 

And this situation is suitable for the ideal situation that 

eigenvalues are separated or non-repeated. For the 

complexity of the non-viscously damped systems, the model 

will be presented by a large number of different equations. 

It’s means that the modal-truncation error still exists.  

To solve this problem, we introduce the modal 

truncation error. Given that the frequency from 
1L th to

2L th 

of interest can be computed, the error of modal truncation of 

the modal displacement method can be obtained by 



1

2

1

1 1

( )
( ) ( )

T TL m
j h j j h j

MDM

j j Lj j j j

F F
E s

s s



  

   
 

   
 



For the inverse matrix, Neumann expansion can be 
expressed in the following way 


1 2 3( )N NI A I A A A     



Here N NA R  and I  on behalf of the unit matrix. Given 
that (9) meets converge condition, the power-series 
expansion can tend to the exact result. The FRF matrix 
presented can be rewritten into the matrix form as 


1 1( ) ( ) T

mH s U sI U    


where 1 2=diag[ , , , ]m    , 1 2[ , , , ]mU      and 

1 2=diag[ , , , ]m    . 

Let s s   and using the Neumann expansion, the 

frequency response function matrix can be expressed by 



1 1

1

( ) ( )r r T

m

r

H s U s I U


  



   


where   is a complex frequency shift constant. 

The dynamic stiffness matrix ( )D s  given in (6), can also 

be expressed as 



2

2

( ) ( ) ( )( ( ) 2 )

( ( ) )

D s s M s G s M

K G s M

     

  


Let 



2( ) ( )

( ) ( ) 2

K s K G s M

G s G s M

  

  


Comparing (12) and (13), let 0( )s s  , we can get 



1 1 1

2 1

( ) lim ( )

( ( ) )

T

m
s

U I U K s

K G M

  





  

   


III. A METHOD TO IMPROVE THE ACCURACY OF MODE 

ACCELERATION METHOD 

  Based on the free vibration modes and available of the 

structure, the mode displacement method have been 

presented by using a time-harmonic representation for the 

displacement of the unforced system. But this condition will 

not be always satisfied, so this kind of will not be suitable 

for the forced system. Mode acceleration method (MAM) is 

proposed to reduce the modal truncation error by 

considering the effect of higher modes. From the (16), we 

can see that this problem of singular problem of stiffness 

matrix have been overcome while incoming the frequency 

shift constant  . 

Substituting ( )K s and ( )G s  in (15), the equation can be 

rewritten in the anther way as 



1 2 2 1

2 1

( ) ( ( ) )

( ( ) 2 ) ( ( ) )

T

mU I U K G M

G M K G M

  



     

       


      By using the Neumann expansion theorem and let 

s s  , the FRF matrix given in (13) can be alternatively 

expressed as 



1

1 1

( )
( )

r Tm
j j

r j j j

s
H s



 

 
 

  




When 1,2r  , considering the contribution of the first and 

second term of the Neumann expansion of the higher modes, 

(18) can be presented in the following way by utilizing the 

lower available modes 



2 1

1

1

2 1

2 2
1

2 1

( ) ( ( ) )
( )

( ) ( ( ) )
( )

( ( ) 2 ) ( ( ) )

Tm
j j

j j j

Tm
j j

j j j

H s K G M

s
H s K G M

G M K G M











 
     

  

 
     

  

       







      Assuming the frequency range from 1L th to 2L th of 

interest can be calculated, the response can be computed 

precisely in the following way 
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

2

1

( ) ( )
( )

TL
j h j

h MDM

j L j j

F
U s E s

s

 
 

 




      The same process as (13), using Neumann expansion, 

we can obtain 

        
1

2

0

1

1 1
1 1

( ) ( )

( ) ( )

k

GMAM

k

T TL m
j h j j h j

k k
j j Lj j j j

E s s

F F







 
  

  

    
  

       



 
(21) 

      For the (21), it considers the first term of the right-hand 

equation. When 0k  , the equation can be expressed as 

                
1

2

1

1 1

( )
( ) ( )

T TL m
j h j j h j

MDM

j j Lj j j j

F F
E s



  

   
  

     
      (22) 

Then give a frequency shift value   to (22), we can 

obtain 

  

2 1

2
1

2 1

2
1

( ( ) )
( )

( ( ) 2 ) ( ( ) )
( )

Tm
j j

j L j j

TL
j j

j j j

K G M

G M K G M



 





 
   

  

 
        

  





(23) 

      We can see that (23) can reduce the high modes to the 

lower modes. That is to say, we can use this equation to 

implement dimensionlity reduction. When 1k  , the above 

equation will be rewritten in this way 

   

1

2

1

2

1

1 1

1

2 2
1 1

( )
( ) ( )

( )
( ) ( )

T TL m
j h j j h j

MDM

j j Lj j j j

T TL m
j h j j h j

j j Lj j j j

F F
E s

F F
s



  



  

    
   

       

    
   

       

 

 

(24) 

In order to compute efficiently, we remark the first term 
1E  

and the second term 
2E . That is 

    

1

2
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      In the equation, all parts can be computed. By 

considering the influence of the second term of the 

truncation error of model displacement method, it’s no 

doubt that the error can be reduced in this way. For the 

singularity of stiffness matrix, the results in the number of 

terms that we can use are merely the first and the second 

one. Thus, the response in (9) can be calculated can be 

expressed by 
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        () 

Using the upper bound of the r th component of the error 

vector 
eE  , we can obtain the below equation 
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1 1
2 1 1( ) ( )
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j h j j h jk
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k j j Lj j j j
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   () 

Here 
j r

  represents the r th element of the vector. 

Comparing to the error of generalized mode acceleration 

method, we can know that the error is becoming smaller by 

considering the influence of the second term of the 

Neumann expansion of the model displacement error. 

IV. EXAMPLE AND DISCUSS 

In this present part, one case of the harmonic forced 
vibration of non-classically damped system is shown, which 
is a four DOF nonviscously system with free-free boundary 
condition [11].  

 
Figure 1.  Four DOF non-classically damped system with free-free 

boundary condition 

The system matrices of the nonviscously damped mode, 

shown in Fig .1, are M , K and G . It’s obvious that the 

energy dissipation is not uniformly distributed in the whole 

system. That is say, the system is a non-classically damped 

system. 

Suppose the interesting frequency range is 12-28 rad/s. 

According to the present theorem in [11], the frequency 

shift value is i20 . Four elastic modes are covered in 

the frequency range of interest. 
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Figure 2.  The FRF of the mode in the frequency range 10-30 rad/s 

Fig .2 shows that the FRF of the second DOF in mode 

over the frequency range of interest. Since the frequency 

shift value i20 , it’s evident that the modal truncation 

error caused by the model displacement method can be 

reduced when the considering frequency is located in the 

frequency range of interest. For example, in 14-30 rad/s, the 

correcting method presenting in this study can have a better 

accuracy that the generalized acceleration method proposed 

by Li et al. in [11]. That is say the results have a better 

performance when the frequency tends to the frequency 

shift  . 

V. CONCLUSIONS 
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