
2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

78

GrandStore: Towards Large-Scale Free Personal Cloud Storage

Li Zhang,

School of Computer Science and Engineering,

Hunan University of Science and Technology,

Xiangtan, Hunan, 411201, P.R. China

zlhncdsy@163.com

Bing Tang

School of Computer Science and Engineering,

Hunan University of Science and Technology,

Xiangtan, Hunan, 411201, P.R. China

zlhncdsy@163.com

Abstract—Personal cloud storage services are gaining

popularity, such as SkyDrive, iCloud, Dropbox, etc. All of them

provide a certain amount of free storage space for individual

users, while the free space is quite limit, and you should

upgrade to a paid account to get extra space. Therefore, a new

approach is proposed in this paper, that many free personal

cloud storage accounts are integrated in order to realize large-

scale free personal cloud storage. A prototype system called

GrandStore is designed and implemented, which is based on

the principle of OAuth protocol and open API. Specifically,

after authorized by the owner of account, GrandStore could

manage and control the account, so there is no need for

complex login any more. Users only need apply for several free

cloud storage accounts, and then account authentication

credentials are stored in back-end database of GrandStore,

which realizes easily enlarging personal free storage space, and

managing all storage space in a unique access entry.

Keywords-Cloud storage; GrandStore; OAuth 2.0; Open

platform

I. INTRODUCTION

Data explosion is one of the biggest issues facing IT
today. The amount of data that organizations store has grown
exponentially in the last 10 years. How to store and manage
these large-scale data is really a great problem. One solution
to this problem is using cloud storage, an infrastructure that
provides on-demand online storage services over Internet.
Cloud storage is now the new direction of storage technology,
which uses virtualized and scalable storage resource pool to
provide storage service for users. It is allowed to use all
kinds of method to consume cloud storage service through
Internet, such as Web, client program and open interface,
following the rule of pay-as-you-go. Cloud storage could
deliver online services to individuals or companies, including
online file hosting, storage and backup. Recently, personal
cloud storage services are very popular and attract our
attention, such as Microsoft SkyDrive, Apple iCloud, Google
Drive, Dropbox, etc. All of them provide free storage space
for individuals, as well as file synchronization service, while
the free space is quite limit, and you should pay for extra free
space.

Since that there are a variety of free personal cloud
storage services, basically users should register accounts to
use these services. Usually, one user has several accounts,
and these accounts belong to different personal cloud storage
providers. In this situation, we are confronted with two great

problems. First, how to manage multi-accounts of different
cloud storage providers using a unique access entry; second,
how to obtain more free storage space, since the free space is
quite limit.

To tackle these two challenges, in this paper we propose
an integrated storage framework that provides large-scale
scalable storage by integrating a plenty of personal cloud
storage accounts. Integrating the accounts of different cloud
storage providers to deliver a unique access interface makes
sense and is quite important. In the proposed storage
framework, a plenty of personal free accounts are integrated
in order to realize large-scale free personal cloud storage. A
prototype system called GrandStore is designed and
implemented, which is based on the principle of OAuth
protocol and open API. Specifically, after authorized by the
owner of account, GrandStore could manage and control the
account, so there is no need for complex login any more.
Users only need apply for many free cloud storage accounts,
and then account authentication credentials are stored in
back-end database of GrandStore, which realizes easily
enlarging personal free storage space.

Compared with other similar systems, GrandStore is
different in three ways. First, GrandStore is a scalable and
open system, that is to say, you can add dynamically new
accounts to GrandStore without disturbing it. Second, if the
developers learn SDK provided by a new personal cloud
storage providers, this new product can also be added
dynamically to GrandStore. Third, GrandStore depends on
database to store user’s authentication credential so as to
avoid account login, therefore it can store a plenty of
accounts to obtain large space. Since GrandStore has such
good features, it is a promising system that has great
practical value.

The rest of the paper is organized as follows. Section 2
surveys personal cloud storage system and OAuth account
authorization protocol. Section 3 introduces the architecture
of GrandStore prototype system. Section 4 describes the
implementation of GrandStore prototype system and the final
section offers concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background knowledge
about free personal cloud storage, as well as the comparison
of several free personal cloud storage, and also introduce
cloud storage open platform and OAuth protocol.

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

79

A. Free Personal Cloud Storage

Cloud-based services have been introduced in recent
years, offering people and enterprises computing and
storage capacity on remote data-centers and abstracting
away the complexity of hardware management. As one kind
of cloud storage, free personal cloud storage has attracted
our attention since these years. As the development and
popularity of cloud computing, Hadoop Distributed File
System (HDFS) has been the first choice to build reliable
cloud storage. The comparison of several popular personal
cloud storage providers is shown in Table 1, including
Amazon Simple Storage Service (S3), Google Drive,
Microsoft SkyDrive, Apple iCloud, Dropbox, etc. It is
summarized as follows:

- Most of them provide API interface and programming
languages support, such as Java, C++, Python, Ruby, C#.

- Most of them provide APIs Client Library for
developers.

- Most of them support OAuth 2.0 or 1.1 protocols.
- Most of them provide file synchronization service.
- Most of them provide limited free space for individuals,

and there is also file size limit for upload or store. To remove
this restriction, you may upgrade to a paid account which
will allow you to upload larger files.

B. Open Platform

From the survey on current personal cloud storage
providers, we found that they follow the same principle of
open platform. Personal cloud storage system open platform
allows developers to create their applications to use accounts
space, without account login. As it can be seen in Fig. 1, the
principle of OAuth

1
 account authorization in personal cloud

storage open platform is described as the following five steps.
- Step 1: The developer creates an application, usually
through web page to give the name and some other basic
information.
- Step 2: Open platform returns the application_key and
application_secret to developer.
- Step 3: Since the application needs the authentication
credential of account, the owner of account is guided to
input username and password to apply for oauth_token,
which is also called authorization code or access ticket.
- Step 4: Open platform returns the oauth_token.
- Step 5: The developer collects and stores oauth_token for
further process.

1 http://en.wikipedia.org/wiki/OAuth

Figure 1. The principle of OAuth-based account authorization cloud

storage open platform.

In general, oauth_token (or we say access_ticket) is
composed of two parts, access_token and refresh_token.
Usually, access_token has a lifetime, and when it is expired,
refresh_token is used to generate a new access_token and
refresh_token pair. The expiry period is different, e.g., for
some products, it is two weeks; while for some products, it is
one month.

C. Related Work

Personal cloud storage services are gaining popularity.
From the viewpoint of taxonomic, personal cloud storage
belongs to the public cloud filed. Many studies have been
reported on personal cloud storage or public cloud storage
topic in recent years [1][2][3][4][5][6]. For example, Drago
et al. [7] studied the characterization of Dropbox, the leading
and widely-used personal cloud storage system, and
presented a network traffic measurement and analyzed
possible performance bottleneck caused by current system
architecture and the storage protocol of Dropbox. In [8], the
authors presented the architecture for a secure data repository
service designed on top of public clouds to support sharing
multi-disciplinary scientific datasets.

In [9], the authors examined the efficacy of leveraging
web-based email services to build a personal storage cloud,
and then presented EMFS, email-based personal cloud
storage, which aggregates back-end storage by establishing a
RAID-like system on top of virtual email disks formed by
email accounts. In particular, by replicating data across
accounts from different service providers, highly available
storage services can be constructed based on already reliable,
cloud-based email storage, while EMFS cannot match the
performance of highly optimized distributed file systems
with dedicated servers.

The idea of GrandStore is integrating free personal cloud
storage accounts. Similarly, DepSky [10] is a system that
provides dependable and secure storage in the cloud through
the encryption, encoding and replication of the data on
diverse clouds that form a cloud-of-clouds. The authors also
deployed the system using four commercial clouds to study
the performance.

There are also some approaches and systems proposed
recently in hybrid storage or integrated storage area. In [11],
the authors proposed a scalable, configurable and reliable
hybrid storage system, which is composed of stable
volunteered personal cloud storage and P2P-based desktop
storage system. BitDew [12] is an open source data
management middleware for cloud, grid and desktop grid,
developed by INRIA, France. It supports using multi-
protocols to transfer files. It can be also used as a
management tool to distribute/write files to different nodes
using FTP, HTTP, and BT protocols. In [13], the authors
presented personal storage grid architecture, which provides
end-users with web service interface to allow users consume
several cloud data space resources, such as online email
account space resource and virtual disk space (e.g. FTP
service).

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

80

Soares et al. [14] presented the FEW Phone File System,
a data management system that combines mobile and cloud
storage for providing ubiquitous data access. The system
takes advantages of the characteristics of mobile phones for
storing a replica of a user’s personal data to provide high
data availability. Defrance et al. [15] presented the view of
home networking as a distributed file system, and proposed a
solution to organize the home network according to a
gateway-centric architecture, where the content access
unification for various devices (UPnP/DLNA devices,
personal computers, cloud storage systems, etc) is realized at
the file system level.

While MetaCDN [16] works in another way, which
proposed harnessing storage clouds for high performance
content delivery. Several storage clouds are integrated in
MetaCDN, providing a unique access interface. The price
and bandwidth of storage clouds are considered, which is
used for store decision.

III. SYSTEM ARCHITECTURE

The objective of GrandStore is to integrate many
accounts to obtain large-scale free space, providing a unique
access interface. Users firstly register a lot of accounts,
integrate them by GrandStore, and then utilize the unique
storage space through GrandStore. Users can manage,
integrate, and maintain all their own accounts through
GrandStore. The system architecture of GrandStore is
shown in Fig .2. As you can see, GrandStore is located in
the ‘middle layer’. The entities in this figure are explained
as follows:

Figure 2. The architecture of GrandStore system.

- Product. It means free personal cloud storage provider,
which provides SDK for developers, such as Google Drive,
Dropbox and Kuaipan.

- Account. User is allowed to register many accounts for
one product. Each account has a limited storage space.

- User. User is responsible for adding dynamically new
products and new accounts, and has the right of all kinds of
file operations.

- Database. It is used to store account authentication
credential (e.g., access_token, refresh_token) and user’s file
information (e.g., file name, file size, file path, etc).

GrandStore is based on the principle of OAuth protocol
and open API. Specifically, after authorized by the owner of

account, GrandStore could manage and control the account,
so there is no need for complex login any more. It only needs
applying for many free accounts, and then store account
authentication credentials to back-end database of
GrandStore system, which realizes easily enlarging personal
free storage space.

IV. ALGORITHM AND IMPLEMENTATION

GrandStore is released as an open source project, which
is developed by Java language, and MySQL 5.0 is selected as
the back-end DBMS, and Eclipse is adopted as the
development tool. It requires Java SDK provided by personal
cloud storage providers. GrandStore now only supports
Amazon S3, Google Drive, Dropbox and KingSoft Kuaipan,
and it will support more products in the next version.

In this section, we mainly introduce the implementation
of core algorithms in GrandStore system. With the aspect of
account maintain, we describe account insert algorithm and
account authentication credential update algorithm. With the
aspect of file operations, we only describe file list, file
upload and file download algorithm as three examples. The
implementation of other file operations follows the same
approach, which is ignored in this paper.

A. Account Insert Algorithm

As we mentioned before, we create one application for
each product, and we distinguish them through unique
application id. For each product, we can also register many
accounts, and each account also has a unique id. The account
insert algorithm is shown in Algorithm 1. First, GrandStore
starts account authorization guide utility. After authorized by
the owner of account through inputting username and
password, access token and refresh token are generated, and
then stored in database. Using this authentication credentials,
there is no need for the owner of account to authorize
anymore.

Algorithm 1. Account insert algorithm in GrandStore

Require: Let appi be the id of personal cloud storage product
Require: Let account<username, password> be the account to be
added
Require: Let accj be the id of the account to be added
Require: Let access_token be the returned access token by open
platform OAuth server
Require: Let refresh_token be the returned refresh token by open
platform OAuth server
Require: Let creation_time be the creation time of authentication
credential

1: Get appi that account<username, password> belongs to
2: Start account authorization guide utility for product appi
3: Input username and password of account
4: Login and allow appi to manage the storage space of account
5: Return authentication credential composed of access_token

and refresh_token
6: Get creation_time of this authentication credential
7: Write {appi, accj, access_token,refresh_token, creation_time}

to database

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

81

B. Account Authentication Credential Update Algorithm

Generally, authentication credential has a lifetime, it will
became invalid when exceeds expire period. Therefore, we
adopt a multi-thread approach to check all accounts, and find
those expired access token. Then, the corresponding refresh
token is used to generate a new pair of access token and
refresh token, supported by OAuth 2.0 protocol. The detailed
algorithm is shown in Algorithm 2.

Algorithm 2. Account authorization credential update algorithm in
GrandStore

Require: Let AuthTable{appi, accj,access_token, refresh_token,
creation_time} be the account authentication credential
information in database
Require: Let appi be the id of personal cloud storage product
Require: Let accj be the id of account
Require: Let lifetimei be the lifetime of authentication credential
for product appi
Require: Let current_time be the current time
Require: Let access_tokennew be the new access token
Require: Let refresh_token new be the new refresh token
Require: Let creation_timenew be the creation time of the new
authentication credential

1: for all record authAuthTable do
2: Check auth.appi and get lifetimei for this product
3: if (current_time - auth.creation_time) > lifetimei then
4: {authentication credential is expired, use refresh token

to get a new one}
5: Check auth.appi and select corresponding API
6: {create an API session for further API calls}
7: API.init(auth.appi)
8: API.create(auth.access_token)
9: {access_tokennew,refresh_tokennew}←

API.doRefresh(auth.refresh_token)
10: Get creation_timenew of the new authentication credential
11: {update the authentication credential of account accj}
12: Write {appi, accj, access_tokennew, refresh_tokennew,

creation_timenew } to database
13: end if
14: end for

C. File List Algorithm

Because GrandStore is designed to integrate many
accounts, when the user logs into GrandStore, GrandStore
should retrieve and then list all files of each account in a
unique file access graphical interface. In order to list all the
files from all accounts, it just simply executes API calls to
get the files of each account. Algorithm 3 describes the file
list algorithm.

Algorithm 3. File list algorithm in GrandStore

Require: Let AuthTable{appi, accj, access_token,refresh_token,
creation_time} be the account authentication credential
information in database

1: {list files of each account}
2: for all record authAuthTable do
3: Check auth.appi and select corresponding API
4: {create an API session for further API calls}
5: API.init(auth.appi)

6: API.create(auth.access_token)
7: API.listAllFiles()
8: end for

D. File Upload Algorithm

When users upload a file to GrandStore, it firstly lookups
a proper account to store this file. In this paper, we propose
the ‘maximal unused space’ approach. That is to say,
GrandStore lookups the account which has the maximal
unused space, and then stores the file to this account. File
upload algorithm is demonstrated in Algorithm 4. This
approach can achieve storage balance, and avoid the
situation that some accounts are too busy than others.

Algorithm 4. File upload algorithm in GrandStore

Require: Let appi be the id of personal cloud storage product
Require: Let accj be the id of account
Require: Let AuthTable{appi, accj, access_token, refresh_token,
creation_time} be the account authentication credential
information in database
Require: Let AccountTable{accj, total_space, unused_space}
be the account space consumption information in database
Require: Let max_space be a variable to store maximal unused
space
Require: Let opt_account be the account that has the maximal
unused space
Require: Let F be the file to be uploaded to the system
Require: Let fid be the unique id of the file when it is successfully
uploaded
Require: Let FileTable{fid, accj} be the file storage mapping
information in database

1: {lookup the account that has the maximal unused space}
2: max_space ← 0
3: for all record accountAccountTable do
4: if account.unused_space > max_space then
5: max_space ← account.unused_space
6: opt_account ← account
7: end if
8: end for
9: {lookup the authentication credential of opt_account}
10: for all record authAuthTable do
11: if auth.accj = = opt_account then
12: {upload to this account directly}
13: Check auth.appi and select corresponding API
14: {create an API session for further API calls}
15: API.init(auth.appi)
16: API.create(auth.access_token)
17: fid ← API.doUpload(F)
18: {update account space consumption of opt_account}
19: opt_account.unused_space ←

opt_account.unused_space - F.size()
20: {insert file storage information}
21: Write {fid, opt_account.accj} to database
22: break
23: end if
24: end for

E. File Download Algorithm

File download algorithm is relatively easier than file
upload algorithm. When users download a file from

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

82

GrandStore, it firstly lookups the account that contains this
file, and then download from this account directly through
API calls. Algorithm 5 indicates file download algorithm.

Algorithm 5. File Download Algorithm in GrandStore

Require: Let AuthTable{appi, accj,access_token, refresh_token,
creation_time} be the account authentication credential
information in database
Require: Let FileTable{fid, accj} be the file storage mapping
information in database
Require: Let F be the file to be downloaded from the system
Require: Let store_account be the account that stores F

1: {lookup the account that stores F}
2: for all record file FileTable do
3: if file.fid = = F.getfid() then
4: store_account ← file.accj
5: break
6: end if
7: end for
8: {lookup the authentication credential of store_account}
9: for all record authAuthTable do
10: if auth.accj = = store_account then
11: {store in this account, download directly}
12: Check auth.appi and select corresponding API
13: {create an API session for further API calls}
14: API.init(auth.appi)
15: API.create(auth.access_token)
16: API.doDownload(F)
17: break
18: end if
19: end for

V. CONCLUSION

Based on the study of current cloud storage system open
platforms and OAuth protocol, this paper proposed a method
to integrate a plenty of free accounts to get a unify large-
scale free personal cloud storage, and also introduced the
design and implementation of a prototype system called
GrandStore. The core algorithms of GrandStore are
described in detail. It is a promising system that has great
practical value. First, it proposed a method to get large
storage space without upgrading to a paid account. Second, it
allows you to manage all your accounts in a unique access
interface.

In spite of this, we plan to improve GrandStore in three
ways in future work,

- First, we will improve it, and release a new version for
Tablet and Android equipment, to manage your own
accounts in a mobile terminal.

- Second, we will design optimized algorithms which
consider network distance. Generally, free personal cloud
storage providers are geographically dispersed, e.g., the
server of Google Drive locates in US, while the server of
KingSoft Kuaipan locates in China. When users write or read
files, selecting the ‘closest’ provider or account makes sense
and very important.

- Third, we will do some I/O performance evaluation for
GrandStore, as well as the advantages of network-aware
account selection algorithm.

ACKNOWLEDGMENT

This work is supported by the Natural Science
Foundation of Hunan Province under grant no. 2015JJ3071,
as well as the Scientific Research Fund of Hunan Provincial
Education Department under grant no. 16C0643 and
12C0121.

REFERENCES

[1] D. Dai, W. Zheng and T. Fan, “Evaluation of personal cloud storage
products in China,” Industrial Management and Data Systems, Vol
117, Issue 1, 2017, pp. 131-148.

[2] H. Chen, L. Zhang, B. Hu, S. Long and L. Luo, “On Developing and
Deploying Large-File Upload Services of Personal Cloud Storage,”
Proceedings of 2015 IEEE International Conference on Services
Computing (SCC 2015), New York City, NY, USA, pp. 371-378.

[3] R. Pitchai, S. Jayashri and J. Raja, “Searchable Encrypted Data File
Sharing Method Using Public Cloud Service for Secure Storage in
Cloud Computing,” Wireless Personal Communications, vol. 90, no.
2, 2016, pp.947-960.

[4] E. Bocchi, I. Drago and M. Mellia, “Personal cloud storage: Usage,
performance and impact of terminals,” Proceedingd of the 4th IEEE
International Conference on Cloud Networking (CloudNet 2015),
Niagara Falls, ON, Canada, 2015, pp. 106-111.

[5] K. Ning, Z. Zhou and L. Zhang, “Leverage Personal Cloud Storage
Services to Provide Shared Storage for Team Collaboration,”
Proceedings of IEEE International Conference on Services
Computing (SCC 2014), Anchorage, AK, USA, 2014, pp. 613-620.

[6] M. Nebeling, M. Geel, O. Syrotkin, M. C. Norrie, “MUBox: Multi-
User Aware Personal Cloud Storage,” Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems
(CHI 2015), Seoul, Republic of Korea, 2015, pp. 1855-1864.

[7] I. Drago, M. Mellia, M. Munafo, A. Sperotto and R. Sadre, A. Pras,
“Inside dropbox: understanding personal cloud storage services,”
Proceedings of the 2012 ACM conference on Internet measurement
conference (IMC’12), 2012, pp. 481-494.

[8] A.G. Kumbhare, Y. Simmhan and V. Prasanna, “Designing a secure
storage repository for sharing scientific datasets using public clouds,”
Proceedings of the second international workshop on Data intensive
computing in the clouds (DataCloud-SC’11), 2011, pp. 31-40.

[9] J. Srinivasan, W. Wei, X. Ma and T. Yu, “MFS: Email-based
Personal Cloud Storage,” Proceedings of the 6th IEEE International
Conference on Networking, Architecture and Storage (NAS’2011),
2011, pp. 248-257.

[10] A. Bessani, M. Correia, B. Quaresma, F. André and P. Sousa,
“DepSky: dependable and secure storage in a cloud-of-clouds,”
Proceedings of the Sixth European conference on Computer systems
(EuroSys 2011), 2011, pp. 31-46.

[11] B. Tang and G. Fedak, “Analysis of data reliability tradeoffs in hybrid
distributed storage systems,” Proceedings of the 17th IEEE
International Workshop on Dependable Parallel, Distributed and
Network-Centric Systems (DPDNS 2012), 2012, pp. 1540-1549.

[12] G. Fedak, H. He and F. Cappello, “BitDew: A data management and
distribution service with multi-protocol file transfer and metadata
abstraction,” Journal of Network and Computer Applications, vol. 32,
no. 5, 2009, 961-975.

[13] M.-G. Lim, S. Wu, T. Simon, M. Rashid and N. Helian. “Personal
Storage Grid Architecture: Consuming Cloud Data Space Resources,”
International Journal of Grid and High Performance Computing, vol.
2, no. 3, 2010, 17-30.

[14] J. Soares and N. Preguiça, “Combining Mobile and Cloud Storage for
Providing Ubiquitous Data Access,” Proceedings of the 17th
International Conference on Parallel Processing (Euro-Par 2011),
Lecture Notes in Computer Science (LNCS), Volume 6852/2011,
Springer-Verlag, 2011, pp. 516-527.

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

83

[15] S. Defrance, R. Gendrot, J. Le Roux, G. Straub and T. Tapie, “Home
Networking as a Distributed File System View,” Proceedings of the
2nd ACM SIGCOMM workshop on Home networks (HomeNets’11),
2011, pp. 67-72.

[16] J. Broberg, R. Buyya and Z. Tari, “MetaCDN: Harnessing ‘storage
clouds’ for high performance content delivery,” Journal of Network
and Computer Applications, vol. 32, no. 5, 2009, pp. 1012-1022.

