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Abstract—In this paper, Self-adaptive Differential 

Evolutionary Extreme Learning Machine (SaDE-ELM) was 

proposed as a new class of learning algorithm for single-hidden 

layer feed forward neural network (SLFN). In order to achieve 

good generalization performance, SaDE-ELM calculates the 

error on a subset of testing data for parameter optimization. 

Since SaDE-ELM employs extra data for validation to avoid 

the over fitting problem, more samples are needed for model 

training. In this paper, the cross-validation strategy is 

proposed to be embedded into the training phase so as to solve 

the overtraining problem. Experimental results demonstrate 

that the proposed algorithms are efficient for Facial Age 

Estimation.  
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I. INTRODUCTION 

Automated age estimation from facial images is one of 
the most difficult challenges in face analysis [1,2]. It can be 
very favorable in a number of real life applications such as 
age-based authorization systems, demographic data mining, 
business intelligence and video surveillance systems. The 
difficulty of this task originates from many reasons such as 
the lack of enough labeled samples to model the aging 
patterns of subjects, as well as uncontrolled conditions in 
data collection such as illumination, pose, occlusions and 
other environmental variables. Aging process is also known 
to be very subject-dependent, i.e. subjects might differ in 
terms of aging patterns, resulting in high variations within 
the samples from the same age.  

Recently, a new fast learning neural algorithm for SLFNs, 
named extreme learning machine (ELM) [3,4], was 
developed to improve the efficiency of SLFNs. Different 
from the conventional learning algorithms for neural 
networks (such as BP algorithms[5]), which may face 
difficulties in manually tuning control parameters (learning 
rate, learn-ing epochs, etc.) and/or local minima, ELM is 
fully auto-matically implemented without iterative tuning, 
and in theory, no intervention is required from users. Further-
more, It was popular for its fast training speed by means of 
utilizing random hidden node parameters and calculating the 
output weights with least square algorithm [6-10]. However, 
in ELM, the number of hidden nodes is assigned a priori, the 
hidden node parameters are randomly chosen and they 
remain unchanged during the training phase. Many non-

optimal nodes may exist and contribute less in minimizing 
the cost function. Moreover, in [11] Huang et al. pointed out 
that ELM tends to require more hidden nodes than 
conventional tuning-based algorithms [12, 13] in many cases. 

Differential evolution (DE) [14] which is a simple but 
powerful population-based stochastic direct searching 
technique is a frequently used method for selecting the 
network parameters [15–17]. In [15], DE is directly adopt-ed 
as a training algorithm for feed forward networks where all 
the network parameters are encoded into one population 
vector and the error function between the network 
approximate output and the expected output is used as the 
fitness function to evaluate all the populations. However, 
Subudhi and Jena [16] have pointed out that using the DE 
approach alone for the network training may yield a slow 
convergence speed. Therefore, in [17], a new algorithm 
named evolutionary extreme learning machine (DE-ELM) 
based on DE and ELM has been developed for SLFNs. 
Using the DE method to optimize the network input 
parameters and the ELM algorithm to calculate the network 
output weights, DE-ELM has shown several promising 
features. It not only ensures a more compact network size 
than ELM, but also has better generalization performance.  

However, in the above DE based neural network training 
algorithms, the trial vector generation strategies and the 
control parameters in DE have to be manually chosen. For 
example, the control parameters in DE-ELM are manually 
selected according to an empirical suggestion and the simple 
random generation method is adopted to produce the trial 
vector. As pointed out by many researchers, the performance 
of the DE algorithm highly depends on the chosen trial 
vector generation strategy and the control parameters, and 
inappropriate choices of strategies and control parameters 
may result in premature convergence or stagnation. 
Therefore, we propose a novel learning algorithm named 
self-adaptive evolutionary extreme learning machine (SaDE-
ELM) for SLFNs. In SaDE-ELM, the hidden node learning 
parameters are optimized by the self-adaptive differential 
evolution algorithm.  

The rest of the paper is organized as follows. In section II, 
a brief introduction to ELM and SaDE are given. In Section 
III, we introduce model of proposed SaDE-ELM algorithm 
in detail. In Section IV, we present Performance Evaluation. 
In section V, we conclude and summarize our results. 
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II. BACKGROUND 

As a novel training algorithm for SLFNs, ELM is very 
efficient and effective. In this section, we will give a brief 
review of ELM. In this section, we briefly review ELM and 
SaDE-ELM approach for ELM is the foundation of SaDE-
ELM. 

A. Extreme Learning Machine (ELM) 

For N arbitrary distinct samples (x ), tj j
, where 

1 2x [ , , , ]T n

j j j jnx x x  
, 1 2[ , , ,t ]T m

j j j jmt t t  
, 

SLFNs with L hidden nodes and activation function g(x) are  

1 1

g (x ) g (w x ) o 1,2,...        ( ),
L L

i i j i i i j j j

i i

j Nb 
 

             (1) 

where wi= [wi1 , wi2 , ..., win ]T is the weight vector 
connecting the ith hidden node and the input nodes, βi = [βi1 , 
βi2, ..., βim ]

T 
is the weight vector connecting the ith hidden 

node and the output nodes, bi is the threshold of the ith 

hidden node, 
w xi j

 denotes the inner product of wi and xj, 
g(x) is activation function and Sigmoid, Sine, Hardlim and 
other functions are commonly used. The output nodes are 
chosen linear in this paper, and o j = [o j1 , o j2 , ..., o jm ]

T
 is the 

jth output vector of the SLFNs [22]. 
The SLFNs with L hidden nodes and activation function g(x) 

can approximate these N samples with zero error. It 

means
1

o t 0
L

j jj
  and there exist βi , wi and b i such 

that  
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The equation above can be expressed compactly as 
follows: 
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The matric H is called the hidden layer output matrix of 
the neural network and the ith column of H is the ith hidden 
node output with respect to inputs x1, x2, ..., xN .  

By simply randomly choosing hidden nodes and then 
adjusting the output weights, single hidden layer feedforward 
networks (SLFNs) work as universal approximators with any 
bounded non-linear piecewise continuous functions for 
additive nodes [23]. ELM algorithm claims that the hidden 
node parameters can be randomly assigned [3,4], then the 
system equation becomes a linear model and the network 
output weights can be analytically determined by finding a 
least-square solution of this linear system as follow 

 †  H T


Where 
†

H is the Moore-Penrose generalized inverse of 
matrix H. Then the output function of ELM can be modeled 
as follows. 




Moreover, it should be noted that many nonlinear activation 

and kernel functions can be used in ELM.  

B. Self-adaptive Differential Evolution 

Differential evolution (DE), proposed by Storn and Price 
in 1995, is a simple yet powerful evolutionary algorithm (EA) 
[24]. There are three parameters in DE algorithm, which are 
the population size NP, mutation scaling factor F and 
crossover rate CR. NP is a problem-dependent parameter, 
while F and CR are very sensitive to the performance at 
different stages of evolution. To overcome the limitations of 
choosing the parameters in DE, Brest et al. proposed a 
parameter adaptation technique to choose the mutation 
scaling factor F and crossover rate CR namely SADE-ELM 
algorithm which performs better than the basic DE algorithm. 
In general, SADE algorithm is composed of three main steps: 
mutation, crossover, and selection [26]. 

We consider the following optimization problem:  

Minimize f(xi), xi RD 

where 1 2[ , , , ] , 1,2, ,T

i i i iDx x x x i NP  
is a target 

vector of D decision variables. During the mutation 
operation, mutant vector vi is generated by mutation strategy 
in the current population: 

1 2 3( )i r r rv x F x x   


where 1, 2, 3r r r are mutually exclusive integers randomly 

chosen in the range [1,NP], and 1 2 3r r r i   . 

Following mutation, trial vector ui is generated between xi 

and vi during crossover operation where the most widely 

used operator is the binomial crossover performed as 

follows: 

rand,    (rndreal(0,1) CR  or  ),

,   

ij

ij
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v if j j
u
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Where jrand is a integer randomly chosen in the range 
[1,D], and rndreal(0, 1) is a real number randomly generated 
in (0, 1). Finally, to keep the population size constant during 
the evolution, the selection operation is used to determine 
whether the trial or the target vector survives to the next 
generation according to one-to-one selection: 

,   ( ( ) ( ))

,  

i i i

i

i

u if f u f x
x

x otherwise


 
 

Where f(x) is the optimized objective function. During 
the evolution, F and CR are adaptively tuned to improve the 
performance of DE for each individual 
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                     otherwise

l u

i G

i G

F rand F if rand
F

F




  
 
 

3 4 2

, 1

,

      ( )

          otherwise
i G

i G

rand if rand
CR

CR





 
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Where Fi;G+1 and CRi;G+1 are the mutation scaling factor 
and crossover rate for i individual in G generation 
respectively, randj=1;2;3;4 are randomly chosen from (0, 1), 
τ1 and τ2 both valued 0.1 which is used to control the 
generation of F and CR, Fl valued 0.1 and Fu is valued 0.9. 
In the first generation, F and CR are initialized to 0.5. 

C. Model of Proposed SADE-ELM Algorithm 

Since the ELM generates the input weights and hidden 
biases arbitrarily which are the basic of calculating the output 
weights, it may not reach the optimal result in classification 
or regression. Thus, a hybrid approach integrated self-
adaptive differential evolution algorithm and extreme 
learning machine namely SADE-ELM algorithm to optimize 
the input weights and hidden biases is able to obtain better 
generalization performance than ELM algorithm [17]. 

In SaDE-ELM, we proposed SaDE-ELM for SLFNs by 
incorporating the self-adaptive differential evolution 
algorithm [25] to optimize the network input weights and 
hidden node biases and the extreme learning machine to 
derive the network output weights. 

Given a set of training data and L hidden nodes with an 

activation function g(·), we summarize the SaDE-ELM 

algorithm in the following steps. 

Step 1. Initialization 
A set of NP vectors where each one includes all the 

network hidden node parameters are initialized as the 
populations of the first generation 

, 1, , , , 1, , , ,w , ,w , , ,T T T T

k G k G L k G k G L k Gb b     


where wj and bj  ( j = 1, … , L) are randomly generated, 
G represents the generation and k = 1, 2,…, NP. 

Step 2. Calculations of output weights and RMSE 
Calculate the network output weight matrix and root 

mean square error (RMSE) with respect to each population 
vector with the following equations, respectively. 

†

, ,H Tk G k G 
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Then use the value of RMSE to calculate the new best 

population vector , 1k G  with the following equation. 
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where   is the preset small positive tolerance rate. In the 
first generation, the population vector with the best RMSE is 
stored as θbest,1 and RMSEθbest,1 . 

All the trial vectors uk,G+1 generated at the (G+1)th 
generation are evaluated using equation(11) .The norm of the 

output weight 


 is added as one more criteria for the trial 
vector selection as pointed out in [13] that the neural 
networks tend to have better generalization performance with 
smaller weights.  

The three operations mutation, crossover and selection 
are repeated until the preset goal is met or the maximum 
learning iterations are completed. At last we calculate the 

output weigh
 1 2    

T

i i iL    
with equation 

†  H T
. 

III. PERFORMANCE EVALUATION  

In this section we describe the different parts of our age 
estimation pipeline, namely face alignment, feature 
extraction and model learning. The workflow of our 
proposed method is illustrated in Fig .1.  

The first steps of a human age estimation pipeline are 
face detection [17, 18] and facial landmark localization]. In 
this work, we chose to use the Deformable Part Model (DPM) 
based face detector proposed by Mathias et al. [18], because 
it finds the location of the face bounding box and gives a 
good alignment without the need for facial landmark 
localization. The DPM face detector gives the coordinates of 
the bounding box (if any face is detected), as well as the 
detection score. We run the face detector on rotated version 
of the original image between -60◦ and 60◦ in 5◦ increments, 
in order to eliminate in-plane rotation. Since some of the 

images are rotated 90◦ or upside down, we also try 180◦, -

90◦ and 90◦ rotations.  We then take the output with the 
maximum face score. For the cases where no face is 
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detected, we register the whole image.  ChaLearn Looking at 
People 2016 - Apparent Age Estimation challenge dataset 
[19] consists of 7,591 face images collectively labeled by 
multiple human annotators, therefore the mean μ and the 
standard deviation σ is provided for each sample. The dataset 
is split into 4113 training, 1500 validation and 1978 testing 
samples, where the testing set labels are sequestered. The 
three subsets have a similar age distribution. Table I presents 
the number of samples where the DPM face detector was 
able to detect a face. Table I shows the number of detections 
on the three subsets. 

TABLE I.  FACE ALIGNMENT SUMMARY 

# Train Val Test 

Given 4113 1500 1978 

Detected 4016 1462 1920 

 
We used the deep network to extract CNN features from 

aligned images.  The VGG- Face network consists of 37 
layers, the final one being a 2622-dimensional softmax layer, 
trained for the face recognition task.  We tried the 
performance of the final layers and found that the 33rd  layer, 
which is the first (earliest) 4096-dimensional convolution 
layer, was the most informative one. Therefore we used only 
the features from this layer in model learning. The baseline 
regression performances (without any grouping) of the best 
layers are shown in Table II 

TABLE II.  COMPARISON OF DIFFERENT LAYERS OF VGG-FACE 

Layer Num. features val MAEval 

32 25088 0.4284 4.68 

33 4096 0.4021 4.35 

35 4096 0.4150 4.48 

37 2622 0.4066 4.38 

 
We then normalize each feature vector by dividing it to 

its Euclidean norm.  We have tried various normalization 
options prior to L2 normalization and saw that none of them 
was improving the normal score; therefore we decided to use 
only L2 normalization for the final system. Performance with 
various normalization options for the best layers is shown in 
Table III. 

In our experiments, we tried combinations of alternative 
feature normalization methods, including the sigmoid 
function, power normalization by 2 (i.e.  setting the absolute 
value of each feature to its square root), min-max 
normalization of each feature to [−1, 1] among samples, and 
z- normalization. For min-max and z-normalization, we learn 
the parameters from training folds and apply them to the test 
fold. 

 
 

TABLE III.  Validation set performance with different normalization 
options

 

Norm. Type                Lay r 33          Lay r 37 

 

Nonorm 

   

0.4487                     

MAE 

4.91 

  
0.4403 

MAE 

4.79 

L2 0.4021 4.35 0.4066 4.38 

Pow. + L2 0.4028 4.32 0.4079 4.44 

Sig. + L2 0.4152 4.49 0.4137 4.46 

MM+L2 0.4355 4.77 0.4301 4.63 

Z+L2 0.4102 4.48 0.4036 4.33 

MM +Sig. + 0.4861 5.46 0.4652 5.12 

Z + Sig. + L2 0.4220 4.59 0.4164 4.51 

M  1 + Pow. + L2 0.4565 5.01 0.4438 4.88 

Z + Pow. + L2 0.4083 4.43 0.4078 4.37 

 
Now, we introduce the evaluation criteria in our 

experiments as following. 
Mean Absolute Error (MAE): A standard way of 

measuring the accuracy of a regressor is to average the 
absolute deviation of each sample’s label from its estimated 
value. More formally, MAE of a given dataset is calculated 
as follows: 

1

1
ˆ| |

N

i i

i

MAE x x
N 

 


where 
ix  is the true label i.e. the average of apparent age 

annotations for sample i, ˆ
ix  is the predicted value, and N is 

the number of testing samples. 
Normal Score (  ): Since the LAP-2016 dataset is 

labeled by multiple annotators, the performance of an age 
estimation system might be more accurately measured by 
taking into account the variance of the annotations for each 
sample. Therefore the ǫ-score is calculated by fitting a 
normal distribution with mean   and standard deviation   

of the annotations for each sample: 

 
2

2
1 exp

2

x 




 
   
 
 



Thus, the average ǫ-score for a dataset can change 
between 1 (worst case) and 0 (best case). 

The system is implemented in MATLAB. Face detection 
takes around 2 seconds per image and rotation angle. Feature 
extraction from VGG-Face with MatConvNet library takes 
around 1 second per image. For classification and regression, 
we optimize the kernel parameter γ and the regularization 
coefficient C with a grid search where both parameters are 
searched in the exponential set 2

[-2,-1, ... ,6]
. Training the whole 

system takes 12 minutes and obtaining the estimation takes 
around 2 seconds per test image. 

According to the above conditions, we present the results 
of our classification and regression systems. In Table 4, we 
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summarize the classification accuracy and recall for the 8 
overlapping age groups we used. The 9th row is the 
performance of the backup system, and the final row is the 
performance of the whole system on the validation set of 
LAP-2016 dataset. 

Table Ⅳ  shows that the ensemble of local regressors 

yield smaller MAE for younger age groups. As the age 
progresses, within-group variance increases with it, making 
the apparent age estimation task harder. Finally, since 
younger subjects are usually annotated with less variance, 
the ǫ-score behaves almost inversely to MAE score, as the ǫ-
score is more tolerant for the errors in the older subjects. We 
display the estimation results on samples from the validation 
set in Fig. 2, which shows the invariance of CNN features to 
common difficulties such as blur, pose and occlusions.  

TABLE IV.  CLASSIFICATION ACCURACY, RECALL AND REGRESSION 

PERFORMANCE ON VALIDATION SET WITH DIFFERENT AGE GROUPS. N DE- 

NOTES THE NUMBER OF SAMPLES 

Group N
tr N

val Acc. Rec.   MAE 

0-15 860 152 0.96 0.78 0.45 2.46 

10-25 2366 436 0.84 0.65 0.31 2.90 

15-30 3686 662 0.84 0.83 0.31 3.19 

20-35 4072 705 0.81 0.86 0.33 3.52 

30-40 1764 311 0.81 0.35 0.34 3.82 

35-50 1568 288 0.85 0.45 0.34 4.26 

45-60 976 184 0.91 0.48 0.28 3.87 

55-∞ 554 106 0.96 0.57 0.28 4.36 

0-∞ 8032 1462 - - 0.40 4.35 

Overall 8032 1462 - - 0.33 3.85 

 

IV. CONCLUSION 

In this paper, we propose an apparent age estimation 
system with the use of SaDE-ELM Algorithm. We show that 
the performance of local regressors are better than the global 
regressor for almost all groups. However, we give equal 
weight to each group a sample is assigned to, whereas 
weighing the decisions with a membership score can result in 
more accurate estimation. CNNs are robust to common 
difficulties in image processing such as pose and 
illumination differences as well as occlusions. Therefore our 
system works with a very coarse alignment system, however 
we believe that obtaining a finer alignment with the help of a 
landmark detection system will further improve the 
estimation accuracy.We make use of transfer learning by 
using the features from a deep network that is trained on a 
face recognition task and directly employing them in age 
estimation. 
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1. Input Image    2. Face Detection         3. Feature Extraction          4. Modeling                      5. Prediction 

 

DPM face detector       VGG-Face network                              SaDE-ELM 

Figure 1.  Pipeline of the proposed system 

Input image                                 

Aligned face                               

Apparent age          23                  4                    28                    25                    49                     48                    63 

Predicted age        23.57              4.15               27.84                26.87                47.94                  46.79             61.83 

 

Figure 2.  Application in facial age estimation  based on sade-elm from the validation set  


