
2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

54

Intrusion Detection Based on Self-adaptive Differential Evolutionary Extreme

Learning Machine

Junhua Ku

Department of information engineering

Hainan institute of science and technology

Haikou, China

E-mail: kujunhua@163.com

Bing Zheng

Department of information engineering

Hainan institute of science and technology

Haikou, China

E-mail: zhbahn@vip.qq.com

Dawei Yun

Department of information engineering

Hainan institute of science and technology

Haikou, China

E-mail: cogemm@163.com

Abstract—Nowadays with the rapid development of network-

based services and users of the internet in everyday life,

intrusion detection becomes a promising area of research in

the domain of security. Intrusion detection system (IDS) can

detect the intrusions of someone who is not authorized to the

present computer system automatically, so intrusion detection

system has emerged as an essential component and an

important technique for network security.

Extreme learning machine (ELM) is an interested area of

research for detecting possible intrusions and attacks. In this

paper, we propose an improved learning algorithm named self-

adaptive differential evolution extreme learning machine

(SADE-ELM) for classifying and detecting the intrusions. We

compare our methods with commonly used ELM, DE-ELM

techniques in classifications. Simulation results show that the

proposed SADE-ELM approach achieves higher detection

accuracy in classification case.

Keywords-Extreme learning machines; Differential evolution

extreme learning machines; Self-adaptive differential evolution

extreme learning machines; Intrusion detection; Network

security

I. INTRODUCTION

Intrusion into computer networks and systems is a major
threat in today’s network centric world. Few most prevalent
intrusion attacks include Denial-of-Service (DoS) attacks,
Distributed- Denial-of-Service (DDoS) at-tacks, probing
based attacks and account takeover attacks. Intrusion
detection identifies computer attacks by observing various
records processed on the network. Intrusion detection
models are classified into two variants, misuse detection and
anomaly detection systems. Misuse detection can discover
intrusions based on a known pattern also known as
signatures [1]. Anomaly detection can identify the malicious
activities by observing the deviation from normal network
traffic pattern [2]. Hence anomaly detection can identify

new anomalies. The difficulty with the current
developmental techniques is the high false positive rate and
low false negative rate.

Recently, a new fast learning neural algorithm for
SLFNs, named extreme learning machine (ELM) [3,4], was
devel-oped to improve the efficiency of SLFNs. Different
from the conventional learning algorithms for neural
networks (such as BP algorithms[5]), which may face
difficulties in manually tuning control parameters (learning
rate, learn-ing epochs, etc.) and/or local minima, ELM is
fully auto-matically implemented without iterative tuning,
and in theory, no intervention is required from users.
Further-more, It was popular for its fast training speed by
means of utilizing random hidden node parameters and
calculating the output weights with least square algorithm
[6-10]. However, in ELM, the number of hidden nodes is
assigned a priori, the hidden node parameters are randomly
chosen and they remain unchanged during the training phase.
Many non-optimal nodes may exist and contribute less in
minimizing the cost function. Moreover, in [11] Huang et al.
pointed out that ELM tends to require more hidden nodes
than conventional tuning-based algorithms [12,13] in many
cases.

Differential evolution (DE) [14] which is a simple but
powerful population-based stochastic direct searching
technique is a frequently used method for selecting the
network parameters [15–17]. In [15], DE is directly adopt-
ed as a training algorithm for feed forward networks where
all the network parameters are encoded into one population
vector and the error function between the network
approximate output and the expected output is used as the
fitness function to evaluate all the populations. However,
Subudhi and Jena [16] have pointed out that using the DE
approach alone for the network training may yield a slow
convergence speed. Therefore, in [17], a new algorithm
named evolutionary extreme learning machine (DE-ELM)

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

55

 based on DE and ELM has been developed for SLFNs.
Using the DE method to optimize the network input
parameters and the ELM algorithm to calculate the network
output weights, DE-ELM has shown several promising
features. It not only ensures a more compact network size
than ELM, but also has better generalization performance.

However, in the above DE based neural network training
algorithms, the trial vector generation strategies and the
control parameters in DE have to be manually chosen. For
example, the control parameters in DE-ELM are manually
selected according to an empirical suggestion and the simple
random generation method is adopted to produce the trial
vector. As pointed out by many researchers, the
performance of the DE algorithm highly depends on the
chosen trial vector generation strategy and the control
parameters, and inappropriate choices of strategies and
control parameters may result in premature convergence or
stagnation. Therefore, we propose a novel learning
algorithm named self-adaptive evolutionary extreme
learning machine (SaDE-ELM) for SLFNs. In SaDE-ELM,
the hidden node learning parameters are optimized by the
self-adaptive differential evolution algorithm. We verify our
approach using the data originated from the 1998 DARPA
Intrusion Detection Evaluation Program 1999, which is
adopted in the Data Mining and Knowledge Discovery
(KDD) competition [18], and considered as a common
benchmark for evaluating intrusion detection techniques
[19-21]. In this benchmark, there are four types of attacks,
Denial of Service (DoS) attack, user to root attack, remote
to user attack and probing attack. A denial of service attack
is an attempt to make a computer resource unavailable or
respond slowly to its legitimate users. User to root attack
basically tries to exploit vulnerability to gain root access to
the system. Remote to user attack is that attackers remotely
exploit vulnerability of a machine to gain local access as a
user. Probing are attacks that are trying to access computers,
computer systems, networks or applications for weakness.
In the following, we first review common methods for
intrusion detection and classification.

The rest of the paper is organized as follows. In section
II, a brief introduction to ELM and SaDE are given. In Sec-
tion III, we introduce model of proposed SaDE-ELM
algorithm in detail. In Section IV, we present the dataset we
use in our numerical studies and our intrusion detection
approach. Experiments for detecting intrusion in network
traffic data and performance comparisons between ELM-
based techniques and DE-ELM-based techniques are
presented in section. In section V, we conclude and
summarize our results.

II. BACKGROUND

As a novel training algorithm for SLFNs, ELM is very
efficient and effective. In this section, we will give a brief
review of ELM. In this section, we briefly review ELM and
SaDE-ELM approach for ELM is the foundation of SaDE-
ELM.

A. Extreme learning machine (ELM)

For N arbitrary distinct samples (x), tj j , where

1 2x [, , ,]T n

j j j jnx x x , 1 2[, , ,t]T m

j j j jmt t t ,

SLFNs with L hidden nodes and activation function g(x)
are

1 1

g (x) g (w x) o 1,2,... (),
L L

i i j i i i j j j

i i

j Nb

where wi= [wi1 , wi2 , ..., win]T is the weight vector
connecting the ith hidden node and the input nodes, βi = [βi1 ,
βi2, ..., βim]

T
is the weight vector connecting the ith hidden

node and the output nodes, bi is the threshold of the ith

hidden node,
w xi j

 denotes the inner product of wi and xj,
g(x) is activation function and Sigmoid, Sine, Hardlim and
other functions are commonly used. The output nodes are
chosen linear in this paper, and o j = [o j1 , o j2 , ..., o jm]

T
 is

the jth output vector of the SLFNs [22].

The SLFNs with L hidden nodes and activation function
g(x) can approximate these N samples with zero error. It

means
1

o t 0
L

j jj
 and there exist βi , wi and b i such

that

1 1

g (x) g (w x) t 1,2,... (),
L L

i i j i i i j j j

i i

j Nb

The equation above can be expressed compactly as
follows:

Where

1 2 1 2 1 2H(w ,w , ,w , , , , ,x ,x , ,x)L L Lb b b

1 1 1 1 1 2 1 1

1 2 1 2 2 2 2

1 1 2 2

g(w x) g(w x) g(w x)

g(w x) g(w x) g(w x)
=[]=

g(w x) g(w x) g(w x)

L

L L

ij

N N L N L

b b b

b b b
h

b b b

N L

11 12 1

21 22 2

1 2

m

m

L L Lm

 and

11 12 1

21 22 2

1 2

T

m

m

N N Nm

t t t

t t t

t t t

The matric H is called the hidden layer output matrix of
the neural network and the ith column of H is the ith hidden
node output with respect to inputs x1 , x2, ..., xN .

By simply randomly choosing hidden nodes and then
adjusting the output weights, single hidden layer
feedforward networks (SLFNs) work as universal
approximators with any bounded non-linear piecewise

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

56

 continuous functions for additive nodes [23]. ELM
algorithm claims that the hidden node parameters can be
randomly assigned [3,4], then the system equation becomes
a linear model and the network output weights can be
analytically determined by finding a least-square solution of
this linear system as follow

 † H T

Where
†

H is the Moore-Penrose generalized inverse of
matrix H. Then the output function of ELM can be modeled
as follows.

Moreover, it should be noted that many nonlinear
activation and kernel functions can be used in ELM.

B. Self-adaptive differential evolution

Differential evolution (DE), proposed by Storn and Price
in 1995, is a simple yet powerful evolutionary algorithm
(EA) [24]. There are three parameters in DE algorithm,
which are the population size NP, mutation scaling factor F
and crossover rate CR. NP is a problem-dependent
parameter, while F and CR are very sensitive to the
performance at different stages of evolution. To overcome
the limitations of choosing the parameters in DE, Brest et al.
[25] proposed a parameter adaptation technique to choose
the mutation scaling factor F and crossover rate CR namely
SADE-ELM algorithm which performs better than the basic
DE algorithm. In general, SADE algorithm is composed of
three main steps: mutation, crossover, and selection [26].

We consider the following optimization problem:

Minimize f(xi), xi RD

where 1 2[, , ,] , 1,2, ,T

i i i iDx x x x i NP
is a target

vector of D decision variables. During the mutation
operation, mutant vector vi is generated by mutation strategy
in the current population:

1 2 3()i r r rv x F x x

where 1, 2, 3r r r are mutually exclusive integers

randomly chosen in the range [1,NP], and 1 2 3r r r i .
Following mutation, trial vector ui is generated between

xi and vi during crossover operation where the most widely
used operator is the binomial crossover performed as
follows:

rand, (rndreal(0,1) CR or),

,

ij

ij

ij

v if j j
u

x otherwise

 7)

Where jrand is a integer randomly chosen in the range [1,
D], and rndreal(0, 1) is a real number randomly generated in
(0, 1). Finally, to keep the population size constant during

the evolution, the selection operation is used to determine
whether the trial or the target vector survives to the next
generation according to one-to-one selection:

, (() ())

,

i i i

i

i

u if f u f x
x

x otherwise

Where f(x) is the optimized objective function. During
the evolution, F and CR are adaptively tuned to improve the
performance of DE for each individual

1 2 1

, 1

,

 ()

 otherwise

l u

i G

i G

F rand F if rand
F

F

3 4 2

, 1

,

 ()

 otherwise
i G

i G

rand if rand
CR

CR

Where Fi;G+1 and CRi;G+1 are the mutation scaling factor
and crossover rate for i individual in G generation
respectively, randj=1;2;3;4 are randomly chosen from (0, 1),
τ1 and τ2 both valued 0.1 which is used to control the
generation of F and CR, Fl valued 0.1 and Fu is valued 0.9.
In the first generation, F and CR are initialized to 0.5.

III. MODEL OF PROPOSED SADE-ELM ALGORITHM

Since the ELM generates the input weights and hidden
biases arbitrarily which are the basic of calculating the
output weights, it may not reach the optimal result in
classification or regression. Thus, a hybrid approach
integrated self-adaptive differential evolution algorithm and
extreme learning machine namely SADE-ELM algorithm to
optimize the input weights and hidden biases is able to
obtain better generalization performance than ELM
algorithm [17].

In SaDE-ELM, we proposed SaDE-ELM for SLFNs by
incorporating the self-adaptive differential evolution
algorithm [25] to optimize the network input weights and
hidden node biases and the extreme learning machine to
derive the network output weights.

Given a set of training data and L hidden nodes with an
activation function g(·), we summarize the SaDE-ELM
algorithm in the following steps.

Step 1. Initialization
A set of NP vectors where each one includes all the

network hidden node parameters are initialized as the
populations of the first generation

, 1, , , , 1, , , ,w , ,w , , ,T T T T

k G k G L k G k G L k Gb b

where wj and bj (j = 1, … , L) are randomly generated,
G represents the generation and k = 1, 2,…, NP.

Step 2. Calculations of output weights and RMSE

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

57

Calculate the network output weight matrix and root
mean square error (RMSE) with respect to each
population vector with the following equations,
respectively.

†

, ,H Tk G k G

, , , ,1 1

,

(w , ,)

RMSE

N L

j i ij k G j k Gi j

k G

g b x t

m N

Then use the value of RMSE to calculate the new best
population vector , 1k G with the following equation.

, , 1 ,

, , 1 ,

, 1

, 1

, 1

, 1

,

,

 (RMSE -RMSE)> RMSE

 RMSE -RMSE < RMSE

 otherwise

k G k G k G

k G k G k G

k G

k G u

k G u

k G

u G

i G

u if

u if

and

where is the preset small positive tolerance rate. In
the first generation, the population vector with the best
RMSE is stored as θbest,1 and RMSEθbest,1 .

All the trial vectors uk,G+1 generated at the (G+1)th
generation are evaluated using equation(11) .The norm of

the output weight

 is added as one more criteria for the
trial vector selection as pointed out in [23] that the neural
networks tend to have better generalization performance
with smaller weights.

The three operations mutation, crossover and selection
are repeated until the preset goal is met or the maximum
learning iterations are completed. At last we calculate the

output weigh
 1 2

T

i i iL
with equation

† H T
.

IV. INTRUSION DETECTION USING SADE-ELM

In this section, we describe the dataset that we use for
our numerical studies, and our SaDE-ELM approach to
classification of intrusions in the data.

A. Dataset Description

The dataset we use is from the 1998 DAPRA intrusion
detection program. During the evaluation program, an
environment was set up in Lincoln Labs to record 9 weeks
of raw TCP/IP dump data for a network simulating a typical
U.S. air force LAN. Then the LAN was operated under a
real environment and blasted with multiple attacks. After
that, 7 weeks of raw tcpdump data was processed into
millions of connection records. Finally, 41 quantitative and
qualitative features were extracted using data mining
techniques. The detail of the feature extraction can be found
in [27].

Four main categories of attacks were simulated:
1) DoS: denial of service attack
2) R2L: unauthorized access from a remote machine

3) U2R: unauthorized access to local root previledges
4) Probing: surveillance and other probing
In the intrusion detection simulation, the dataset was

labeled with 22 attack types falling into the four categories
shown in Table I. The feature list and its descriptions are in
Tables II, III and IV.

TABLE I. TABLE I ATTACK TYPE

Denial of

Service
User to Root Remote to User Probing

Back

Neptune

Land Teardrop

Ping of Death

Smurf

Perl

Buffer Overflow

Load Module

Rootkit

FTP Write

Guess Password

Imap

Multihop

Phf

Spy

Warezclient

Warezmaster

IP Sweep

Nmap

Port Sweep

Satan

B. Intrusion Detection System using SaDE-ELM

Our SaDE-ELM intrusion detection method has the
following steps. We also use a ELM method to classify the
data to provide a comparison benchmark.

Step 1. Data pre-processing: a data processing script is
used to convert the raw TCP/IP dump data into machine
readable form.

Step 2. Training phase: SaDE-ELM and ELM are trained
on normal data and different types of attacks. For the binary
classification case, the data has 41 features and falls into 2
classes: normal and attack; for the multi-class classification
case, the data has 41 features and falls into 23 classes:
normal and 22 types of attack. The model is trained in a
large program which can test immediately after the training
completed. According to SaDE-ELM theory that has been
introduced above, we can summarize the following steps.

For N arbitrary distinct samples (xi,ti), i = 1,... N,and
hidden nodes and activation function g(x):

2.1) A set of NP individual parameter vectors ,k G
 (k =

1, 2 . . . NP), where each one includes all the network
hidden node parameters are initialized as the populations of
the first generation;

2.2) In the case of g(x) and L are invariable run the three
operations including mutation, crossover and selection to
produce the new population, and the process is repeated
until the stop condition is completed.

2.3) Changing the type of g(x) and increase the number
of hidden nodes L gradually from one to find the most
suitable g(x) and L to construct an optimal forecasting
model with the best testing accuracy;

2.4) Calculating the output matrix according to Eq.(4);

2.5) Calculating the output weights
†H H

, where T =

[t1, . . . tN] and
† T 1 T()H H H H

.
Step 3. Testing phase: ELM, DE-ELM and SaDE-ELM

are used to predict the type of each data point in the testing
dataset, and their performances are compared.

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

58

Both ELM and SaDE-ELM cannot process symbolic
data, so the following method is used to convert symbolic
data into continuous data without affecting the performance.
As can be seen from the feature description table, there are
several symbolic features in the dataset. For features like
land, logged in, root shell, is host login and is guest login
that take values 0 or 1, so we can handle these features in
the same way as continuous features. Other features like
protocol, service and flag have more than 2 different values.
For example, there are three different values in feature
protocol TCP, UDP and ICMP. We represent these three
category attributes TCP, UDP, ICMP using (0,0,1), (0,1,0)
and (1,0,0). The same method is applied to encode the
features service and flag. Experiments have shown that if
the number of values in an attribute is not too large, this
coding is more stable than using a single number. The
simulation of the three algorithms on all datasets are carried
out using MATLAB 2013a on a machine with an Intel Core
2 Duo, 2.26GHz CPU and 4GB RAM.

V. SIMULATION RESULTS

The datasets being tested are 2000, 4000, 8000
connection data chosen randomly from the dataset
downloaded from the website [18]. We split them equally

into training data and testing data. Simulation results
including average testing accuracy and corresponding 95%
confidence interval are given in Table IV.

In order to test the relationship between SaDE-ELM and
the number of hidden layer, according to the different
number of hidden layer nodes, we made classification tests
using ELM, DE-ELM and SaDE-ELM respectively.
Simulation results are given in Table V.

Figure1 and Fig .2 show the time spent by ELM, DE-
ELM and SaDE-ELM when training and testing the same
size of dataset. It can be seen that the training time and
testing time spent by SaDE-ELM increase sharply when the
size of data increases. In comparison, ELM and DE-ELM
increase slowly when the number of data increases.
Eventually, DE-ELM starts consuming more time for both
training and testing than ELM.

A clear time consumption comparison can be seen from
Fig .1and Fig .2. From the results, we can conclude that
ELM performs better than DE-ELM and SaDE-ELM in
terms of speed. To increase accuracy, we can implement
SaDE-ELM. This shows that our proposed SaDE-ELM
methods have better scalability than ELM and DE-ELM
when classifying network traffic for intrusion detection.

TABLE II. TABLEII BASIC FEATURES OF INDIVIDUAL TCP CONNECTIONS

TABLE III. TABLEIII CONTENT FEATURES WITHIN A CONNECTION SUGGESTED BY DOMAIN KNOWLEDGE

feature name description type
hot number of “hot” indicators continuous

num failed logins number of failed login attempts continuous

logged in 1 if successfully logged in, 0 otherwise discrete

num compromised number of “compromised” conditions continuous

root shell 1 if root shell is obtained, 0 otherwise discrete

su attempted 1 if “su root” command attempted, 0 otherwise discrete

num root number of “root” accesses continuous

num file creations number of file creation operations continuous

num shells number of shell prompts continuous

num access files number of operations on access control files continuous

num outbound cmds number of outbound commands in an ftp session continuous

is hot login 1 if the login belongs to the “hot” list, 0 otherwise discrete

is guest login 1 if the login is a “guest”login, 0 otherwise discrete

feature name description type

Duration

protocol_type

service

src_bytes

dst_bytes

flag

land

wrong_fragment

urgent

length (number of seconds) of the connection

type of the protocol

network service on the destination

number of data bytes from source to destination

number of data bytes from destination to source

normal or error status of the connection

1 if connection is from/to the same host/port, 0 otherwise

number of “wrong” fragments

number of urgent packets

continuous

discrete discrete

continuous continuous

discrete discrete

continuous continuous

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

59

TABLE IV. TABLE IV TRAFFIC FEATURES COMPUTED USING A TWO-SECOND TIME WINDOW

feature name description type

count number of connections to the same host as the current connection in the past two seconds continuous

serror rate % of connections that have “SYN” errors continuous

rerror rate % of connections that have “REJ” errors continuous

same srv rate % of connections to the same service continuous

diff srv rate % of connections to different services continuous

srv count
number of connections to the same service as the current connection in the past two

seconds
continuous

srv serror rate % of connections that have “SYN” errors continuous

srv rerror rate % of connections that have “REJ” errors continuous

srv diff host rate % of connections to different hosts continuous

Figure 1. Training time comparison Figure 2. Testing time comparison

TABLE V. TABLE V. PERFORMANCE COMPARISON RESULTS

Dataset Size ELM DE-ELM SaDE-ELM

Training/Testing Accuracy (%) 95% Confidence Interval (%) Accuracy (%) 95% Confidence Interval (%) Accuracy (%) 95% Confidence Interval

1000/1000 99.32 99.08 - 99.47 99.33 99.15 - 99.51 99.55 99.05 - 99.65

2000/2000 99.10 98.82 - 99.23 99.24 98.90 - 99.44 99.47 99.25 - 98.58

4000/4000 99.07 98.79 - 9.28 99.18 99.01 - 99.26 99.35 99.11 - 99.65

VI. CONCLUSION

In this paper, we have made a comparison by the use of
ELM, DE-ELM and SaDE-ELM for intrusion detection in a
computer network. For the SaDE-ELM, By incorporating
the self-adaptive differential evolution algorithm to optimize
the network hidden node parameters and employing the
extreme learning machine to derived the network output
weights. Obviously, the proposed SaDE-ELM can obtain
higher accuracy.

Whether to use ELM, DE-ELM or SaDE-ELM in
implementing an intrusion detection system depends on the
type of intrusion likely to occur. For example in a DDoS
attack, the attacker usually controls thousands of agents to
send a large number of TCP SYN packets to a victim’s

server port. When the port is actively listening for
connection requests, the victim would respond by sending
back ACK packets. However, the victim will not get further
responses and keep the connections half-open, which would
eventually quickly consume all the memory allocated for
pending connections. The victim’s server would then no
longer be able to process new requests from normal clients.
If we can correctly detect more than 90% of the attack
connections and drop these, we can effectively prevent the
DDoS attacker from overwhelming the server. For DDoS
attack detection, basic ELM with sigmoid additive neurons
would be a good choice since it has significantly shorter
training times compared to other techniques. On the other
hand, attacks like user to root attack exploit the victim’s
vulnerability to gain root access and may not create as many
connections as DDoS attack. Each connection by a

2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017)

60

successful attack however provides root access to the
system. Therefore, in this case, detection accuracy matters
more than speed. To detect this kind of attack, SaDE-ELM
would be preferred.

ACKNOWLEDGMENT

This research was supported by science research project
of Education Department of Hainan province
(Hnky2017ZD-20).

REFERENCES

[1] Ilgun, K., Kemmerer, R.A., Porras, P.A., 1995. State transition
analysis: a rule-based intrusion detection approach. IEEE Trans.
Software Eng. 21 (3), 181–199.

[2] Ikram S T, Cherukuri A K. Improving Accuracy of Intrusion
Detection Model Using PCA and optimized SVM[J]. CIT. Journal of
Computing and Information Technology, 2016, 24(2): 133-148.

[3] Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new
learning scheme of feedforward neural networks. In: Proceedings of
international joint conference on neural networks (IJCNN2004), vol 2,
no 25–29, pp 985–990.

[4] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and
applications. Neurocomputing 70(1–3):489–501.

[5] Espana-Boquera S, Zamora-Martínez F, Castro-Bleda M J, et al.
Efficient BP algorithms for general feedforward neural
networks[C]//International Work-Conference on the Interplay
Between Natural and Artificial Computation. Springer Berlin
Heidelberg, 2007: 327-336.

[6] G. Thatte, U. Mitra, and J. Heidemann, “Parametric methods for
anomaly detection in aggregate traffic,” IEEE/ACM Transactions on
Networking, vol. 19, no. 2, pp. 512–525, April 2011.

[7] M. Qin and K. Hwang, “Frequent episode rules for internet anomaly
detection,” in Proceedings of the Network Computing and
Applications, Third IEEE International Symposium. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 161–168.

[8] X. He, C. Papadopoulos, J. Heidemann, U. Mitra, and U. Riaz,
“Remote detection of bottleneck links using spectral and statistical
methods,” Computer Networks, vol. 53, pp. 279–298, February 2009.

[9] W. W. Streilein, R. K. Cunningham, and S. E. Webster, “Improved
detec- tion of low-profile probe and denial-of-service attacks,” in
Proceedings of the 2001 Workshop on Statistical and Machine
Learning Techniques in Computer Intrusion Detection, June 2001.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, pp. 273–297, 1995.

[11] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines:
a survey,” International Journal of Machine Leaning and Cybernetics,
vol. 2, no. 2, pp. 107–122, 2011.

[12] G. Tandon, “Weighting versus pruning in rule validation for detecting
network and host anomalies,” in In Proceedings of the 13th ACM
SIGKDD international. ACM Press, 2007.

[13] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 25, pp. 439–448,
2002.

[14] Storn R, Price K (2004) Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Optim 11(4):341–359

[15] Ilonen J, Kamarainen JI, Lampinen J (2003) Differential evolution
training algorithm for feedforward neural networks. Neural Process
Lett 17:93–105

[16] Subudhi B, Jena D (2008) Differential evolution and levenberg
marquardt trained neural network scheme for nonlinear system
identification. Neural Process Lett 27:285–296.

[17] Zhu Q-Y, Qin A-K, Suganthan P-N, Huang G-B (2005) Evolutionary
extreme learning machine. Pattern Recog 38(10):1759–1763

[18] (1999)KDDCUPdataset.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[19] S. Mukkamala and A. Sung, “Detecting denial of service attacks
using support vector machines,” in Proceedings of the 12th IEEE
International Conference on Fuzzy Systems, 2003.

[20] M. Luo, L. Wang, H. Zhang, and J. Chen, “A research on intrusion
detection based on unsupervised clustering and support vector
machine,” in Information and Communications Security, ser. Lecture
Notes in Computer Science, S. Qing, D. Gollmann, and J. Zhou, Eds.
Springer Berlin / Heidelberg, 2003, vol. 2836, pp. 325–336.

[21] D. Kim and J. Park, “Network-based intrusion detection with support
vector machines,” in Information Networking, ser. Lecture Notes in
Computer Science, H.-K. Kahng, Ed. Springer Berlin / Heidelberg,
2003, vol. 2662, pp. 747–756.

[22] Lin, Y., Lv, F., Zhu S., Yang, M., Cour, T., Yu, K., Cao, L., Huang,
T.S.: Large-scale image classification: fast feature extraction and
SVM training. In: Proceedings of the 24th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1689-1696
(2011).

[23] Huang G-B, Chen L, Siew CK (2006) Universal approximation using
incremental constructive feedforward networks with random hidden
nodes. IEEE Trans Neural Netw17(4):879-892

[24] R. Storn, K. Price, Differential evolution-A simple and efficient
heuristic for global optimization over continuous spaces, Journal of
Global Optimization, 11 (1997) 341-359.

[25] J. Brest, S. Greiner, B. Boˇskovi´c, M. Mernik, V. ˇZumer, Self-
adapting control parameters in differential evolution: A
comprehensive study on numerical benchmark problems. IEEE
Transactions on Evolutionary Computation, 10 (2006) 646-657.

[26] J. Wu, Z. H. Cai, Attribute Weighting via Differential Evolution
Algorithm for Attribute Weighted Naive Bayes (WNB), Journal of
Computational Information Systems, 7 (2011) 1672-1679.

[27] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan,
“Costbased modeling for fraud and intrusion detection: results from
the JAM project,” in Proceedings of DARPA Information
Survivability Conference and Exposition, vol. 2, January 2002, pp.
130–144..

