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Abstract—Nowadays with the rapid development of network-

based services and users of the internet in everyday life, 

intrusion detection becomes a promising area of research in 

the domain of security. Intrusion detection system (IDS) can 

detect the intrusions of someone who is not authorized to the 

present computer system automatically, so intrusion detection 

system has emerged as an essential component and an 

important technique for network security.  

Extreme learning machine (ELM) is an interested area of 

research for detecting possible intrusions and attacks. In this 

paper, we propose an improved learning algorithm named self-

adaptive differential evolution extreme learning machine 

(SADE-ELM) for classifying and detecting the intrusions. We 

compare our methods with commonly used ELM, DE-ELM 

techniques in classifications. Simulation results show that the 

proposed SADE-ELM approach achieves higher detection 

accuracy in classification case.  

Keywords-Extreme learning machines; Differential evolution 

extreme learning machines; Self-adaptive differential evolution 

extreme learning machines; Intrusion detection; Network 

security  

I. INTRODUCTION 

Intrusion into computer networks and systems is a major 
threat in today’s network centric world. Few most prevalent 
intrusion attacks include Denial-of-Service (DoS) attacks, 
Distributed- Denial-of-Service (DDoS) at-tacks, probing 
based attacks and account takeover attacks. Intrusion 
detection identifies computer attacks by observing various 
records processed on the network. Intrusion detection 
models are classified into two variants, misuse detection and 
anomaly detection systems. Misuse detection can discover 
intrusions based on a known pattern also known as 
signatures [1]. Anomaly detection can identify the malicious 
activities by observing the deviation from normal network 
traffic pattern [2]. Hence anomaly detection can identify 

new anomalies. The difficulty with the current 
developmental techniques is the high false positive rate and 
low false negative rate. 

Recently, a new fast learning neural algorithm for 
SLFNs, named extreme learning machine (ELM) [3,4], was 
devel-oped to improve the efficiency of SLFNs. Different 
from the conventional learning algorithms for neural 
networks (such as BP algorithms[5]), which may face 
difficulties in manually tuning control parameters (learning 
rate, learn-ing epochs, etc.) and/or local minima, ELM is 
fully auto-matically implemented without iterative tuning, 
and in theory, no intervention is required from users. 
Further-more, It was popular for its fast training speed by 
means of utilizing random hidden node parameters and 
calculating the output weights with least square algorithm 
[6-10]. However, in ELM, the number of hidden nodes is 
assigned a priori, the hidden node parameters are randomly 
chosen and they remain unchanged during the training phase. 
Many non-optimal nodes may exist and contribute less in 
minimizing the cost function. Moreover, in [11] Huang et al. 
pointed out that ELM tends to require more hidden nodes 
than conventional tuning-based algorithms [12,13] in many 
cases. 

Differential evolution (DE) [14] which is a simple but 
powerful population-based stochastic direct searching 
technique is a frequently used method for selecting the 
network parameters [15–17]. In [15], DE is directly adopt-
ed as a training algorithm for feed forward networks where 
all the network parameters are encoded into one population 
vector and the error function between the network 
approximate output and the expected output is used as the 
fitness function to evaluate all the populations. However, 
Subudhi and Jena [16] have pointed out that using the DE 
approach alone for the network training may yield a slow 
convergence speed. Therefore, in [17], a new algorithm 
named evolutionary extreme learning machine (DE-ELM)
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 based on DE and ELM has been developed for SLFNs. 
Using the DE method to optimize the network input 
parameters and the ELM algorithm to calculate the network 
output weights, DE-ELM has shown several promising 
features. It not only ensures a more compact network size 
than ELM, but also has better generalization performance.  

However, in the above DE based neural network training 
algorithms, the trial vector generation strategies and the 
control parameters in DE have to be manually chosen. For 
example, the control parameters in DE-ELM are manually 
selected according to an empirical suggestion and the simple 
random generation method is adopted to produce the trial 
vector. As pointed out by many researchers, the 
performance of the DE algorithm highly depends on the 
chosen trial vector generation strategy and the control 
parameters, and inappropriate choices of strategies and 
control parameters may result in premature convergence or 
stagnation. Therefore, we propose a novel learning 
algorithm named self-adaptive evolutionary extreme 
learning machine (SaDE-ELM) for SLFNs. In SaDE-ELM, 
the hidden node learning parameters are optimized by the 
self-adaptive differential evolution algorithm. We verify our 
approach using the data originated from the 1998 DARPA 
Intrusion Detection Evaluation Program 1999, which is 
adopted in the Data Mining and Knowledge Discovery 
(KDD) competition [18], and considered as a common 
benchmark for evaluating intrusion detection techniques 
[19-21]. In this benchmark, there are four types of attacks, 
Denial of Service (DoS) attack, user to root attack, remote 
to user attack and probing attack. A denial of service attack 
is an attempt to make a computer resource unavailable or 
respond slowly to its legitimate users. User to root attack 
basically tries to exploit vulnerability to gain root access to 
the system. Remote to user attack is that attackers remotely 
exploit vulnerability of a machine to gain local access as a 
user. Probing are attacks that are trying to access computers, 
computer systems, networks or applications for weakness. 
In the following, we first review common methods for 
intrusion detection and classification. 

The rest of the paper is organized as follows. In section 
II, a brief introduction to ELM and SaDE are given. In Sec-
tion III, we introduce model of proposed SaDE-ELM 
algorithm in detail. In Section IV, we present the dataset we 
use in our numerical studies and our intrusion detection 
approach. Experiments for detecting intrusion in network 
traffic data and performance comparisons between ELM-
based techniques and DE-ELM-based techniques are 
presented in section. In section V, we conclude and 
summarize our results. 

II. BACKGROUND 

As a novel training algorithm for SLFNs, ELM is very 
efficient and effective. In this section, we will give a brief 
review of ELM. In this section, we briefly review ELM and 
SaDE-ELM approach for ELM is the foundation of SaDE-
ELM. 

A.  Extreme learning machine (ELM) 

For N arbitrary distinct samples (x ), tj j , where 

1 2x [ , , , ]T n

j j j jnx x x   , 1 2[ , , ,t ]T m

j j j jmt t t   ,  

SLFNs with L hidden nodes and activation function g(x) 
are  
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g (x ) g (w x ) o 1,2,...        ( ),
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where wi= [wi1 , wi2 , ..., win ]T is the weight vector 
connecting the ith hidden node and the input nodes, βi = [βi1 , 
βi2, ..., βim ]

T 
is the weight vector connecting the ith hidden 

node and the output nodes, bi is the threshold of the ith 

hidden node, 
w xi j

 denotes the inner product of wi and xj, 
g(x) is activation function and Sigmoid, Sine, Hardlim and 
other functions are commonly used. The output nodes are 
chosen linear in this paper, and o j = [o j1 , o j2 , ..., o jm ]

T
 is 

the jth output vector of the SLFNs [22]. 

The SLFNs with L hidden nodes and activation function 
g(x) can approximate these N samples with zero error. It 

means
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The equation above can be expressed compactly as 
follows: 
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The matric H is called the hidden layer output matrix of 
the neural network and the ith column of H is the ith hidden 
node output with respect to inputs x1 , x2, ..., xN .  

By simply randomly choosing hidden nodes and then 
adjusting the output weights, single hidden layer 
feedforward networks (SLFNs) work as universal 
approximators with any bounded non-linear piecewise
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 continuous functions for additive nodes [23]. ELM 
algorithm claims that the hidden node parameters can be 
randomly assigned [3,4], then the system equation becomes 
a linear model and the network output weights can be 
analytically determined by finding a least-square solution of 
this linear system as follow 

 †  H T


Where 
†

H is the Moore-Penrose generalized inverse of 
matrix H. Then the output function of ELM can be modeled 
as follows. 



Moreover, it should be noted that many nonlinear 
activation and kernel functions can be used in ELM.  

B. Self-adaptive differential evolution 

Differential evolution (DE), proposed by Storn and Price 
in 1995, is a simple yet powerful evolutionary algorithm 
(EA) [24]. There are three parameters in DE algorithm, 
which are the population size NP, mutation scaling factor F 
and crossover rate CR. NP is a problem-dependent 
parameter, while F and CR are very sensitive to the 
performance at different stages of evolution. To overcome 
the limitations of choosing the parameters in DE, Brest et al. 
[25] proposed a parameter adaptation technique to choose 
the mutation scaling factor F and crossover rate CR namely 
SADE-ELM algorithm which performs better than the basic 
DE algorithm. In general, SADE algorithm is composed of 
three main steps: mutation, crossover, and selection [26]. 

We consider the following optimization problem:  

Minimize f(xi), xi RD 

where 1 2[ , , , ] , 1,2, ,T

i i i iDx x x x i NP  
is a target 

vector of D decision variables. During the mutation 
operation, mutant vector vi is generated by mutation strategy 
in the current population: 

1 2 3( )i r r rv x F x x   


where 1, 2, 3r r r are mutually exclusive integers 

randomly chosen in the range [1,NP], and 1 2 3r r r i   . 
Following mutation, trial vector ui is generated between 

xi and vi during crossover operation where the most widely 
used operator is the binomial crossover performed as 
follows: 

rand,    (rndreal(0,1) CR  or  ),

,   

ij

ij

ij

v if j j
u

x otherwise

 
 
 7)

Where jrand is a integer randomly chosen in the range [1, 
D], and rndreal(0, 1) is a real number randomly generated in 
(0, 1). Finally, to keep the population size constant during 

the evolution, the selection operation is used to determine 
whether the trial or the target vector survives to the next 
generation according to one-to-one selection: 
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Where f(x) is the optimized objective function. During 
the evolution, F and CR are adaptively tuned to improve the 
performance of DE for each individual 
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Where Fi;G+1 and CRi;G+1 are the mutation scaling factor 
and crossover rate for i individual in G generation 
respectively, randj=1;2;3;4 are randomly chosen from (0, 1), 
τ1 and τ2 both valued 0.1 which is used to control the 
generation of F and CR, Fl valued 0.1 and Fu is valued 0.9. 
In the first generation, F and CR are initialized to 0.5. 

III. MODEL OF PROPOSED SADE-ELM ALGORITHM 

Since the ELM generates the input weights and hidden 
biases arbitrarily which are the basic of calculating the 
output weights, it may not reach the optimal result in 
classification or regression. Thus, a hybrid approach 
integrated self-adaptive differential evolution algorithm and 
extreme learning machine namely SADE-ELM algorithm to 
optimize the input weights and hidden biases is able to 
obtain better generalization performance than ELM 
algorithm [17]. 

In SaDE-ELM, we proposed SaDE-ELM for SLFNs by 
incorporating the self-adaptive differential evolution 
algorithm [25] to optimize the network input weights and 
hidden node biases and the extreme learning machine to 
derive the network output weights. 

Given a set of training data and L hidden nodes with an 
activation function g(·), we summarize the SaDE-ELM 
algorithm in the following steps. 

Step 1. Initialization 
A set of NP vectors where each one includes all the 

network hidden node parameters are initialized as the 
populations of the first generation 

, 1, , , , 1, , , ,w , ,w , , ,T T T T

k G k G L k G k G L k Gb b     


where wj and bj ( j = 1, … , L) are randomly generated, 
G represents the generation and k = 1, 2,…, NP. 

Step 2. Calculations of output weights and RMSE 
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Calculate the network output weight matrix and root 
mean square error (RMSE) with respect to each 
population vector with the following equations, 
respectively. 

†

, ,H Tk G k G 
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Then use the value of RMSE to calculate the new best 
population vector , 1k G  with the following equation. 
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where   is the preset small positive tolerance rate. In 
the first generation, the population vector with the best 
RMSE is stored as θbest,1 and RMSEθbest,1 . 

All the trial vectors uk,G+1 generated at the (G+1)th 
generation are evaluated using equation(11) .The norm of 

the output weight 


 is added as one more criteria for the 
trial vector selection as pointed out in [23] that the neural 
networks tend to have better generalization performance 
with smaller weights.  

The three operations mutation, crossover and selection 
are repeated until the preset goal is met or the maximum 
learning iterations are completed. At last we calculate the 

output weigh
 1 2    

T

i i iL    
with equation

†  H T
. 

IV. INTRUSION DETECTION USING SADE-ELM 

In this section, we describe the dataset that we use for 
our numerical studies, and our SaDE-ELM approach to 
classification of intrusions in the data. 

A. Dataset Description 

The dataset we use is from the 1998 DAPRA intrusion 
detection program. During the evaluation program, an 
environment was set up in Lincoln Labs to record 9 weeks 
of raw TCP/IP dump data for a network simulating a typical 
U.S. air force LAN. Then the LAN was operated under a 
real environment and blasted with multiple attacks. After 
that, 7 weeks of raw tcpdump data was processed into 
millions of connection records. Finally, 41 quantitative and 
qualitative features were extracted using data mining 
techniques. The detail of the feature extraction can be found 
in [27]. 

Four main categories of attacks were simulated: 
1) DoS: denial of service attack 
2) R2L: unauthorized access from a remote machine 

3) U2R: unauthorized access to local root previledges 
4) Probing: surveillance and other probing 
In the intrusion detection simulation, the dataset was 

labeled with 22 attack types falling into the four categories 
shown in Table I. The feature list and its descriptions are in 
Tables II, III and IV. 

TABLE I.  TABLE I ATTACK TYPE 

Denial of 

Service 
User to Root Remote to User Probing 

Back 

Neptune 

Land Teardrop 

Ping of Death 

Smurf 

Perl 

Buffer Overflow  

Load Module  

Rootkit 

FTP Write 

Guess Password 

Imap 

Multihop  

Phf 

Spy  

Warezclient  

Warezmaster 

IP Sweep 

Nmap 

Port Sweep  

Satan 

B. Intrusion Detection System using SaDE-ELM 

Our SaDE-ELM intrusion detection method has the 
following steps. We also use a ELM method to classify the 
data to provide a comparison benchmark. 

Step 1. Data pre-processing: a data processing script is 
used to convert the raw TCP/IP dump data into machine 
readable form. 

Step 2. Training phase: SaDE-ELM and ELM are trained 
on normal data and different types of attacks. For the binary 
classification case, the data has 41 features and falls into 2 
classes: normal and attack; for the multi-class classification 
case, the data has 41 features and falls into 23 classes: 
normal and 22 types of attack. The model is trained in a 
large program which can test immediately after the training 
completed. According to SaDE-ELM theory that has been 
introduced above, we can summarize the following steps. 

For N arbitrary distinct samples (xi,ti), i = 1,... N,and 
hidden nodes and activation function g(x): 

2.1) A set of NP individual parameter vectors ,k G
 (k = 

1, 2 . . . NP), where each one includes all the network 
hidden node parameters are initialized as the populations of 
the first generation; 

2.2) In the case of g(x) and L are invariable run the three 
operations including mutation, crossover and selection to 
produce the new population, and the process is repeated 
until the stop condition is completed. 

2.3) Changing the type of g(x) and increase the number 
of hidden nodes L gradually from one to find the most 
suitable g(x) and L to construct an optimal forecasting 
model with the best testing accuracy; 

2.4) Calculating the output matrix according to Eq.(4); 

2.5) Calculating the output weights
†H H 

, where T = 

[t1, . . . tN ] and 
† T 1 T( )H H H H

. 
Step 3. Testing phase: ELM, DE-ELM and SaDE-ELM 

are used to predict the type of each data point in the testing 
dataset, and their performances are compared. 
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Both ELM and SaDE-ELM cannot process symbolic 
data, so the following method is used to convert symbolic 
data into continuous data without affecting the performance. 
As can be seen from the feature description table, there are 
several symbolic features in the dataset. For features like 
land, logged in, root shell, is host login and is guest login 
that take values 0 or 1, so we can handle these features in 
the same way as continuous features. Other features like 
protocol, service and flag have more than 2 different values. 
For example, there are three different values in feature 
protocol TCP, UDP and ICMP. We represent these three 
category attributes TCP, UDP, ICMP using (0,0,1), (0,1,0) 
and (1,0,0). The same method is applied to encode the 
features service and flag. Experiments have shown that if 
the number of values in an attribute is not too large, this 
coding is more stable than using a single number. The 
simulation of the three algorithms on all datasets are carried 
out using MATLAB 2013a on a machine with an Intel Core 
2 Duo, 2.26GHz CPU and 4GB RAM.

V. SIMULATION RESULTS 

The datasets being tested are 2000, 4000, 8000 
connection data chosen randomly from the dataset 
downloaded from the website [18]. We split them equally 

into training data and testing data. Simulation results 
including average testing accuracy and corresponding 95% 
confidence interval are given in Table IV. 

In order to test the relationship between SaDE-ELM and 
the number of hidden layer, according to the different 
number of hidden layer nodes, we made classification tests 
using ELM, DE-ELM and SaDE-ELM respectively. 
Simulation results are given in Table V. 

Figure1 and Fig .2 show the time spent by ELM, DE-
ELM and SaDE-ELM when training and testing the same 
size of dataset. It can be seen that the training time and 
testing time spent by SaDE-ELM increase sharply when the 
size of data increases. In comparison, ELM and DE-ELM 
increase slowly when the number of data increases. 
Eventually, DE-ELM starts consuming more time for both 
training and testing than ELM. 

A clear time consumption comparison can be seen from 
Fig .1and Fig .2. From the results, we can conclude that 
ELM performs better than DE-ELM and SaDE-ELM in 
terms of speed. To increase accuracy, we can implement 
SaDE-ELM. This shows that our proposed SaDE-ELM 
methods have better scalability than ELM and DE-ELM 
when classifying network traffic for intrusion detection. 

TABLE II.  TABLEII BASIC FEATURES OF INDIVIDUAL TCP CONNECTIONS 

                  

 
 
 
 
 

 
 
 
 
 

TABLE III.  TABLEIII CONTENT FEATURES WITHIN A CONNECTION SUGGESTED BY DOMAIN KNOWLEDGE 

 

feature name description type 
hot number of “hot” indicators continuous 

num failed logins number of failed login attempts continuous 

logged in 1 if successfully logged in, 0 otherwise discrete 

num compromised number of “compromised” conditions continuous 

root shell 1 if root shell is obtained, 0 otherwise discrete 

su attempted 1 if “su root” command attempted, 0 otherwise discrete 

num root number of “root” accesses continuous 

num file creations number of file creation operations continuous 

num shells number of shell prompts continuous 

num access files number of operations on access control files continuous 

num outbound cmds number of outbound commands in an ftp session continuous 

is hot login 1 if the login belongs to the “hot” list, 0 otherwise discrete 

is guest login 1 if the login is a “guest”login, 0 otherwise discrete 

 

feature name description type 

Duration 

protocol_type 

service  

src_bytes  

dst_bytes  

flag 

land 

wrong_fragment 

urgent 

length (number of seconds) of the connection 

type of the protocol 

network service on the destination 

number of data bytes from source to destination  

number of data bytes from destination to source  

normal or error status of the connection 

1 if connection is from/to the same host/port, 0 otherwise  

number of “wrong” fragments 

number of urgent packets 

continuous 

discrete discrete 

continuous continuous 

discrete discrete 

continuous continuous 
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TABLE IV.  TABLE IV TRAFFIC FEATURES COMPUTED USING A TWO-SECOND TIME WINDOW 

feature name description type 

count number of connections to the same host as the current connection in the past two seconds continuous 

serror rate % of connections that have “SYN” errors continuous 

rerror  rate % of connections that have “REJ” errors continuous 

same srv rate % of connections to the same service continuous 

diff srv rate % of connections to different services continuous 

srv count 
number of connections to the same service as the current connection in the past two 

seconds 
continuous 

srv serror rate % of connections that have “SYN” errors continuous 

srv rerror rate % of connections that have “REJ” errors continuous 

srv diff host rate % of connections to different hosts continuous 

 

  
Figure 1.  Training time comparison                                               Figure 2.  Testing time comparison     

TABLE V.  TABLE V.  PERFORMANCE COMPARISON RESULTS 

 

Dataset Size ELM DE-ELM SaDE-ELM 

Training/Testing Accuracy (%) 95% Confidence Interval (%) Accuracy (%) 95% Confidence Interval (%) Accuracy (%) 95% Confidence Interval 

1000/1000 99.32 99.08 - 99.47 99.33 99.15 - 99.51 99.55 99.05 - 99.65 

2000/2000 99.10 98.82 - 99.23 99.24 98.90 - 99.44 99.47 99.25 - 98.58 

4000/4000 99.07 98.79 - 9.28 99.18 99.01 - 99.26 99.35 99.11 - 99.65 

 

VI. CONCLUSION 

In this paper, we have made a comparison by the use of 
ELM, DE-ELM and SaDE-ELM for intrusion detection in a 
computer network. For the SaDE-ELM, By incorporating 
the self-adaptive differential evolution algorithm to optimize 
the network hidden node parameters and employing the 
extreme learning machine to derived the network output 
weights. Obviously, the proposed SaDE-ELM can obtain 
higher accuracy.  

Whether to use ELM, DE-ELM or SaDE-ELM in 
implementing an intrusion detection system depends on the 
type of intrusion likely to occur. For example in a DDoS 
attack, the attacker usually controls thousands of agents to 
send a large number of TCP SYN packets to a victim’s 

server port. When the port is actively listening for 
connection requests, the victim would respond by sending 
back ACK packets. However, the victim will not get further 
responses and keep the connections half-open, which would 
eventually quickly consume all the memory allocated for 
pending connections. The victim’s server would then no 
longer be able to process new requests from normal clients. 
If we can correctly detect more than 90% of the attack 
connections and drop these, we can effectively prevent the 
DDoS attacker from overwhelming the server. For DDoS 
attack detection, basic ELM with sigmoid additive neurons 
would be a good choice since it has significantly shorter 
training times compared to other techniques. On the other 
hand, attacks like user to root attack exploit the victim’s 
vulnerability to gain root access and may not create as many 
connections as DDoS attack. Each connection by a 
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successful attack however provides root access to the 
system. Therefore, in this case, detection accuracy matters 
more than speed. To detect this kind of attack, SaDE-ELM 
would be preferred. 
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