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Abstract—Quadratic Lyapunov function based Algorithms 

(QLAs) for stochastic network optimization problems, which 

are cross-layer scheduling algorithms designed by Lyapunov 

optimization technique, have been widely used and studied. In 

this paper, we investigate the performance of using Lyapunov 

drift and perturbation in QLAs. By analyzing attraction points 

and utility performance of four variants of OQLA (Original 

QLA), we examine the rationality of OQLA for using the first-

order part of an upper bound of Lyapunov drift of a function 

L_1. It is proved that either using the real Lyapunov function 

(L_2) of networks under QLA or using the entire expression of 

Lyapunov drift does not improve backlog-utility performance. 

The linear relationship between the attraction point of backlog 

and perturbation in the queue is found. Simulations verify the 

results above.  

Keywords-Component; Lyapunov optimization; QLA; 

Lyapunov function; Backlog-utility performanc; Stochastic 
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I. INTRODUCTION 

Lyapunov optimization technique is an effective method 
to design online cross-layer scheduling algorithms for 
stochastic network. The Lyapunov optimization technique is 
able to stabilize the network while achieving close-to-
optimal utility performance [1][2]. Among the multiple 
advantages of using the Lyapunov optimization technique in 
stochastic network optimization, the most significant one is 
that probability distributions in the network are not 
necessarily known but able to be obtained by the Lyapunov 
optimization technique, adapt to networks with any 
distributions. The Lyapunov optimization technique has been 
used in various scenarios, including wireless communication 
networks [3][4], energy harvesting networks [5], processing 
networks [6], and even financial systems [7]. 

We mainly focus on the Quadratic Lyapunov function 
based Algorithm (QLA). For clarity, the original QLA 
proposed in e.g.  [3] is referred as OQLA henceforth. OQLA 
is designed to greedily minimize an expression consisting of 
two parts, one of which is the first-order part of the upper 

bound of Lyapunov drift of a specific Lyapunov function 
(this function is denoted as   ), e.g. [2]. However, using the 
entire expression of Lyapunov drift when minimizing seems 
to perform better than using first-order part of upper bound 
of Lyapunov drift. Moreover,    used in design OQLA is 
apparently not the actual Lyapunov function of networks 
under OQLA. Because if    is the actual Lyapunov function 
of networks under OQLA, queue backlog should be attracted 
by zero. But both analysis (e.g. in [8]) and simulation (e.g. in 
[2]) show that queue length is attracted by a non-zero value 
in networks under OQLA. It seems quite arbitrary to design 
OQLAs by using    and the first-order part. To our best 
knowledge, no comparisons about the delay-utility 
performance between using the first-order part and the entire 
expression and between using the real Lyapunov function 
(  ) and    are given in the previous works of QLA. There 
are several works focusing on reducing the backlog of 
OQLA, e.g. [9][10]. 

We now summarize the main contributions of this paper 
in the following. 1) We prove that either using the entire 
Lyapunov drift expression instead of the first-order part of 
upper bound of Lyapunov drift of    or using the real 
Lyapunov function instead of    doesn’t improve utility and 
delay performance. 2) We demonstrate and prove the utility 
and delay performance of QLA with Perturbed Data Queues 
(QLA-PDQ-P & QLA-PDQ-E) and QLA based on Entire 
expression of Lyapunov drift (QLA-E).  

The rest of the paper is organized as follows: In Section 
II, we state our network model. After some preliminary 
information is given in Section III, we present our main 
results in Section IV, including a Lyapunov function and 
backlog-utility performance of variants of OQLA. 
Explanations of those results are given to show the 
rationality of OQLA and the relationship between attraction 
point and perturbation. In Section V, we prove results in 
Section IV. Section VI provides simulation results of QLA-
PDQ-E, QLA-PDQ-P. We conclude in Section VII. 
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II. NETWORK MODEL 

In this section we specify the network model we use, 
which is also widely used in other works about QLA. 

A. Network States & Actions 

The network consists of   (     and is finite) queues. 
There are   network states forming the state set  . Each 
state is denoted as   , indicating the current network 
parameters. The network operates in slotted time. 

Denote network state at time   as     . We assume that 
     is stationary ergodic processes with finite state space 
and evolves according to some general probability law, 
under which there exists a steady state distribution of     . 

Let    
 denote its steady state probability of being in state   , 

i.e,   
            . At each timeslot   when the state 

       , the network controller chooses an action      
from a set    , i.e.          for some        . The set 
    is called the feasible action set for network state    and 
is assumed to be time-invariant and compact for all     . 
Denote the action vector             as  . 

B. Queues 

Let                      denote the data queue 
backlog vector process of the network, where       is non-
negative. Each queue is updated in the following way.     
                           . Queue   is mean rate 
stable (shorted for “stable” hereafter) 

means:      
          

 
  [2]. The network is stable if all 

data queues are stable. Virtual queues can be used to 
represent time-averaged constraints. Simulations in Section 
VI consider a problem with time-averaged constraints to 
show our analysis and conclusions still hold. 

Lyapunov function used in OQLA is defined as       
 

 
    

 
        . Lyapunov drift of       is            

        . The first-order part of upper bound of       
used in OQLA is denoted as   . 

Define Lyapunov function       as               
 

 
    

            
  , where                   

denotes the perturbation of data queues. Lyapunov drift of 
the      is                      . The first-order part 
of upper bound of       is denoted as    . Note that 
             . Define Lyapunov function       as 

                     , Lyapunov drift of which is 

denoted as      . The first-order part of upper bound of 
      is denoted as   . Expressions of      ,   ,      ,   , 
      and    are shown and proved in [11]. 

C. Stochastic Optimization Problem 

We consider a stochastic optimization problem with 
utility maximization. A utility function   is a function of 
network parameters, such as total throughput or energy-cost. 
Define time-average expectation of      over the first   

timeslots as   
 

 
   

         . 

A network controller is designed to solve this problem, 
which operates a network with the goal of minimizing 

          , subject to the queue stability and additional 

time-average constraints. The case maximizing   can be 
treated the same way by letting      . We assume the 
network controller can observe      at the beginning of 
every timeslot  , but the    

 probabilities are not necessarily 

known. Thus   is can be regarded as a function of      and 
    , i.e.                  . Define      as the 

maximum value of            over all control policies that 
satisfies the stability and time-average constraints. 

This problem is solved by OQLA in the way that each 
timeslot the network controller chooses the action that 
greedily minimizes      , where   is a positive constant 
    [2]. 

OQLA:                                    

It has been proved that OQLA stabilizes the network and 
achieves maximum utility asymptotically [2]. 

The following four variants of OQLA are analyzed in this 
paper. 
• QLA-P: QLA using first-order Part of upper bound of 

Lyapunov drift of    with a parameter  : 

                                   

• QLA-E: QLA using Entire expression of Lyapunov 

drift of    with a parameter  : 

                                   

• QLA-PDQ-P: QLA with Perturbed Data Queue using 

first-order Part of upper bound of Lyapunov drift of    
with parameters   and  : 

                                     

• QLA-PDQ-E: QLA with Perturbed Data Queue using 

Entire expression of Lyapunov drift of    with 

parameters   and  : 

                                     

Note that OQLA is equivalent to QLA-PDQ-P when 
   , QLA-E is equivalent to QLA-PDQ-E when    , 

QLA-P is equivalent to QLA-PDQ-P when            . 

D. An Example of the Model 

Here we provide an example to illustrate our model, 
which will be used in Section VI. There are   nodes in the 
network. Each node can communicate with another. Thus 
there are   queues in the network. Denote the queue from 
node   to node   as            , backlog of which is denoted 
as       . Possible data flows of queues are shown in Table 

[t_1]. 

TABLE I.  QUEUES AND DATA FLOWS IN A NETWORK OF 3 NODES 

Node No. 
Queue 

No. 
Possible Input Possible Output 

N1 
Q(1,2) Ea Q(3,2) N2 Q(3,2) 

Q(1,3) E Q(2,3) N3 Q(2,3) 

N2 
Q(2,1) E Q(3,1) N1 Q(3,1) 

Q(2,3) E Q(1,3) N3 Q(1,3) 

N3 
Q(3,1) E Q(2,1) N1 Q(2,1) 

Q(3,2) E Q(1,2) N2 Q(1,2) 

a. “E” is short for exogenous arrivals from outside the network 



2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017) 

181 

 

Network state consists of link state     of from node   to 

node  , where                   .               denote 

link status Good, Common, Bad and Disconnected 
respectively. Define              , where             if 

                respectively. Link state is i.i.d. and     
              with equal probabilities. There are totally    
network states. 

Exogenous arrival into queue       from outside the 
network is denoted as    . Maximum exogenous arrival to a 

queue is       , which means     satisfies the constraint 

          . Service allocated from queue       to node 

  is denoted as     . Power-service function is defined as 

                  . Packets from queue       can only be 

transmitted to either its destination node  , or queue       of 
the other node  , which means       . Maximum power 

allocated to a queue is       , which means      satisfies 

           . Define the power out of node   as   
     

               . Time-average power out of any node 

should be lower than    , i.e.          
 

 
   

  
        . 

Thus the corresponding virtual queue    updates according 

to                     
           . There are 

totally 3 virtual queues. Utility function is defined as 
                   to represent total throughput of the 

network. 
Each timeslot, according to maximum constraints of    ’s 

and     ’s and time-average constraints of   
  network 

controller decides the amount of packets into each queue and 
decides the power allocated to each queue, i.e. network 
controller decides the values of    ’s and     ’s. 

III. PRELIMINARY 

A. Definitions 

Let     denote the inner product of  , i.e.         . 
Definition 1 (Attraction Point). Define the attraction 

point of a stochastic process      as follows. 
   is the Attraction Point of a process      with 

parameters  ,   and   if: There exist    ,      , such 
that       ,       , and whenever              , 
we have                                      . 

Definition 2 (Locally Polyhedral). Define locally 
polyhedral property same as in [9]. 

Definition 3. Define functions      
      

         
       as follows. 

                       
       

 

   

        
           

     
 

                       
      

 

   

              

                                    
           

     

 

                       
      

 

   

 

 
        

            
      

                                                   
            

      

 

                         
      

 

   

              
           

     
 

                         
      

 

   

 

 
        

            
      

                                                       
            

      

 

Define      
 as    

       
     

       . Define       as 

      
     

. Define         as       
     

       . Note that 

      
 

         . 

B. Assumptions 

We list the assumptions used hereafter, which are as 
same as the ones in [8]. These assumptions hold in many 
network utility optimization problems and aren’t so rigorous 
as they appear. Explanations can be found in [11]. 

Assumption 1. Local maximum point of             
is unique on   , denoted as   

    . 
Assumption 2.             is locally polyhedral at its 

maximum point. 
Assumption 3.  -slackness[9] holds for the network. 
Assumptions 1 and 2 are about the property of utility 

function, while Assumption 3 is about the network. 

C. Lemmas 

Before moving further we introduce the following three 
lemmas, proofs of which are omitted for brevity and can be 
found in [2][3][8]. 

Lemma 1.      is the unique attraction point of      
if: 
1) A function      is locally polyhedral at   . 
2) For all   , there exists a positive constant   satisfying 

                         

        
        

       

Lemma 2. For network under OQLA with a parameter  , 
for any point  , we have 

             
              

IV. MAIN RESULTS 

We summarize analysis results here. 
Denote the Euclid ball centered at    with radius   as 

       . 
Theorem 1. When the network state is i.i.d., in the sense 

of conditional expectation, one Lyapunov function of the 
network under OQLA is 

       
        

        

       
        

  

Note that    equals    in most cases thus    is used in 
QLA-P instead of   . 

Theorem 2. For the network under QLA-P (QLA using 
first-order Part of upper bound of Lyapunov drift of   ) with 
a parameter  , the following properties hold. 
The attraction point of queue backlog is    

     

Utility function satisfies                      where 
   is a positive constant. 

Theorem 2 shows that using    instead of    when 
designing QLA, queue backlog is doubled while utility 
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performance remains        compared to OQLA. Thus 
using the Lyapunov function of the network under OQLA 
does not help the queue backlog and utility performance, 
only causing backlog to be larger. 

Theorem 3. For the network under QLA-E (QLA using 
Entire expression of Lyapunov drift of   ) with a parameter 
 , the following properties hold. 
Queue backlog is attracted by   

    .   
  approximately 

equals   
  when   is large enough. 

Utility function satisfies                     , where 
   is a positive constant. 

Theorem 3 shows that using the entire Lyapunov drift 
expression instead of the first-order part of the upper bound 
of Lyapunov drift of    when designing QLA, queue backlog 
and utility performance is not improved compared to OQLA. 
However, when using the entire expression, some problems 
with variables coupled loosely which can be solved in a 
distributed manner become problems with variables coupled 
tightly which can only be solved in a centralized manner. 
Thus using the entire expression increases the complexity. 
Therefore using the first-order part when designing QLA 
(such as in [2]) is reasonable. 

Theorem 4.  For the network under QLA-PDQ-P (QLA 
with Perturbed Data Queue using first-order Part of upper 
bound of Lyapunov drift of   ) with parameters   and  , the 
following properties hold. If   

       , the attraction 
point of queue backlog   

  equals   
      . Utility function 

satisfies                 
  

 
, where    is a positive 

constant. 
Theorem 4 shows that using a positive   increases 

backlog while using a negative   decreases backlog. This 
idea is used when designing QLA-VPDQ. 

Theorem 5. For the network under QLA-PDQ-E (QLA 
with Perturbed Data Queue using Entire expression of 
Lyapunov drift of   ) with parameters   and  , the following 
properties hold. The attraction point of queue backlog   

  

equals   
      , Utility function satisfies            

     
  

 
, where    is a positive constant. 

Theorem 5 shows that using the entire expression doesn’t 
help to enhance queue backlog and utility performance even 
for QLA with perturbed data queue. 

V. PROOFS 

A. Proof of Theorem 1 

It can be seen from the definition of    that      and 
     only when       

        . Thus we have from 
Lemma 1 that                                     
when       

        . 
Thus    is a Lyapunov function of the network in the 

sense of conditional expectation with the stability point 
    

        . 

B. Proof of Theorem 3 

Lemma 3. For the network under QLA-E, the following 
two equations hold. 

For any    and   , we have 

                                      (1) 
For any  , we have 

            
            

    

       
                    

  (2) 

Proof of Lemma 3 can be found in [11]. 

1) Property of Queue Backlog 
Attraction Point Property 
From (1) and (2) we have for any   

            
            

    

          
   

        
      

 

Using Lemma 1 and noting that    is polyhedral it can be 
concluded that   

  is the unique attraction point of queue 
backlog     . 

Linear Property of Attraction Point 
From the expression of    we see that, 

           
 

    

  

       
    

  

 

   

 

  
        

            
      

           
            

      

 

where     
  

 
. When   is large enough and 

 

  
        

            
      is small enough to be ignored, 

the right hand side is          which maximized at   
    . 

Therefore we have   
        

       
    . 

2) Property of Utility Function 
By [11], we have 

             

 
 

 
       

       
               

                         

                               

 

Because QLA-E greedily minimizes      , we have 

             

                  
         

          
 

where ALT represents any other alternate policy. 
Now using OQLA as ALT, using Lemma 2, we have 

                            

          
 

Taking expectations over      and summing the above 
over          , we have: 

                  

   

                
 

Rearranging the terms, using the facts that        and 
      , dividing both sides by   , and taking the        
as    , we get: 

      
   

       
   

 
 

Proof completes by letting       . 

C. Proof of Theorem 4 

Lemma 4. For the network under QLA-PDQ-P, the 
following two equations hold. 

For any    and   , we have 
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                                   (3) 
For any  , we have 

            
            

    

       
                   

  (4) 

Proof of Lemma 4 can be found in [11]. 

3)   Property of Queue Backlog 
From (3) and (4) we have for any   

            
            

    

          
   

        
      

 

Using Lemma 1 and noting that    is polyhedral it can be 
concluded that   

  is the unique attraction point of queue 
backlog     . Noting that              . Thus 
  
    

    if   
    . 

4)   Property of Utility Function 
By [11], we have 

             

 
 

 
       

       
               

                              

                                    

 

Because QLA-PDQ-P greedily minimizes      , we 
have 

             

                       
         

          
 

where ALT denotes represents any other alternate policy. 
Now using OQLA as ALT, using Lemma 2, we have 

                            

          
 

Following the same line as in Section V-B, we have 

      
   

       
   

 
 

Proof completes by letting       . 

D. Proof of Theorem 2 

Using Theorem 4 while letting     
  completes the 

proof. 

E. Proof of Theorem 5 

1) Property of Queue Backlog 
Following the same line as in Section V-C, the 

relationship between   
  and   

  can be obtained. 

2) Property of Utility Function 
Similar to the one in Section V-C. The difference is that 

QLA-PDQ-E greedily minimizes      . 

VI. SIMULATION 

In this section we provide simulation results for the 
QLA-PDQ-P, QLA-PDQ-E and QLA-VPDQ on the network 
model in Section II-D. QLA-P and QLA-E are omitted here 
because they are specific form of QLA-PDQ-P and QLA-
PDQ-E respectively. We simulate QLA-PDQ-P and QLA-
PDQ-E with                     and         
             , where bold symbol means a vector with 
all components equaling the same constant. Precision of      

and     is set to     . We run each case for     timeslots 

under both algorithms. Under each value of   and  , average 

queue backlog and utility function are obtained by using the 
final      timeslots when the network is in the steady-state 
(Fig. 1 and 2). 

Linear relationship between attraction point and   
mentioned in Theorem 4 and 5 are shown in Fig. 1(b) and 
2(b). Linear relationship between attraction point and   
mentioned in Theorem 2 and 3 are shown in Fig. 1(a) and 
2(a). From Fig. 1(b) and 2(b), Fig. 1(a) and 2(a) it can be 
seen that   

  approximately equals   
  as mentioned in 

Theorem 3. 
It can be seen from Fig. 1(d) and 2(d) that   decreases 

dramatically if   decreases when      
 . However, 

theoretical relationship between   and   when      
  

remains an open question. This question may relate to the 
property of   . However, we can see from Fig. 1(c) and 2(c) 
that        as     for all values of  , as mentioned in 
Theorem 4 and 5. 

VII. CONCLUSION 

We have investigated several variants of OQLA in this 
paper. First, rationality of OQLA is proved for using the 
first-order part of upper bound of drift of a function. 
Although the entire expression of drift is not used in OQLA, 
backlog and utility of OQLA performance is the same. 
Although the Lyapunov function of the network is not used 
in OQLA, backlog of OQLA halved and utility performance 
is the same. Therefore it is of no need to use either the entire 
expression or the Lyapunov function of the network. Second, 
linear relationship between perturbation in data queues and 
attraction point of the backlog is found.  
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(a)      (b) 

 
(c)      (d) 

Figure 1.  Simulation Results for QLA-PDQ-P: (a) Average Queue Backlog vs. V ; (b) Average Queue Backlog vs. C; (c) Average Utility 

vs. V ; (d) Average Utility vs. C 

 
(a)      (b) 
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(c)      (d) 

Figure 2.  Simulation Results for QLA-PDQ-E: (a) Average Queue Backlog vs. V ; (b) Average Queue Backlog vs. C; (c) Average Utility 

vs. V ; (d) Average Utility vs. C. 


