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Abstract—To improve the low state estimation accuracy of 

nonlinear state estimation due to large initial estimation error 

and nonlinearity of measurement equation, we obtain 

Levenberg-Marquardt (abbr. L-M) method based iteration 

square root cubature Kalman filter (ISRCKFLM) combining 

the measurement update of square root cubature Kalman filter 

(SRCKF) with nonlinear least square error, so the 

ISRCKFLM algorithm has the virtues of global convergence 

and numerical stability. We apply the ISRCKFLM algorithm 

to state estimation for re-entry ballistic target; the simulation 

results demonstrate the ISRCKFLM algorithm has better 

accuracy of state estimation. 
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I.  INTRODUCTION  

A series of nonlinear filters have been developed to apply 
to state estimation for the last decades. Up to now the 
commonly used non-linear filtering is the extended Kalman 
filter (EKF) [1, 2]. The EKF is based on first-order Taylor 
approximations of state transition and observation equation 
about the estimated state trajectory under Gaussian 
assumption, so EKF may introduce significant bias, or even 
convergence problems due to the overly crude approximation 
[3]. 

Recently, one type of suboptimal nonlinear filters based 
on numerical multi-dimensional integral were introduced in 
[4-6],  such as cubature rules based cubature Kalman filter 
(CKF) and the interpolatory cubature Kalman filters (ICKFs), 
which used numerical multi-dimensional integral to 
approximate the recursive Bayesian estimation integrals 
under the Gaussian assumption. The CKF can solve high-
dimensional nonlinear filtering problems with minimal 
computational effort and can be deemed as special case of 
ICKFs. Furthermore, the stability of CKF for non-linear 
systems with linear measurement is analyzed and the certain 
conditions to ensure that the estimation error of the CKF 
remains bounded are proved in [7]. On the other hand, in 
order to decrease the effect of initial estimation error and 
nonlinearity of measurement equation, Levenberg-Marquardt 
method based iteration cubature Kalman filter was developed 
on the basis of the CKF in Reference [8]. In fact, singular 
matrix occurs in the implementation of the above filters 
mentioned if the initial estimation is selected improperly. So 

the cubature rule is exploited as square root cubature 
information filter [9] and the square root cubature Kalman 
filter (SRCKF) was developed in order to mitigate ill effects 
and improve the numerical stability [5].The SRCKF also 
shows its weakness in the robustness and estimation 
accuracy. Making use of L-M method and the superiority of 
the SRCKF algorithm, we obtain the L-M method based 
iterative square root cubature Kalman filter (ISRCKFLM), in 
which, we transform the measurement update of SRCKF to 
the problem of nonlinear least square error, then use L-M 
method to solve it and obtain the optimal state estimation and 
covariance to improve the low state estimation accuracy of 
nonlinear state estimation due to large initial estimation error 
and nonlinearity of measurement equation. 

The rest of the paper is organized as follows. We begin in 
Section 2 with a description of square root cubature Kalman 
filter (SRCKF). The L-M method based iterative square root 
cubature Kalman filter (ISRCKFLM) is developed in Section 
3. Then we apply the ISRCKFLM algorithm to track re-entry 
ballistic target (RBT) with unknown ballistic coefficient and 
discuss the simulation results in Section 4. Finally, Section 5 
concludes the paper. 

II. L-M BASED ITERATION SQUARE ROOT CUBATURE 

KALMAN FILTER 

Consider the following nonlinear dynamics system: 

 1 1( )k k k  x f x w  

 ( )k k k z h x v  

where f and h are some known nonlinear functions; 

xn

k x and zn

k z  is state and the measurement vector, 

respectively; 1kw  and kv  are process and measurement 

Gaussian noise sequences with zero means and covariance 

1kQ  and kR , respectively, and 1{ }kw  and { }kv  are 

mutually uncorrelated. 
Suppose that the state distribution at k-1 time 

is
1 1 1 1

ˆ( , )T

k k k k   x x S SN: , Levenberg-Marquardt based 

Iteration square root cubature Kalman filter (ISRCKFLM) is 
described as follows. 
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(1) Time Update 
1) Calculate the cubature points and propagate the 

cubature points through the state equation 


, 1 1 1

ˆ
i k k i k   X S ξ x  


*

, , 1( )i k i kX f X  

where 2[1] , 1 , 1, 2i i i xm m i m n   ξ , the [1]i
is a 

xn dimensional vector and is generated according to the way 

described in [2]. 
2) Evaluate the predicted state and square root of the 

predicted covariance 


*

,

1

m

k i i k

i




x X  


*

, 1([  ])k k Q kTria S χ S  

here, 
, 1Q kS denotes a square-root factor of 

1kQ and Tria() is 

denoted as a general triagularization algorithm. The matrix 
*

kχ is defined as: 

 * * * *

1, 2, ,1 [   , , ]k k k k k m k km   χ X x X x X x  

3) Evaluate the modified covariance: 



1

1T T T

k k k k k k k

i

  
    
   

P I S S S S I S S  

where is adjusting parameter. 
(2) Measurement update 

1) Set the initial value as: (0)ˆ
k kx x . 

2) Assuming the i-th iterate ( )ˆ i

kx , calculate the matrix 


1

( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( )i T i i T i

k k h k h k k h k k



   
 L P J x J x P J x R  

3) Calculate the i-th iterate 


 

 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ( ) ( )( )

ˆ ˆ( ) ( )

i i i i i

k k k k k h k k k

i i i

i k h k k k k

     

  

x x L z h x J x x x

I L J x P x x


4) Calculate the iteration termination condition 

 ( 1) ( )ˆ ˆi i

k k   x x 
maxi N  

 and
maxN are predetermined threshold and maximum iterate 

number, respectively. If the termination condition meets, the 

iterate return to 5); otherwise, set ( ) ( 1)ˆ ˆ=i i

k k


x x , continue to 2). 

5) Calculate the state estimation at k time instant 

 ( )ˆ ˆ N

k kx x  

6) Evaluate the cross-covariance and square root of 
innovation covariance at k time 

 ( )ˆ( )T T N

xz k k h kP S S J x  

 ( )

,
ˆ( ( ) )N

zz h k k R kChol    S J x S S  

7) Calculate the square root of covariance at k time 

 / /T

k xz zz zzK P S S  

 ( )

,
ˆ( ( ) )N

k k k h k k k R kChol    S S K J x S K S  

where symbol “/ ” represents the matrix right divide operator. 

III. APPLICATIONS TO STATE ESTIMATION FOR RE-ENTRY 

BALLISTIC TARGET 

To demonstrate the performance of the ISRCKFLM 
algorithm, we apply the ISRCKFLM to estimate state of re-
entry ballistic target with unknown ballistic coefficient and 
compare its performance against the SRCKF and iterate 
square root cubature Kalman filter using Gauss-Newton 
method (ISRCKF) algorithms. All the simulations were done 
in MATLAB on a ThinkPad PC with an Intel (R) CORE i5 
M480 processor with the 2.67GHz clock speed and 3GB 
physical memory. 

In the simulation, the parameters and the initial state 
estimate are the same as in [10]. To demonstrate the 
performance of the ISRCKFLM algorithm, we use the root-
mean square error (RMSE) and average accumulated mean-
square root error (AMSRE) in the position, velocity and 
ballistic coefficient introduced in [8]. Figure. 1, Figure. 2 and 
Figure. 3 show the RMSEs for the SRCKF, ISRCKF and 

ISRCKFLM (=10
-10

) in position, velocity and ballistic 
coefficient in an interval of 15s-58s. The AMSREs of the 
three filters in position, velocity and ballistic coefficient are 
listed in Table. 1. The iteration number selected in the 
ISRCKFLM and ISRCKF algorithms is 4. All performance 
curves and figures in this subsection were obtained by 
averaging over 100 independent Monte Carlo runs. All the 
filters are initialized with the same condition in each run. 

From Figure. 1, we can see that the RMSE of 
ISRCKFLM in position is far less than that of SRCKF 
algorithm, and is less than that of ISRCKF algorithm. 
Moreover, the ISRCKFLM needs 14.5 seconds to make the 
RMSE in position reduce below 500 meters, the ISRCKF 



2017 International Conference on Computer Network, Electronic and Automation (ICCNEA 2017) 

8 

 

algorithm needs 34.6 seconds, and SRCKF algorithm needs 
about 47.6 seconds, so the ISRCKFLM algorithm has faster 
convergence rate than the SRCKF and ISRCKF algorithms. 
So the estimates provided by the ISRCKFLM in the position 
and velocity are markedly better than those of SRCKF and 
ISRCKF algorithms. 
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Figure 1.  RMSEs in position for various filters 
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Figure 2.  RMSEs in velocity for various filters 

Observe from Figure. 2, the RMSE of ISRCKFLM in 
velocity is far less than those of SRCKF and ISRCKF 
algorithm in the interval time (t < 35s), the ISRCKFLM still 
has faster convergence rate. And the RMSEs of the three 
filters lie at the lower level in the period (t >35s). 

As to the estimation of the ballistic coefficient, in the 
Figure. 3, the RMSEs of the three filters have less 
improvement in the interval time (0< t <35s) because of 
having less effective information about it from the noisy 
measurement. The RMSEs of the three filters begin to 
decrease at about t=37s because the measurements have the 
effective information on ballistic coefficient. In the period 
(35s< t <45s), the RMSE of the ISRCKFLM algorithm for 
the ballistic coefficient decreases more rapidly than that of 
SRCKF, and decreases at the same rate as that of ISRCKF. 
At the period 45s< t < 58s, the RMSE in the ISRCKFLM 
algorithm decreases most rapidly among the three algorithms. 

The ballistic coefficient estimate in the ISRCKFLM 
algorithm has the great improvement. 
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Figure 3.  RMSEs in ballistic coefficient for various filters 

TABLE I.  AMSRES IN POSITION, VELOCITY AND BALLISTIC 

COEFFICIENT 

Algorithms 
AMSREp 

(m) 

AMSREv 

(m/s) 
AMSRE 

(kg/m2 ) 

SRCKF 2693.096 306.133 165.363 

ISRCKF 1457.078 250.900 162.530 

ISRCKFLM 856.993 220.296 160.658 

 
According to Figure.1-Figure. 3, the RMSEs of 

ISRCKFLM in position and velocity markedly decrease, 
compared with those of the SRCKF and ISRCKF algorithm. 
Although the RMSE of ISRCKFLM in ballistic coefficient 
has less improvement, its RMSE significantly reduces in the 
last period. So the ISRCKFLM improves the state estimation 
accuracy of re-entry ballistic target. 

From TABLE 1. 1, it is seen that, the ISRCKFLM’s 
AMSRE in position reduces by about 68%, and its AMSRE 
in velocity reduces by about 28% compared to SRCKF. And 
compared to ISRCKF, the AMSRE of ISRCKFLM 
algorithm in position decreases by about 41%, and its 
AMSRE in velocity decreases by about 12%. Table.1 shows 
ISRCKFLM’s AMSRE in ballistic coefficient reduces 
marginally, but Figure.3 shows the ISRCKFLM’s RMSE is 
less than the other two filters in the interval of 40s-58s. 
Hence, the ISRCKFLM is to be preferred over the other 
filters in the light of AMSREs in the position, velocity and 
ballistic coefficient and has better performance. 

Therefore, on the basis of the simulation results presented 
in Figure.1-Figure.3 and Table.1, one can draw a conclusion 
that the ISRCKFLM algorithm yields on the superior 
performance over the SRCKF and ISRCKF algorithms on 
state estimation of re-entry ballistic target. 

IV. CONCLUSION 

The ISRCKFLM algorithm has the advantages of global 
convergence, fast convergence and numerical stability. The 
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ISRCKFLM algorithm is applied to state estimation for re-
entry ballistic target. Simulation results demonstrate that the 
performance of ISRCKFLM algorithm is superior to SRCKF 
and ISRCKF algorithms. So the ISRCKFLM algorithm is 
much more effective and improves the performance of state 
estimation to a marked degree. 
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