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Abstract —Pricing plays an important role for service 

provision in cloud computing. In this paper, we investigate 

price based resource access control in two Monopoly IaaS 

cloud market, respectively.  The two IaaS cloud market is 

formed by one public cloud service providers (CSPs) and 

cloud broker (CB), provisioning cloud services to delay-

sensitive cloud users (CUs). In the first monopoly cloud 

market, we treat the public CSP as an M/M/1 queueing system 

and study this CSP’s pricing effect on the equilibrium 

behaviours of self-interested CUs. We propose two pricing 

mechanisms with the objective of maximizing revenue and 

social welfare, respectively. In the second monopoly cloud 

market, the CB is modelled as an M/M/∞ queueing system, 

which has infinite capacity to serve a common pool of CUs. We 

also analyze how pricing affects the equilibrium behaviors of 

CUs and the revenue-optimal and social-optimal pricing 

strategies in view of this CSP.   

Keywords-Pricing, IaaS; cloud market; queueing system 

I. INTRODUCTION  

In recent years, cloud computing has received a 
significant amount of attentions from both engineering and 
academic fields and the use of cloud service is proliferating.  
Cloud computing can be defined by several ways, one 
widely adopted is proposed by Buyya et al. [1] : 

“a cloud is a type of parallel and distributed system 
consisting of a collection of interconnected and virtualized 
computers that are dynamically provisioned and presented 
as one or more unified computing resources based on 
service-level agreements established through negotiation 
between the service provider and the consumers” 

Cloud services are mainly classified into three types [2]: 
Infrastructure as a Service (IaaS), Software as a Service 
(SaaS) and Platform as a Service (PaaS). A recent study 
show that the market size of cloud computing will reach 
$112 billion in 2018, in a large part due to IaaS cloud 
services [3]. We focus on IaaS clouds in this paper, where 
CSPs deliver Infrastructure as a Service (IaaS) to cloud users. 
In the cloud computing environment, IaaS CSPs bundle their 
physical resources, such as CPU, memory and disk, into 
distinct types of virtual machine (VM) instances, according 
to their sizes and features, and offer them as services to users. 
Amazon EC2 is a public CSP which has hosted several types 

of VM instances (e.g. small, medium, large and extra large) 
based on the capacities of CPU, memory and disk [4], the 
configurations of some VM instances are shown in Table 1. 
Cloud users purchase units of computing time on VM 
instances to run their jobs.  

Optimal pricing for cloud resources has been extensively 
studied by a significant amount of works in the literature.  
Feng et al. studied non-cooperative price competition in an 
oligopoly public cloud market [5].  They modelled each PCP 
as an M/M/1 queue, and analyzed how to set optimal prices 
in order to maximize the revenues of PCs based on resource 
capacities and the job finishing time.  Xu et al., presented a 
study pricing cloud resources in a monopoly public cloud 
market [6].  Their study indicated that the revenue got with 
reserved pricing is not less than the first-order discrimination 
pricing.  Mashayekhy et al. proposed a federation 
formulation game that considers the cooperation of these 
cloud providers to offer cloud services [7].  Their designed 
cloud federation mechanism enables cloud providers 
dynamically to form a federated cloud, which maximizes the 
profits of cloud providers.  

In this paper, we study pricing-based service access 
control of CUs in a heterogeneous cloud market formed by 
two CSPs, public CSP and CB provisioning cloud services 
to delay-sensitive CUs.  We consider two cloud scenarios 
corresponding to two types of cloud market: public CSP 
monopoly, and CB monopoly, which is illustrated in Figure 
1.  We note that similar structure analysis is also adopted by 
[9] in which the authors studied optimal pricing effects on 
the equilibrium behaviours of secondary users in cognitive 
radio networks.  However, the effects of delay costs charged 
by CSPs on cloud users are not fully considered in [9].  By 
incorporating the delay costs of CSPs, in the first monopoly  

 

(a) Public cloud monopoly market 
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(b) Cloud broker monopoly market 

Figure 1. Two cloud market scenarios 

Cloud market, we model the PC as an M/M/1 queueing 
system and analyze the pricing effect of this CSP on the 
equilibrium behaviours of non-cooperative delay-sensitive 
CUs.  These behaviours are characterized by CUs’ service 
access decisions of joining or balking to the queue upon 
arrival.  From the viewpoint of CUs, their service access 
decision model are made according to the individual optimal 
strategy exploited by each CU, which is based on a utility 
function that captures the heterogeneous delay- sensitivity of 
CUs.  We then show that there is a unique Nash equilibrium 
of CUs’ joining probability in the non-cooperative game 
among them.  In terms of the monopoly CSP, we design two 
pricing policies with the objective of maximizing revenue 
and social welfare, respectively. 

In the second monopoly market, the CB is modelled as 
an M/M/∞ queueing system provisioning cloud services to 
delay-sensitive CUs.  Similar to the first monopoly cloud 
market, we also study the CSP’s pricing effect on the 
equilibrium behaviours of CUs.  Since the CB has sufficient 
resources to serve the needs of CUs, therefore, it can provide 
better quality of service (QoS) measured by the average 
queueing delay.  From the perspective of this CSP, we also 
study two pricing policies with the objective of maximizing 
revenue and social welfare, respectively. 

The rest of the paper is structured as follows.  System 
models are presented in section 2.  We analyze the 
monopoly public cloud market in the section 3, the 
monopoly CB cloud market in the section 4.  Conclusions 
and future works are given in section 5. 

TABLE I. CONFIGURATIONS OF SOME AMAZON EC2 VM INSTANCES 

Instance 

Types 

Compute 

Unit 

Storage 

(GB) 

Memory 

(GiB) 

c3.large 2 32SSD 3.75 

c3.xlarge 4 80SSD 7.5 

c3.2xlarge 8 160SSD 15 

c3.4xlarge 16 32SSD 30 

c3.8xlarge 32 80SSD 60 

 

II. SYSTEM MODELS 

A.  CUs model  

We assume that there is potential stream of CUs arrive at 
the cloud market with rate λ according to the Poisson 
process.  Each CU carries a distinct job upon arrival.  
Therefore, we use CU and job interchangeably throughout 
the paper.  The jobs of CUs in cloud data centers are 
classified into two types [10]: interactive (delay-sensitive) 
jobs, such as web service, and batch (delay-tolerant) jobs, 
such as scientific applications.  Recent study shows that 
delay-sensitive interactive workloads take over 50% of data 
center workloads [11]. Hence, we focus on delay-sensitive 
interactive jobs and assume that each job attached to a 
specific application is denoted by a parameter θ, which 
reflects the sensitivity of CU’s application to delay.  The 
value of θ is private, but its distributions are known to CSPs.  
We also assume that θ is uniformly distributed on [0,1] with 
probability distribution function (PDF) f(.) and cumulative 
distribution function (CDF) F(.). This assumption is also 
widely adopted in the literature [9] [12][13]. 

When a type-θ CU arrives to the cloud market, it must 
make a decision as to whether to acquire service or not.  If 
joins CSPi (i=p or c, where p and c denotes public CSP and 
CB, respectively ), it will get net utility which is  


, ,i i iU r d p i p c   



This net utility function is commonly used in the cloud 
and communication networks literatures [5][9][13], which 
captures the balance between the reward r and the total costs 
θcdi+pi that a CU takes if it joins the queueing system CSPi.  
The reward r represents the benefit factor of a CU for 
accessing the cloud service [9][13].  The total costs include 
two parts: θdi and pi, where di is the average queueing delay 
that this job experiences in the queueing system and pi is the 
price per service request charged by this CSPi. The similar 
pricing scheme is widely adopted by CSPs. Such as, 
Campaign Monitor [14] and Amazon Simple Email Service 
(ES) [15] charge CUs according to the number of campaigns 
and emails they process, respectively.   

B.  Public Cloud Service Provider  (CSP) 

When a type-θ CU decides to subscribe the service from 
the public provider, it will join a queueing system of this 
public provider.  The system of the PC is modelled as an 
M/M/1 queue with service rate μ serving a potential number 
of CUs. The M/M/1 queue model is widely used in the cloud 
computing literature [9] to analyze response time as a 
function of the capacity of cloud resources and arrival rate of 
service requests.  From (1), the net utility of type-θ CU for 
accessing the service public provider given price p1 is  

 1 1 1U r cd p  


Where 1( ) 1/ ( )d    
is the average queueing delay 

incurred by the arrival rate λ. 
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C.  Cloud Broker (CB) 

Since the CB integrates and coordinates resources among 
different CSPs, therefore, we assume that it has sufficient 
cloud resources to meet the demands of CUs. Hence, the 
system of CB is modelled as an M/M/∞ queue with enough 
servers to serve a common potential pool of CUs. The 
similar models have been widely used in the cloud literature 
to analyze power management or resource allocation in data 
centers. In [16], the authors studied optimal multi-server 
configuration to maximize profit of CSPs in cloud data 
centers.  In [17], by modelling the CSP as M/G/m/m+r 
queueing system, the authors analyzed the performances of 
cloud data centers.  Fang et al. studied throughput and 
energy tradeoff in mobile cloud platforms by applying the 
M/M/m queueing model [18]. From (1), the net utility of 
type-θ CU for accessing the service cloud broker given price 
p2 is  

 2 2 2U r d p  


where 2 1/d 
captures the average queueing delay in 

M/M/∞ queue. 
 

III. PUBLIC CLOUD MONOPOLY MARKET 

In this section, we first investigate the decisions of CUs 
as to whether to join or balk to the public provider and then 
design two optimal pricing mechanisms with the aim of 
maximizing revenue and social welfare, respectively. 

A.  CUs’ Decision Policy 

We consider a number of CUs arriving at the public 
cloud market, and these CUs are rational decision-makers in 
that they are only concerned with their own net utilities.  
Upon arrival, each type-θ CU has to make a decision 
whether to join or balk the queueing system of the public 
provider.  It will join the queue if and only if its net utility 
U1(θ)≥0.  Therefore, we get the following individual 
optimal decision policy. 

Definition 1. A self-optimizing type-θ CU with its net 

utility 1 1 1 1( ) ( )U r cd p    
will follow a joining 

decision policy such that 

 it joins public provider if U1(θ)≥0，which requires 

θ≤θ1, where  



1

1

1 1( )

r p

cd









 it balks, if U1(θ)<0. 
The above definition indicates that the fraction of CUs 

that have θ values less than θ1 will subscribe to the public 
provider.  The fraction of CUs that have θ values less than 
θ1 is  



1

1
0 0

( ) ( ) ( )F f d f d


    


         

Then, the effective arrival rate of CUs to the public 
provider denoted by λ1 is  



B.  Revenue Optimal Pricing Mechanism  

Under the assumption that the public cloud provider 
knows the effective arrival rate, when charging p1 and delay 
cost c, this public cloud provider can get 

revenue 1 1 1 1( )p p 
.  The objective of the public cloud 

provider is to maximize its revenue, which can be 
formulated as  

 1 1 1 1( )p p 


                            s.t.  p1∈[plow, pup] 
 

where pup=r, plow=max{0,r-cd(λ1)}. 
It is obvious that π1= p1λ1 is a concave function 

from 1 1( ) 0p  
.  Hence, the problem of (7) can be solved 

by efficiently.  By setting the first derivative 1

0
p





, we get 

the optimal price 


1

( )c r c c r
p

 



   




Accordingly, the optimal revenue is  


1 1 1

[2 2 ( )]c r c c r
p

  
 



    
 



C.  Social Welfare Optimal Pricing Mechanism 

Cloud social welfare is the net utilities of CUs plus the 
revenue of the public cloud provider.  When charging price 
p1 , only the fraction of CUs with θ≤θ1 subscribe to the 
public loud provider.  Therefore, the cloud social welfare at 
price p1 is  



1

2

1

1 1 1

1

1

1

1

1
0

( )

[   (       )] ( )

2(

  

    
)

      

S p U

r

r

f d

c

cd







 



 

 

 

 










where θ1 is given in (4).  From (4) we know that θ is the 

function of price p1.  Therefore, the variable of 1 1( )S 
 can 

be changed from p1 to critical CU variable.  Hence, the 
social welfare optimal pricing problem is formulated as  

 1 1( )S 

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s.t.  θ1∈[0, 1] 

where 1 1( )S 
is given in (10). 

We find that the objective function of problem (11) is 

concave by calculating 1 1( ) 0S  
, therefore, the optimal 

solution of (11) can be effectively solved, which is denoted 

by 1

S
.  Hence, the optimal social welfare price is  

 1 1 1 1( )S S Sp r cd  


IV. CLOUD BROKER MONOPOLY MARKET 

In this section, we first investigate the decisions of CUs 
as to whether to join or balk to the cloud broker and then 
design two optimal pricing mechanisms with the goal of 
maximizing revenue and social welfare, respectively. 

A.  CUs’ Decision Policy and Equilibrium 

We consider a number of CUs arriving at the federated 
cloud market, and these CUs are rational decision-makers in 

that they are only concerned with their own net utilities.  
Upon arrival, each type-θ CU has to make a decision 
whether to join or balk the queueing system of the cloud 
broker.  For a CU, it will join the queue if and only if its net 
utility U2(θ)≥0.  Therefore, we get the following individual 
optimal decision policy. 

Definition 2. A self-optimizing type-θ CU with its net 

utility 2 2 2 2( ) ( )U r cd p    
will follow a joining 

decision policy such that 

 it joins public provider if U2(θ)≥0，which requires 

θ≤θ2, where  



2

2

2

r p

cd







 it balks, if U2(θ)<0. 
The above definition indicates that the fraction o

f CUs that have θ values less than θ2 will subscribe to 
the cloud broker.  The fraction of CUs that have θ values 
less than θ2 is expressed as  



2

2
0 0

( ) ( ) ( )F f d f d


    


   

Then, the effective arrival rate of CUs to the public 
provider denoted by λ2 is  



B.  Revenue Optimal Pricing Mechanism  

Under the assumption that the cloud broker knows the 
actual arrival rate of CUs, when charging p2 and delay cost c, 

this CSP can get revenue 2 2 2 2( )p p 
.  The objective of 

the cloud broker is to maximize its revenue, which can be 
formulated as  

 2 2 2 2( )p p 


                  s.t.  p2∈[0, r] 
By setting the first derivative of the objective function 

with respect to p2 to zero, we get the revenue optimal price  


2

2

r
p 



Accordingly, the optimal revenue is  
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C.  Social Optimal Pricing Mechanism 

The cloud social welfare is defined as  
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The cloud social welfare problem is formulated as  
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s.t.  p2∈[0, r] 
By setting the first derivative of the objective function 

with respective to p2, the socially optimal price is  
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